Linear Least squares estimation

ISSN: 2180 - 1843 Vol. 3 No. 1 January - June 2011 Journal of Telecommunication, Electronic and Computer Engineering 58 error namely ROS model consists of high probability of large NLOS error and of near-zero NLOS error. Finally, the fourth model of NLOS error was modeled as uniformly distribution random variable which gives equal probability of taking low and high NLOS values.

B. Linear Least squares estimation

Linear least squares LLS [7, 15] approach is a suboptimal positioning technique which provides a solution with low computational complexity. Therefore, it can be employed for applications that require fast and low complexity implementation with reasonable positioning accuracy. In addition, for applications that require precise location estimation, LLS can be used to obtain initial position estimate for initializing high-accuracy positioning algorithms, such as non linear least squares NLLS [15] and linearization based on Taylor series [8]. A good initialization can signiicantly decrease the computational complexity and the inal location error of a high accuracy technique. Therefore, performance analysis of the LLS is important from multiple perspectives. In this paper, LLS is utilized for performance comparison with the developed algorithm. The LLS approach begins with the set of equations 4 where each distance measurement is assumed to deine a circle of uncertain region. Based on trilateration method with distance measurements of at least three available BS, the intersection at one point can be obtained by using LLS approach. These equations can be simpliied by solving intersections of circles and presenting in the matrix form as following [15] and explained in Fig. 2. = A b x − − ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ M M M ⎡ ⎤ = − + ⎣ ⎦ = − + − − = = 5 − − ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ M M M ⎡ ⎤ = − + ⎣ ⎦ = − + − − = where 2 1 2 1 21 3 1 3 1 31 1 1 1 1 1 , , n n n x x y y b x x y y b x x y y x x y y b − − ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ A b M M M x ⎡ ⎤ = − + ⎣ ⎦ = − − ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ M M M 6 ⎡ ⎤ = − + ⎣ ⎦ = with − − ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ M M M 2 2 2 0.5 ij j i ij b r r d ⎡ ⎤ = − + ⎣ ⎦ = − − ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ M M M ⎡ ⎤ = − + ⎣ ⎦ 7 = and = − − ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ M M M ⎡ ⎤ = − + ⎣ ⎦ 2 2 ij i j i j d x x y y = − + − − = = − − ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ M M M ⎡ ⎤ = − + ⎣ ⎦ = − + − 8 − = where i=1,2,…,n and n denotes the number of available BSs. d j represents the distance between BS i and BS j and is the serving BS. From 5, the LLS solution can be obtained as [15, 16] = − − ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ M M M ⎡ ⎤ = − + ⎣ ⎦ = − + − 1 ˆ + T T − = A A A b X x = − − ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ M M M ⎡ ⎤ = − + ⎣ ⎦ = − + − − = 9 near- r which al low r ty In on te hms, such as d ly on erefore, performance n th circle = − − ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ M M M ⎡ ⎤ = − + ⎣ ⎦ = − + − − = Fig. 2 LLS Geometry Calculation Using TOA where is the 2-D desired vector of MS coordinates and position of serving BS, denoted by X= [ x i ,y i ] T .

C. Linear Lines of Position Algorithm