Analisis Kinerja Jaringan Local Area Network (LAN) Menggunakan Aplikasi Cisco Packet Tracer

(1)

LAMPIRAN I

Konfigurasi IP dan router-id pada Router A Router>en

Router#conf t

Router(config)#hostname rA rA(config)#in fa 0/0

rA(config-if)#ip address 11.11.11.1 255.255.255.0 rA(config-if)#in fa 0/1

rA(config-if)#ip address 12.12.12.1 255.255.255.0 rA(config-if)# in fa 1/0

rA(config-if)#ip address 50.50.50.2 255.255.255.0 rA(config-if)# in fa 1/1

rA(config-if)#ip address 10.10.10.1 255.255.255.0 rA(config-if)#exit

rA(config)#router bgp 100

rA(config-router)#bgp router-id 1.1.1.1 rA(config-router)#^Z

rA#sh ip int br

Konfigurasi IP dan router-id pada Router B Router>en

Router#conf t

Router(config)#hostname rB rB(config)#in fa 0/0

rB(config-if)#ip address 21.21.21.1 255.255.255.0 rB(config-if)#in fa 0/1

rB(config-if)#ip address 22.22.22.1 255.255.255.0 rB(config-if)# in fa 1/0

rB(config-if)#ip address 10.10.10.2 255.255.255.0 rB(config-if)# in fa 1/1

rB(config-if)#ip address 20.20.20.1 255.255.255.0 rB(config-if)#exit

rB(config)#router bgp 200

rB(config-router)#bgp router-id 2.2.2.2 rB(config-router)#^Z


(2)

Konfigurasi IP dan router-id pada Router C Router>en

Router#conf t

Router(config)#hostname rC rC(config)#in fa 0/0

rC(config-if)#ip address 31.31.31.1 255.255.255.0 rC(config-if)#in fa 0/1

rC(config-if)#ip address 32.32.32.1 255.255.255.0 rC(config-if)# in fa 1/0

rC(config-if)#ip address 20.20.20.2 255.255.255.0 rC(config-if)# in fa 1/1

rC(config-if)#ip address 30.30.30.1 255.255.255.0 rC(config-if)#exit

rC(config)#router bgp 300

rC(config-router)#bgp router-id 3.3.3.3 rC(config-router)#^Z

rC#sh ip int br

Konfigurasi IP dan router-id pada Router D Router>en

Router#conf t

Router(config)#hostname rD rD(config)#in fa 0/0

rD(config-if)#ip address 41.41.41.1 255.255.255.0 rD(config-if)#in fa 0/1

rD(config-if)#ip address 42.42.42.1 255.255.255.0 rD(config-if)# in fa 1/0

rD(config-if)#ip address 30.30.30.2 255.255.255.0 rD(config-if)# in fa 1/1

rD(config-if)#ip address 40.40.40.1 255.255.255.0 rD(config-if)#exit

rD(config)#router bgp 400

rD(config-router)#bgp router-id 4.4.4.4 rD(config-router)#^Z

rD#sh ip int br


(3)

Konfigurasi IP dan router-id pada Router E Router>en

Router#conf t

Router(config)#hostname rE rE(config)#in fa 0/0

rE(config-if)#ip address 51.51.51.1 255.255.255.0 rE(config-if)#in fa 0/1

rE(config-if)#ip address 52.52.52.1 255.255.255.0 rE(config-if)# in fa 1/0

rE(config-if)#ip address 40.40.40.2 255.255.255.0 rE(config-if)# in fa 1/1

rE(config-if)#ip address 50.50.50.1 255.255.255.0 rE(config-if)#exit

rE(config)#router bgp 500

rE(config-router)#bgp router-id 5.5.5.5 rE(config-router)#^Z


(4)

LAMPIRAN II

Konfigurasi neighbor dan network pada Router A rA>en

rA#conf t

rA(config)#router bgp 100

rA(config-router)#neighbor 10.10.10.2 remote-as 200 rA(config-router)#neighbor 50.50.50.1 remote-as 500

rA(config-router)#%BGP-5-ADJCHANGE: neighbor 10.10.10.2 Up rA(config-router)#%BGP-5-ADJCHANGE: neighbor 50.50.50.1 Up rA(config-router)#network 11.11.0.0 mask 255.255.255.0 rA(config-router)#network 12.12.0.0 mask 255.255.255.0 rA(config-router)#^Z

rA#exit

Konfigurasi neighbor dan network pada Router B rB>en

rB#conf t

rB(config)#router bgp 200

rB(config-router)#neighbor 20.20.20.2 remote-as 300 rB(config-router)#neighbor 10.10.10.1 remote-as 100

rB(config-router)#%BGP-5-ADJCHANGE: neighbor 20.20.20.2 Up rB(config-router)#%BGP-5-ADJCHANGE: neighbor 10.10.10.1 Up rB(config-router)#network 21.21.0.0 mask 255.255.255.0 rB(config-router)#network 22.22.0.0 mask 255.255.255.0 rB(config-router)#^Z

rB#exit

Konfigurasi neighbor dan network pada Router C rC>en

rC#conf t

rC(config)#router bgp 300

rC(config-router)#neighbor 30.30.30.2 remote-as 400 rC(config-router)#neighbor 20.20.20.1 remote-as 200

rC(config-router)#%BGP-5-ADJCHANGE: neighbor 30.30.30.2 Up rC(config-router)#%BGP-5-ADJCHANGE: neighbor 20.20.20.1 Up rC(config-router)#network 31.31.0.0 mask 255.255.255.0 rC(config-router)#network 32.32.0.0 mask 255.255.255.0


(5)

rC(config-router)#^Z rC#exit

Konfigurasi neighbor dan network pada Router D rD>en

rD#conf t

rD(config)#router bgp 400

rD(config-router)#neighbor 40.40.40.2 remote-as 500 rD(config-router)#neighbor 30.30.30.1 remote-as 300

rD(config-router)#%BGP-5-ADJCHANGE: neighbor 40.40.40.2 Up rD(config-router)#%BGP-5-ADJCHANGE: neighbor 30.30.30.1 Up rD(config-router)#network 41.41.0.0 mask 255.255.255.0 rD(config-router)#network 42.42.0.0 mask 255.255.255.0 rD(config-router)#^Z

rD#exit

Konfigurasi neighbor dan network pada Router E rE>en

rE#conf t

rE(config)#router bgp 500

rE(config-router)#neighbor 50.50.50.2 remote-as 100 rE(config-router)#neighbor 40.40.40.1 remote-as 400

rE(config-router)#%BGP-5-ADJCHANGE: neighbor 50.50.50.2 Up rE(config-router)#%BGP-5-ADJCHANGE: neighbor 40.40.40.1 Up rE(config-router)#network 51.51.0.0 mask 255.255.255.0 rE(config-router)#network 52.52.0.0 mask 255.255.255.0 rE(config-router)#^Z


(6)

LAMPIRAN III

Konfigurasi RIP pada router A Router>en Router#conf t Router(config)#hostname rA rA(config)#router rip rA(config-router)#network 50.0.0.0 rA(config-router)#network 10.0.0.0 rA(config-router)#network 11.0.0.0 rA(config-router)#network 12.0.0.0 rA(config-router)#^Z

rA#sh ip route

Konfigurasi RIP pada router B Router>en Router#conf t Router(config)#hostname rB rB(config)#router rip rB(config-router)#network 10.0.0.0 rB(config-router)#network 20.0.0.0 rB(config-router)#network 21.0.0.0 rB(config-router)#network 22.0.0.0 rB(config-router)#^Z

rB#sh ip route

Konfigurasi RIP pada router C Router>en Router#conf t Router(config)#hostname rC rC(config)#router rip rC(config-router)#network 20.0.0.0 rC(config-router)#network 30.0.0.0 rC(config-router)#network 31.0.0.0 rC(config-router)#network 32.0.0.0 rC(config-router)#^Z

rC#sh ip route


(7)

Konfigurasi RIP pada router D Router>en

Router#conf t

Router(config)#hostname rD rD(config)#router rip

rD(config-router)#network 30.0.0.0 rD(config-router)#network 40.0.0.0 rD(config-router)#network 41.0.0.0 rD(config-router)#network 42.0.0.0 rD(config-router)#^Z

rD#sh ip route

Konfigurasi RIP pada router E Router>en

Router#conf t

Router(config)#hostname rE rE(config)#router rip

rE(config-router)#network 40.0.0.0 rE(config-router)#network 50.0.0.0 rE(config-router)#network 51.0.0.0 rE(config-router)#network 52.0.0.0 rE(config-router)#^Z


(8)

LAMPIRAN IV

1. Hasil Simulasi Koneksi Point to Point Protokol Routing BGP

Gambar L41.1 PP BGP A11 ke B12

Gambar L41.2 PP BGP A12 ke C13

Gambar L41.3 PP BGP A13 ke D14

Gambar L41.4 PP BGP A14 ke E15

Gambar L41.5 PP BGP B11 ke C12

Gambar L41.6 PP BGP B13 ke D13


(9)

Lanjutan Hasil Simulasi Koneksi Point to Point Protokol Routing BGP

Gambar L41.7 PP BGP B14 ke E14

Gambar L41.8 PP BGP B15 ke A15

Gambar L41.9 PP BGP C11 ke D12

Gambar L41.10 PP BGP C14 ke E13

Gambar L41.11 PP BGP C15 ke D11


(10)

2. Hasil Simulasi Koneksi Point to Point Protokol Routing RIP

Gambar L42.1 PP RIP A11 ke B12

Gambar L42.2 PP RIP A12 ke C13

Gambar L42.3 PP RIP A13 ke D14

Gambar L42.4 PP RIP A14 ke E15

Gambar L42.5 PP RIP B11 ke C12

Gambar L42.6 PP RIP B13 ke D13


(11)

Lanjutan Hasil Simulasi Koneksi Point to Point Protokol Routing RIP

Gambar L42.7 PP RIP B14 ke E14

Gambar L42.8 PP RIP B15 ke A15

Gambar L42.9 PP RIP C11 ke D12

Gambar L42.10 PP RIP C14 ke E13

Gambar L42.11 PP RIP C15 ke D11


(12)

LAMPIRAN V

1. Hasil Simulasi Koneksi Point to Multipoint Protokol Routing BGP

Gambar L51.1 PM BGP A11 ke B12

Gambar L51.2 PM BGP A11 ke C13

Gambar L51.3 PM BGP A11 ke D14

Gambar L51.4 PM BGP A11 ke E15

Gambar L51.5 PM BGP B11 ke A12

Gambar L51.6 PM BGP B11 ke C14


(13)

Lanjutan Hasil Simulasi Koneksi Point to Multipoint Protokol Routing BGP

Gambar L51.7 PM BGP B11 ke D15

Gambar L51.8 PM BGP B11 ke E12

Gambar L51.9 PM BGP C11 ke A13

Gambar L51.10 PM BGP C11 ke B14

Gambar L51.11 PM BGP C11 ke D12


(14)

Lanjutan Hasil Simulasi Koneksi Point to Multipoint Protokol Routing BGP

Gambar L51.13 PM BGP D11 ke A14

Gambar L51.14 PM BGP D11 ke B15

Gambar L51.15 PM BGP D11 ke C12

Gambar L51.16 PM BGP D11 ke E14

Gambar L51.17 PM BGP E11 ke A15

Gambar L51.18 PM BGP E11 ke B13


(15)

Lanjutan Hasil Simulasi Koneksi Point to Multipoint Protokol Routing BGP

Gambar L51.19 PM BGP E11 ke C15

Gambar L51.20 PM BGP E11 ke D13

2. Hasil Simulasi Koneksi Point to MultiPoint Protokol Routing RIP

Gambar L52.1 PM RIP A11 ke B12

Gambar L52.2 PM RIP A11 ke C13

Gambar L52.3 PM RIP A11 ke D14


(16)

Lanjutan Hasil Simulasi Koneksi Point to Multipoint Protokol Routing RIP

Gambar L52.5 PM RIP B11 ke A12

Gambar L52.6 PM RIP B11 ke C14

Gambar L52.7 PM RIP B11 ke D15

Gambar L52.8 PM RIP B11 ke E12

Gambar L52.9 PM RIP C11 ke A13

Gambar L52.10 PM RIP C11 ke B14


(17)

Lanjutan Hasil Simulasi Koneksi Point to Multipoint Protokol Routing RIP

Gambar L52.11 PM RIP C11 ke D12

Gambar L52.12 PM RIP C11 ke E13

Gambar L52.13 PM RIP D11 ke A14

Gambar L52.14 PM RIP D11 ke B15

Gambar L52.15 PM RIP D11 ke C12


(18)

Lanjutan Hasil Simulasi Koneksi Point to Multipoint Protokol Routing RIP

Gambar L52.17 PM RIP E11 ke A15

Gambar L52.18 PM RIP E11 ke B13

Gambar L52.19 PM RIP E11 ke C15

Gambar L52.20 PM RIP E11 ke D13


(19)

LAMPIRAN VI

1. Hasil Simulasi Koneksi Multipoint to Point Protokol Routing BGP

Gambar L61.1 MP BGP A12 ke E12

Gambar L61.2 MP BGP B12 ke E12

Gambar L61.3 MP BGP C12 ke E12

Gambar L61.4 MP BGP D12 ke E12

Gambar L61.5 MP BGP B13 ke A13


(20)

Lanjutan Hasil Simulasi Koneksi Multipoint to point Protokol Routing BGP

Gambar L61.7 MP BGP D13 ke A13

Gambar L61.8 MP BGP E13 ke A13

Gambar L61.9 MP BGP C14 ke B14

Gambar L61.10 MP BGP D14 ke B14

Gambar L61.11 MP BGP E14 ke B14

Gambar L61.12 MP BGP A14 ke B14


(21)

Lanjutan Hasil Simulasi Koneksi Multipoint to point Protokol Routing BGP

Gambar L61.13 MP BGP D15 ke C15

Gambar L61.14 MP BGP E15 ke C15

Gambar L61.15MP BGP A15 ke C15

Gambar L61.16 MP BGP B15 ke C15

Gambar L61.17 MP BGP E11 ke D11


(22)

Lanjutan Hasil Simulasi Koneksi Multipoint to point Protokol Routing BGP

Gambar L61.19 MP BGP B11 ke D11

Gambar L61.20 MP BGP C11 ke D11

2. Hasil Simulasi Koneksi Multipoint to Point Protokol Routing RIP

Gambar L62.1 MP RIP A12 ke E12

Gambar L62.2 MP RIP B12 ke E12

Gambar L62.3 MP RIP C12 ke E12

Gambar L62.4 MP RIP D12 ke E12


(23)

Lanjutan Hasil Simulasi Koneksi Multipoint to point Protokol Routing RIP

Gambar L62.5 MP RIP B13 ke A13

Gambar L62.6 MP RIP C13 ke A13

Gambar L62.7 MP RIP D13 ke A13

Gambar L62.8 MP RIP E13 ke A13

Gambar L62.9 MP RIP C14 ke B14


(24)

Lanjutan Hasil Simulasi Koneksi Multipoint to point Protokol Routing RIP

Gambar L62.11 MP RIP E14 ke B14

Gambar L62.12 MP RIP A14 ke B14

Gambar L62.13 MP RIP D15 ke C15

Gambar L62.14 MP RIP E15 ke C15

Gambar L62.15 MP RIP A15 ke C15

Gambar L62.16 MP RIP B15 ke C15


(25)

Lanjutan Hasil Simulasi Koneksi Multipoint to point Protokol Routing RIP

Gambar L62.17 MP RIP E11 ke D11

Gambar L62.18 MP RIP A11 ke D11

Gambar L62.19 MP RIP B11 ke D11


(26)

DAFTAR PUSTAKA

[1] Syafrizal, Melwin. 2005. Pengantar Jaringan Komputer. C.V ANDI OFFSET.

[2] Hernawati, Kuswari,S.Si.,M.Komp. Materi 8 Jaringan Komputer. http://staff.uny.ac.id/sites/default/files/pendidikan/Kuswari%20Hernawati,%

20S.Si.,M.Kom./KTI-Materi8%20jaringan%20Komputer.pdf.

[3] Arifin, Zaenal. 2003. Langkah Mudah Mengkonfigurasi ROUTER CISCO. ANDI OFFSET.

[4] Anonim. 2014. Packet Tracer. http://id.wikipedia.org/wiki/Packet_Tracer.

[5] Zulhijah, Siti. Pengertian DHCP.

https://izulmen.wordpress.com/dhcp-dynamic-host-configuration-protocol/.

[6] Sofana, Iwan. 2012. CISCO CCNP dan Jaringan Komputer. Informatika Bandung

[7] Antipolis, Sophia. 1999. Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON); General aspects of Quality of Service (QoS) ; Halaman 28. Valbonne – FRANCE.


(27)

START

Inisialisasi (Konfigurasi Server DHCP, Router BGP)

Membuat Trafik Jaringan

Apakah simulasi BGP dan RIP selesai ?

Melihat hasil simulasi dan membuat tabel hasil

simulasi

STOP Ya

Simulasi untuk koneksi point to point, point to multipoint

dan multipoint to point

Tidak

BAB III

SIMULASI JARINGAN LAN

3.1 Proses Simulasi

Proses simulasi jaringan LAN dapat dilihat pada diagram alir seperti pada Gambar 3.1


(28)

Pada tugas akhir ini disimulasikan suatu jaringan LAN. Sebelum melalukan simulasi jaringan LAN ada beberapa hal yang terlebih dahulu harus dilakukan diantaranya :

- Memilih jenis aplikasi yang akan digunakan.

- Memilih jenis topologi yang akan digunakan dan menentukan jumlah PC,

switch, server, router, dan jenis pengkabelan.

- Mengkonfigurasi server, menentukan jenis routing yang akan dipakai dalam jaringan.

- Melihat parameter yang dihasilkan dari proses simulasi tersebut.

3.2 Perancangan Jaringan LAN

Dalam perancangan jaringan LAN terdapat beberapa proses yang akan dilakukan :

3.2.1 Perancangan Topologi Jaringan

Pada tugas akhir ini disimulasikan suatu jaringan LAN dengan topologi

ring yang terdiri seperti diperlihatkan pada Gambar 3.2

Gambar 3.2 Topologi Jaringan LAN yang disimulasikan


(29)

3.2.2 Konfigurasi Perangkat

a. Konfigurasi Server

Pada simulasi digunakan pengkonfigurasian server DHCP (Dynamic Host

Configuration Protocol). DHCP adalah protokol yang berbasis arsitektur client / server yang dipakai untuk memudahkan pengalokasian alamat IP dalam satu

jaringan. Sebuah jaringan lokal yang tidak menggunakan DHCP harus memberikan alamat IP kepada semua komputer secara manual. Jika DHCP dipasang di jaringan lokal, maka semua komputer yang tersambung di jaringan akan mendapatkan alamat IP secara otomatis dari server DHCP. Selain alamat IP, banyak parameter jaringan yang dapat diberikan oleh DHCP, seperti default

gateway dan DNS server.

Berikut tahapan dalam mengkonfigurasi server DHCP :

- Klik server, pilih jendela Desktop, lalu pilih IP Configuration. Pada jendela IP

Configuration, masukkan nilai IP Address, Subnet Mask, Default Gateway, dan

DNS Server seperti diperlihatkan pada Gambar 3.3.

Gambar 3.3 Konfigurasi IP Server

- Setelah IP Configuration selesai, tutup jendela IP Configuration, lalu ke jendela

Service, pilih menu DHCP. Isi nilai seperti yang diperlihatkan pada Gambar


(30)

Gambar 3.4 Konfigurasi DHCP

- Untuk mengkonfigurasi PC sesuai dengan setting-an server DHCP. Klik ganda PC yang akan dikonfigurasi. Pilih jendela Desktop, pilih menu IP

Configuration. Kondisi awal IP Configuration berada pada button Static. Button Static digunakan untuk konfigurasi secara manual. Untuk konfigurasi

secara DHCP, klik button DHCP, tunggu beberapa saat (requesting IP

address). Jika IP DHCP berhasil maka akan muncul DHCP request successsful

seperti diperlihatkan pada Gambar 3.5.

Gambar 3.5 Konfigurasi DHCP pada PC


(31)

- Selanjutnya konfigurasi IP address Server DHCP seperti pada Tabel 3.1

Tabel 3.1 IP address untuk Server DHCP

Nama Server

IP

Address Subnet Mask

Default Gateway

DNS Server

Server A1 11.11.11.2 255.255.255.0 11.11.11.1 11.11.11.0 Server A2 12.12.12.2 255.255.255.0 12.12.12.1 12.12.12.0 Server B1 21.21.21.2 255.255.255.0 21.21.21.1 21.21.21.0 Server B2 22.22.22.2 255.255.255.0 22.22.22.1 22.22.22.0 Server C1 31.31.31.2 255.255.255.0 31.31.31.1 31.31.31.0 Server C2 32.32.32.2 255.255.255.0 32.32.32.1 32.32.32.0 Server D1 41.41.41.2 255.255.255.0 41.41.41.1 41.41.41.0 Server D2 42.42.42.2 255.255.255.0 42.42.42.1 42.42.42.0 Server E1 51.51.51.2 255.255.255.0 51.51.51.1 51.51.51.0 Server E2 52.52.52.2 255.255.255.0 52.52.52.1 52.52.52.0

Setelah IP address server DHCP selesai dikonfigurasi seluruhnya, tinggal mengkonfigurasi IP PC. Konfigurasi IP address PC diperlihatkan pada Tabel 3.2

Tabel 3.2 IP address untuk PC

Nama PC IP

Address Subnet Mask

Default Gateway

DNS Server

PC A11 11.11.11.3 255.255.255.0 11.11.11.1 11.11.11.0 PC A12 11.11.11.4 255.255.255.0 11.11.11.1 11.11.11.0 PC A13 11.11.11.5 255.255.255.0 11.11.11.1 11.11.11.0 PC A14 11.11.11.6 255.255.255.0 11.11.11.1 11.11.11.0 PC A15 11.11.11.7 255.255.255.0 11.11.11.1 11.11.11.0 PC A21 12.12.12.3 255.255.255.0 12.12.12.1 12.12.12.0 PC A22 12.12.12.4 255.255.255.0 12.12.12.1 12.12.12.0 PC A23 12.12.12.5 255.255.255.0 12.12.12.1 12.12.12.0 PC A24 12.12.12.6 255.255.255.0 12.12.12.1 12.12.12.0 PC A25 12.12.12.7 255.255.255.0 12.12.12.1 12.12.12.0 PC B11 21.21.21.3 255.255.255.0 21.21.21.1 21.21.21.0 PC B12 21.21.21.4 255.255.255.0 21.21.21.1 21.21.21.0 PC B13 21.21.21.5 255.255.255.0 21.21.21.1 21.21.21.0 PC B14 21.21.21.6 255.255.255.0 21.21.21.1 21.21.21.0 PC B15 21.21.21.7 255.255.255.0 21.21.21.1 21.21.21.0 PC B21 22.22.22.3 255.255.255.0 22.22.22.1 22.22.22.0


(32)

Tabel 3.2 Lanjutan IP address untuk PC

Nama PC IP

Address Subnet Mask

Default Gateway

DNS Server

PC B22 22.22.22.4 255.255.255.0 22.22.22.1 22.22.22.0 PC B23 22.22.22.5 255.255.255.0 22.22.22.1 22.22.22.0 PC B24 22.22.22.6 255.255.255.0 22.22.22.1 22.22.22.0 PC B25 22.22.22.7 255.255.255.0 22.22.22.1 22.22.22.0 PC C11 31.31.31.3 255.255.255.0 31.31.31.1 31.31.31.0 PC C12 31.31.31.4 255.255.255.0 31.31.31.1 31.31.31.0 PC C13 31.31.31.5 255.255.255.0 31.31.31.1 31.31.31.0 PC C14 31.31.31.6 255.255.255.0 31.31.31.1 31.31.31.0 PC C15 31.31.31.7 255.255.255.0 31.31.31.1 31.31.31.0 PC C21 32.32.32.3 255.255.255.0 32.32.32.1 32.32.32.0 PC C22 32.32.32.4 255.255.255.0 32.32.32.1 32.32.32.0 PC C23 32.32.32.5 255.255.255.0 32.32.32.1 32.32.32.0 PC C24 32.32.32.6 255.255.255.0 32.32.32.1 32.32.32.0 PC C25 32.32.32.7 255.255.255.0 32.32.32.1 32.32.32.0 PC D11 41.41.41.3 255.255.255.0 41.41.41.1 41.41.41.0 PC D12 41.41.41.4 255.255.255.0 41.41.41.1 41.41.41.0 PC D13 41.41.41.5 255.255.255.0 41.41.41.1 41.41.41.0 PC D14 41.41.41.6 255.255.255.0 41.41.41.1 41.41.41.0 PC D15 41.41.41.7 255.255.255.0 41.41.41.1 41.41.41.0 PC D21 42.42.42.3 255.255.255.0 42.42.42.1 42.42.42.0 PC D22 42.42.42.4 255.255.255.0 42.42.42.1 42.42.42.0 PC D23 42.42.42.5 255.255.255.0 42.42.42.1 42.42.42.0 PC D24 42.42.42.6 255.255.255.0 42.42.42.1 42.42.42.0 PC D25 42.42.42.7 255.255.255.0 42.42.42.1 42.42.42.0 PC E11 51.51.51.3 255.255.255.0 51.51.51.1 51.51.51.0 PC E12 51.51.51.4 255.255.255.0 51.51.51.1 51.51.51.0 PC E13 51.51.51.5 255.255.255.0 51.51.51.1 51.51.51.0 PC E14 51.51.51.6 255.255.255.0 51.51.51.1 51.51.51.0 PC E15 51.51.51.7 255.255.255.0 51.51.51.1 51.51.51.0 PC E21 52.52.52.3 255.255.255.0 52.52.52.1 52.52.52.0 PC E22 52.52.52.4 255.255.255.0 52.52.52.1 52.52.52.0 PC E23 52.52.52.5 255.255.255.0 52.52.52.1 52.52.52.0 PC E24 52.52.52.6 255.255.255.0 52.52.52.1 52.52.52.0 PC E25 52.52.52.7 255.255.255.0 52.52.52.1 52.52.52.0


(33)

b. Konfigurasi Router BGP

Konfigurasi router BGP dibagi dalam beberapa bagian, yaitu konfigurasi IP,

router-id, neighbors dan network. Routing yang digunakan yaitu BGP (Border Gateway Protocol). BGP menggunakan konsep path vector. Algoritma yang

digunakan Bellman - Ford secara periodik menyalin tabel routing dari router ke

router. Perubahan tabel routing di-update antar router yang saling berhubungan

pada saat terjadi perubahan topologi. Pengkonfigurasian router menggunakan CLI (Command Line Interface) dapat dilihat pada Lampiran I. Hasil konfigurasi IP pada router A , B, C, D, dan E diperlihatkan pada Gambar 3.6, Gambar 3.7, Gambar 3.8, Gambar 3.9, dan Gambar 3.10

Gambar 3.6 Tampilan Konfigurasi IP pada Router A


(34)

Gambar 3.8 Tampilan Konfigurasi IP pada Router C

Gambar 3.9 Tampilan Konfigurasi IP pada Router D

Gambar 3.10 Tampilan Konfigurasi IP pada Router E


(35)

Setelah masing-masing router dikonfigurasi ip dan router-id nya, selanjutnya dikonfigurasi neighbor dan network pada masing-masing router. Konfigurasi

neighbor dan network pada masing-masing router dapat dilihat pada Lampiran II.

Untuk menampilkan tabel routing pada masing-masing router diperlihatkan pada perintah berikut :

Tabel routing pada Router A rA>en

rA#sh ip route

Tampilan pada Command Line Interface diperlihatkan pada Gambar 3.11


(36)

Tabel routing pada Router B rB>en

rB#sh ip route

Tampilan pada Command Line Interface diperlihatkan pada Gambar 3.12

Gambar 3.12 Tabel routing pada Router B

Tabel routing pada Router C rC>en

rC#sh ip route

Tampilan pada Command Line Interface diperlihatkan pada Gambar 3.13


(37)

Gambar 3.13 Tabel routing pada Router C

Tabel routing pada Router D rD>en

rD#sh ip route

Tampilan pada Command Line Interface diperlihatkan pada Gambar 3.14

Tabel routing pada Router E rD>en

rD#sh ip route


(38)

Gambar 3.14 Tabel routing pada Router D

Gambar 3.15 Tabel routing pada Router E


(39)

Sedangkan untuk menampilkan ip routing BGP pada masing-masing router digunakan perintah seperti di bawah ini :

IP routing BGP pada Router A rA>en

rA#sh ip bgp

Tampilan pada Command Line Interface diperlihatkan pada Gambar 3.18

Gambar 3.16 IP routing BGP pada Router A

 IP routing BGP pada Router B rB>en

rB#sh ip bgp

Tampilan pada Command Line Interface diperlihatkan pada Gambar 3.17

IP routing BGP pada Router C rC>en

rC#sh ip bgp


(40)

Gambar 3.17 IP routing BGP pada Router B

Gambar 3.18 IP routing BGP pada Router C


(41)

IP routing BGP pada Router D rD>en

rD#sh ip bgp

Tampilan pada Command Line Interface diperlihatkan pada Gambar 3.19

IP routing BGP pada Router E rE>en

rE#sh ip bgp

Tampilan pada Command Line Interface diperlihatkan pada Gambar 3.20

Gambar 3.19 IP routing BGP pada Router D


(42)

3.3 RIP (Routing Information Protocol)

Untuk mengetahui kinerja protokol routing BGP dibandingkan dengan

routing RIP. Topologi yang digunakan protokol routing RIP sama dengan yang

digunakan protokol BGP. Command Line Interface (CLI) konfigurasi routing RIP dapat dilihat pada Lampiran III. Hasil konfigurasi RIP pada router A, B, C, D dan E diperlihatkan pada Gambar 3.21, Gambar 3.22, Gambar 3.23, Gambar 3.24, dan Gambar 3.25.

Gambar 3.21 Konfigurasi RIP pada router A

Gambar 3.22 Konfigurasi RIP pada router B


(43)

Gambar 3.23 Konfigurasi RIP pada router C


(44)

Gambar 3.25 Konfigurasi RIP pada router E

3.4 Trafik Jaringan LAN

Trafik jaringan LAN digunakan untuk mengetahui kinerja jaringan LAN. Untuk mendapatkan kinerja jaringan LAN yang mendekati kenyataan dibuat keadaan trafik yang padat dimana seluruh komputer saling melakukan pertukaran informasi secara bersamaan. Pertukaran informasi antar komputer dilakukan sebanyak seratus kali (100 kali). Trafik jaringan LAN yang digunakan pada protokol routing BGP sama dengan yang digunakan pada protokol routing RIP untuk koneksi point to point, point to multipoint dan multipoint to point. Trafik jaringan yang digunakan untuk koneksi point to point diperlihatkan pada Gambar 3.26. Trafik jaringan untuk koneksi point to multipoint diperlihatkan pada Gambar 3.27, dan trafik jaringan untuk koneksi multipoint to point diperlihatkan pada Gambar 3.28.


(45)

Gambar 3.26 Trafik jaringan untuk koneksi point to point


(46)

Gambar 3.28 Trafik jaringan untuk koneksi multipoint to point


(47)

BAB IV

ANALISIS HASIL SIMULASI

Hasil simulasi yang telah dilakukan dibagi dalam tiga koneksi yaitu : - Point to Point

- Point to Multipoint

- Multipoint to Point

4.1 Analisis Hasil Simulasi Koneksi Point to Point

Dari simulasi yang dilakukan didapat hasil seperti diperlihatkan pada Lampiran IV. Tabel hasil simulasi diperlihatkan pada Tabel 4.1.

Tabel 4.1 Tabel Hasil Simulasi Koneksi Point to Point

No Asal Tujuan

Protokol Routing BGP Protokol Routing RIP Delay rata-rata (ms) Packet Loss (%) Throughput (Kbps) Delay rata-rata (ms) Packet Loss (%) Throughput (Kbps) 1 A11 B12 853 2 5,74 1736 11 2,56 2 A12 C13 599 2 8,18 2625 28 1,37 3 A13 D14 914 8 5,03 2798 36 1,14 4 A14 E15 752 4 6,38 2406 19 1,68 5 B11 C12 581 3 8,35 1367 8 3,37 6 B13 D13 511 2 9,59 2521 10 1,79 7 B14 E14 510 8 9,02 3048 33 1,10 8 B15 A15 583 2 8,40 1852 10 2,43 9 C11 D12 683 4 7,03 1651 3 2,94 10 C14 E13 451 11 9,87 2810 35 1,16 11 C15 D11 500 6 9,40 1797 8 2,56 12 D15 E11 456 10 9,87 2059 21 1,92

Dari tabel hasil simulasi koneksi point to point dapat dianalisa :

BGP

Delay rata-rata total (ms) 616,08 Packet Loss rata-rata (%) 5,17 Throughtput rata-rata (kbps) 8,07

RIP

Delay rata-rata total (ms) 2222,50 Packet Loss rata-rata (%) 18,50 Throughtput rata-rata (kbps) 2,00


(48)

Pada koneksi point to point setiap pc mengirimkan data sebesar 5Mb setiap 0,3 detik sebanyak 100 kali, sehingga beban yang mampu di-cover untuk koneksi

point to point adalah :

MB 203,75 18,50)% -(100 x PC 50 x 5MB RIP Pada MB 237,075 5,17)% -(100 x PC 50 x 5MB BGP Pada     routing routing

Artinya beban total yang mampu di-cover untuk koneksi point to point dengan

routing BGP sekitar 237,075MB sedangkan untuk routing RIP sekitar 203,75MB

Grafik hasil simulasi pada koneksi point to point untuk protokol routing BGP dan RIP dapat dilihat pada pada Gambar 4.1(a), 4.1(b) dan 4.1(c).

Gambar 4.1 (a) Perbandingan Delay rata rata koneksi point to point

Gambar 4.1(b) Perbandingan Packet Loss koneksi point to point


(49)

Gambar 4.1(c) Perbandingan Throughput koneksi point to point

4.2 Analisis Hasil Simulasi Point to Multipoint

Dari simulasi yang dilakukan didapat hasil seperti diperlihatkan pada Lampiran V. Tabel hasil simulasi diperlihatkan pada Tabel 4.2.

Tabel 4.2 Tabel Hasil Simulasi Koneksi Point to Multipoint

No Asal Tujuan

Protokol Routing BGP Protokol Routing RIP Delay rata-rata (ms) Packet Loss (%) Throughput (kbps) Delay rata-rata (ms) Packet Loss (%) Throughput (kbps)

1 A11

B12 628 4 7,64 712 5 6,67 C13 1032 2 4,75 1375 4 3,49 D14 1087 7 4,28 795 4 6,04 E15 745 4 6,44 681 6 6,90

2 B11

A12 677 4 7,09 1082 7 4,30 C14 721 2 6,80 722 5 6,58 D15 1064 6 4,42 1314 5 3,61 E12 847 2 5,79 1353 5 3,51

3 C11

A13 954 2 5,14 1117 3 4,34 B14 779 3 6,23 689 5 6,89 D12 895 4 5,36 938 2 5,22 E13 642 6 7,32 1345 3 3,61

4 D11

A14 1111 4 4,32 1361 3 3,56 B15 651 5 7,30 1427 4 3,36 C12 818 3 5,93 980 4 4,90 E14 1011 2 4,85 1032 2 4,75

5 E11

A15 766 5 6,20 1073 4 4,47 B13 1369 6 3,43 1401 5 3,39 C15 717 6 6,56 1308 7 3,56 D13 1186 2 4,13 905 5 5,25


(50)

Dari tabel hasil simulasi koneksi point to multipoint dapat dianalisa :

BGP

Delay rata-rata total (ms) 885,00 Packet Loss rata-rata (%) 3,95 Throughtput rata-rata (kbps) 5,70

RIP

Delay rata-rata total (ms) 1080,50 Packet Loss rata-rata (%) 4,40 Throughtput rata-rata (kbps) 4,72

Pada koneksi point to multipoint setiap pc mengirimkan data sebesar 5Mb setiap 0,7 detik sebanyak 100 kali, sehingga beban yang mampu di-cover untuk koneksi

point to multipoint adalah :

MB 239 4,40)% -(100 x PC 50 x 5MB RIP Pada MB 240,125 3,95)% -(100 x PC 50 x 5MB BGP Pada     routing routing

Artinya beban total yang mampu di-cover untuk koneksi point to multipoint dengan routing BGP sekitar 240,125MB sedangkan untuk routing RIP sekitar 239MB

Grafik hasil simulasi pada koneksi point to multipoint untuk protokol routing BGP dan RIP dapat dilihat pada pada Gambar 4.2(a), 4.2(b) dan 4.2(c).

Gambar 4.2 (a) Perbandingan Delay rata rata koneksi point to multipoint


(51)

Gambar 4.2(b) Perbandingan Packet Loss koneksi point to multipoint

Gambar 4.2(c) Perbandingan Throughput koneksi point to multipoint

4.3 Analisis Hasil Simulasi Multipoint to Point

Dari simulasi yang dilakukan didapat hasil seperti diperlihatkan pada Lampiran VI. Tabel hasil simulasi diperlihatkan pada Tabel 4.3.


(52)

Tabel 4.3 Tabel Hasil Pengujian Koneksi Multipoint to Point

No Asal Tujuan

Protokol Routing BGP Protokol Routing RIP Delay rata-rata (ms) Packet Loss (%) Throughput (kbps) Delay rata-rata (ms) Packet Loss (%) Throughput (kbps) 1 A12 E12

755 2 6,49 995 2 4,92 B12 1584 4 3,03 2518 27 1,45 C12 1659 4 2,89 2077 27 1,76 D12 958 1 5,17 1303 15 3,26

2 B13

A13

674 0 7,42 1068 1 4,63 C13 1124 0 4,45 1614 4 2,97 D13 1578 3 3,07 1471 19 2,75 E13 686 0 7,29 1019 1 4,86

3 C14

B14

862 1 5,74 1011 4 4,75 D14 1658 2 2,96 1470 13 2,96 E14 1566 5 3,03 2358 32 1,44 A14 695 1 7,12 994 0 5,03

4 D15

C15

1128 1 4,39 1116 7 4,17 E15 1650 6 2,85 2068 15 2,06 A15 1150 3 4,22 1592 4 3,02 B15 948 2 5,17 979 3 4,95

5 E11

D11

1058 1 4,68 1297 18 3,16 A11 1621 3 2,99 1450 13 3,00 B11 1607 4 2,99 1643 5 2,89 C11 1094 1 4,52 1170 6 4,02

Dari tabel hasil simulasi koneksi multipoint to point dapat dianalisa :

BGP

Delay rata-rata total (ms) 1202,75 Packet Loss rata-rata (%) 2,20 Throughtput rata-rata (kbps) 4,52

RIP

Delay rata-rata total (ms) 1460,65 Packet Loss rata-rata (%) 10,80 Throughtput rata-rata (kbps) 3,40

Pada koneksi multipoint to point setiap pc mengirimkan data sebesar 5Mb setiap 0,3 detik sebanyak 100 kali, sehingga beban yang mampu di-cover untuk koneksi

multipoint to point adalah :

MB 223 10,80)% -(100 x PC 50 x 5MB RIP Pada MB 244,5 2,20)% -(100 x PC 50 x 5MB BGP Pada     routing routing

Artinya beban total yang mampu di-cover untuk koneksi multipoint to point dengan routing BGP sekitar 244,5MB sedangkan untuk routing RIP sekitar 223MB


(53)

Grafik hasil simulasi pada koneksi multipoint to point untuk protokol routing BGP dan RIP dapat dilihat pada pada Gambar 4.3(a), 4.3(b) dan 4.3(c).

Gambar 4.3 (a) Perbandingan Delay rata rata koneksi multipoint to point


(54)

Gambar 4.3(c) Perbandingan Throughput koneksi multipoint to point

BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan hasil simulasi yang telah dilakukan, dapat diambil beberapa kesimpulan :

1. Pada koneksi point to point, nilai Delay rata-rata total untuk routing BGP : 616,08ms dan RIP : 2222,50ms. Delay rata-rata total untuk routing RIP lebih besar 260,74% dari BGP. Nilai Packet Loss rata-rata untuk routing BGP : 5,17% dan RIP : 18,50%. Packet loss rata-rata untuk RIP lebih besar 257,83% dari BGP. Nilai Throughput rata-rata untuk routing BGP : 8,07kbps dan RIP : 2kbps. Throughput rata-rata untuk routing BGP lebih besar 303,5% dari RIP. 2. Pada koneksi point to multipoint, nilai Delay rata-rata total untuk routing BGP

: 885ms dan RIP : 1080,5ms. Delay rata-rata total untuk routing RIP lebih besar 22,09% dari BGP. Nilai Packet Loss rata-rata untuk routing BGP : 3,95% dan RIP : 4,4%. Packet Loss rata-rata untuk routing RIP lebih besar 11,39% dari BGP. Nilai Throughput rata-rata untuk routing BGP : 5,7kbps dan RIP : 4,72kbps. Throughput rata-rata untuk routing BGP lebih besar 20,76% dari RIP.

3. Pada koneksi multipoint to point, nilai Delay rata-rata total untuk routing BGP : 1202,75ms dan RIP : 1460,65ms. Delay rata-rata total untuk routing RIP lebih besar 21,44% dari BGP. Nilai Packet Loss rata-rata untuk routing BGP : 2,2% dan RIP : 10,80%. Packet Loss rata-rata untuk routing RIP lebih besar 390,9% dari BGP. Nilai Throughput rata-rata untuk routing BGP : 4,52kbps dan RIP : 3,4kbps. Throughput rata-rata untuk routing BGP lebih besar 32,94% dari RIP.

5.2 Saran

Adapun saran yang penulis ingin sampaikan :

1. Routing BGP yang digunakan ditambah iBGP dan eBGP.

2. Jangkauannya dapat diperluas menjadi MAN atau WAN.


(55)

BAB II

JARINGAN KOMPUTER

2.1 Pengertian Jaringan Komputer

Jaringan komputer adalah suatu jaringan yang terdiri dari dua atau lebih komputer yang saling berhubungan antara satu dengan lainnya menggunakan protokol komunikasi melalui media komunikasi sehingga dapat saling berbagi (bertukar) informasi, program-program, penggunaan bersama perangkat keras seperti printer, harddisk, dan sebagainya. Selain itu jaringan komputer bisa diartikan sebagai kumpulan sejumlah terminal komunikasi yang berada di berbagai lokasi yang terdiri dari lebih satu komputer yang saling berhubungan[1].

2.2 Jenis Jaringan Komputer

Berdasarkan jarak dan area kerjanya jaringan komputer dibedakan menjadi tiga kelompok, yaitu[2] :

1. Local Area Network (LAN)

Local Area Network (LAN) merupakan jaringan berbasis milik pribadi di

dalam sebuah gedung atau kampus yang berukuran sampai beberapa kilometer. LAN umumnya digunakan untuk menghubungkan komputer-komputer pribadi dan workstation dalam kantor suatu perusahaan atau pabrik-pabrik untuk memakai bersama sumberdaya (resouce, misalnya printer) dan saling bertukar informasi.

Dengan memperhatikan kecepatan transmisi data, maka LAN dapat digolongkan dalam tiga kelompok, yaitu :

a. Low Speed PC Network

Kecepatan transmisi data pada Low Speed PC Network kurang dari 1 Mbps dan biasanya diterapkan untuk personal computer. Contoh dari jenis ini adalah

Omninet oleh Corvus Systems (network bus), Constalation oleh Corvus Systems


(56)

b. Medium Speed Network

Kecepatan transmisi data pada Medium Speed Network berkisar antara 1-20 Mbps dan biasnya diterapkan untuk mini computer. Contoh dari jenis ini adalah

Ethernet oleh Xerox, ARC Net oleh Datapoint Corporation, Wangnet oleh Wang Laboratories.

c. High Speed Network

Kecepatan transmisi data pada High Speed Network lebih dari 20 Mbps dan biasanya diterapkan untuk mainframe computer. Contoh dari jenis ini adalah

Loosely Coupled Network oleh Control Data Corporation, Hyper Channel oleh Network System Corporation.

2. Metropolitan Area Network (MAN)

Metropolitan Area Network (MAN), pada dasarnya merupakan versi LAN

yang berukuran lebih besar dan biasanya menggunakan teknologi yang sama dengan LAN. MAN dapat mencakup kantor-kantor perusahaan yang letaknya berdekatan atau juga sebuah kota dan dapat dimanfaatkan untuk keperluan pribadi (swasta) atau umum. MAN mampu menunjang data dan suara, bahkan dapat berhubungan dengan jaringan televisi kabel.

3. Wide Area Network (WAN)

Wide Area Network (WAN) adalah jaringan yang biasanya sudah

menggunakan media wireless, sarana satelit ataupun kabel serat optik, karena jangkauannya yang lebih luas, bukan hanya meliputi satu kota atau antar kota dalam suatu wilayah, tetapi mulai menjangkau area/wilayah otoritas negara lain. WAN biasanya lebih rumit dan sangat kompleks dibandingkan LAN maupun MAN. WAN menggunakan banyak sarana untuk menghubungkan antara LAN dan WAN ke dalam komunikasi global seperti internet, meski demikian antara LAN, MAN dan WAN tidak banyak berbeda dalam beberapa hal, hanya lingkup areanya saja yang berbeda satu diantara yang lainnya.


(57)

2.3 Topologi Jaringan Komputer

Topologi adalah suatu cara menghubungkan komputer yang satu dengan komputer lainnya sehingga membentuk jaringan. Pola ini sangat erat kaitannya dengan metode access dan media pengiriman yang digunakan. Topologi yang ada sangatlah tergantung dengan letak geografis dari masing-masing terminal, kualitas kontrol yang dibutuhkan dalam komunikasi ataupun penyampaian pesan, serta kecepatan dari pengiriman data. Dalam definisi topologi terbagi menjadi dua, yaitu topologi fisik (physical topology) dan topologi logik (logical topology).

2.3.1 Topologi Fisik (physical topology)

Pada topologi fisik menunjukan posisi pemasangan kabel secara fisik. Topologi fisik dibagi menjadi dua yaitu point to point dan multipoint.

a. Point to Point (Titik ke Titik)

Merupakan jaringan yang menggambarkan bentuk hubungan antara satu komputer ke satu komputer lain (dari satu titik ke titik lain). Jaringan point to

point diperlihatkan pada Gambar 2.1.

Gambar 2.1 Jaringan Point to Point

b. Multipoint (Banyak titik)

Merupakan suatu jaringan yang menggambarkan bentuk hubungan dari satu titik ke banyak titik (point to multipoint) dan dari banyak titik ke satu titik (multipoint to point). Jenis-jenis topologi multipoint diantaranya :

1. Topologi Bus

Pada topologi bus digunakan sebuah kabel tunggal (kabel linear atau kabel pusat) dimana seluruh workstation dan server dihubungkan. Bentuk topologi bus diperlihatkan pada Gambar 2.2


(58)

Gambar 2.2 Topologi Bus

Keuntungan topologi bus adalah :

- Untuk pengembangan jaringan atau penambahan workstation baru dapat dilakukan dengan mudah tanpa mengganggu workstation lain.

- Pemakaian kabel sedikit. Kerugian topologi bus adalah :

- Saat terjadi gangguan di sepanjang kabel pusat maka keseluruhan jaringan akan mengalami gangguan.

- Deteksi dan isolasi kesalahan sangat kecil.

2. Topologi Bintang (Star)

Pada topologi star, masing-masing workstation dihubungkan secara langsung ke server atau hub. Bentuk topologi star diperlihatkan pada Gambar 2.3.

Gambar 2.3 Topologi Star

Keuntungan topologi star adalah :

- Pengembangan jaringan dapat dilakukan dengan mudah dan tidak mengganggu bagian jaringan lain.

- Sistem kontrol terpusat.


(59)

- Jika terdapat gangguan di suatu jalur kabel maka gangguan hanya akan terjadi antara workstation yang bersangkutan dengan server, keseluruhan jaringan tidak akan mengalami gangguan.

- Mudah untuk mendeteksi kesalahan Kerugian topologi star adalah :

- Kebutuhan pengkabelan besar.

- Jika Hub atau konsentrator bermasalah maka jaringan ikut bermasalah.

3. Topologi Cincin (Ring)

Pada topologi ring, semua workstation dan server dihubungkan sehingga terbentuk suatu pola lingkaran atau cincin. Tiap workstation ataupun server akan menerima dan melewatkan informasi dari satu komputer ke komputer lain, bila alamat yang dimaksud sesuai maka informasi diterima dan bila tidak informasi akan dilewatkan. Bentuk topologi ring diperlihatkan pada Gambar 2.4.

Gambar 2.4 Topologi Ring

Keuntungan topologi ring adalah :

- Tidak terjadinya collision atau tabrakan pengiriman data. - Pengkabelan point-to-point untuk setiap bagian jaringan. Kerugian topologi ring adalah :

- Setiap node dalam jaringan akan selalu ikut serta mengelola informasi yang dilewatkan dalam jaringan, sehingga bila terdapat gangguan di suatu node maka seluruh jaringan akan terganggu.


(60)

4. Topologi Jala (Mesh)

Pada topologi mesh setiap node saling terhubung dengan node yang lainnya. Bentuk topologi mesh diperlihatkan pada Gambar 2.5.

Gambar 2.5 Topologi Mesh

Keuntungan topologi mesh adalah:

- Memiliki keamanan jaringan yang terjamin.

- Saat terjadi gangguan jaringan tidak akan menggangu jaringan lain, dan dapat melewati jalur lain.

Kerugian topologi mesh adalah :

- Kebutuhan pengkabelan yang paling besar karena setiap node saling terhubung dengan node lain.

- Sangat sulit dalam pengkonfigurasian dan pengembangan jaringan.

5. Topologi Pohon (Tree)

Topologi tree dapat berupa gabungan dari topologi star dengan topologi

bus. Pada jaringan pohon, terdapat beberapa tingkatan simpul (node). Pusat atau

simpul yang lebih tinggi tingkatannya, dapat mengatur simpul lain yang lebih rendah tingkatannya. Data yang dikirim perlu melalui simpul pusat terlebih dahulu. Bentuk topologi tree diperlihatkan pada Gambar 2.6

Gambar 2.6 Topologi Tree


(61)

Kelebihan Topologi Tree

- Scalable artinya level-level dibawah level utama dapat menambahkan node

baru dengan mudah.

- Koneksi terjadi secara point to point.

- Mudah dalam melakukan identifikasi dan isolasi kesalahan dalam jaringan. - Mudah dikembangkan.

Kekurangan Topologi Tree

- Pada area yang luas sulit untuk melakukan perawatan jaringan. - Dapat terjadi tabrakan file data (collision).

- Lebih sulit untuk mengkonfigurasi dan memasang kabel dari pada topologi lain.

- Jika salah satu node rusak, maka node yang berada di jenjang bagian bawahnya akan rusak.

2.3.2 Topologi Logika (logical topology)

Pada topologi logika menunjukan aliran message/data dari satu user ke user lainnya dalam jaringan. Topologi logika dibagi menjadi dua tipe, yaitu :

a. Topologi Broadcast

Secara sederhana dapat digambarkan yaitu suatu host yang mengirimkan data kepada seluruh host lain pada media jaringan.

b. Topologi Token Passing

Mengatur pengiriman data pada host melalui media dengan menggunakan

token yang secara teratur berputar pada seluruh host. Host hanya dapat

mengirimkan data hanya jika host tersebut memiliki token. Dengan token ini,

collision dapat dicegah.

2.4 Arsitektur Jaringan Komputer 2.4.1 Model Referensi OSI

Model OSI dibuat oleh International for Standarization Organization (ISO) untuk memecahkan masalah kompatibilitas device antarvendor dengan menyediakan standarisasi yang dapat digunakan oleh para vendor dalam membuat


(62)

device sehingga berbagai device yang berasal dari manufaktur yang berbeda tetap

dapat saling mendukung (compa-tible).

Model referensi OSI merupakan salah satu model referensi atau arsitektur jaringan utama. Dalam OSI dijelaskan bagaimana data dan informasi jaringan berkomunikasi dari sebuah aplikasi pada sebuah komputer melewati media jaringan ke aplikasi yang berada di komputer lain.

Tujuan utama referensi OSI adalah untuk mengijinkan berbagai macam

device dapat saling beroperasi.

Keuntungan refensi OSI yaitu :

- Membagi kompleksitas yang terdapat dalam jaringan.

- Perubahan yang terjadi pada satu layer tidak mempengaruhi semua layer. Hal ini dapat mengijinkan developer mengambil spesialisasi dalam mebangun sebuah aplikasi. Akibatnya akan mempercepat proses perkembangan suatu sistem.

- Mendefenisikan standarisasi interface agar antar manufaktur dapat saling

ber-integrasi.

OSI terdiri dari tujuh layer yang secara umum terbagi dalam dua kelompok yaitu

Upper Layer (Application layer) dan Lower Layer (Data Transport Layer) seperti

diperlihatkan pada Gambar 2.7. Layer yang tergolong dalam Upper didefenisikan bagaimana aplikasi pada sebuah host akan berkomunikasi dengan user dan host lainnya. Sedangkan Lower layer didefenisikan bagaimana data dikirim dari satu

host ke host lainnya.

Model refensi OSI terdiri dari tujuh layer diantaranya[3] : Layer Application

Layer Presentation

Layer Session

Layer Tansport

Layer Network

Layer Data Link

Layer Physical


(63)

Application

Application Presentation

Session

Data Transport

Transport Network Data Link

Physical

Gambar 2.7 Dua Kelompok di dalam OSI Layer

a. Layer Aplication

Layer aplikasi berfungsi sebagai interface antara user dengan komputer. Layer ini bertanggungjawab untuk mengidentifikasi ketersediaan partner

komunikasi, menentukan ketersediaan resources dan melakukan proses sinkronisasi komunikasi. Ketika mengidentifikasi partner komunikasi, layer aplikasi menentukan identitas dan ketersediaan dari partner komunikasi untuk sebuah aplikasi dengan data yang dikirim. Ketika menentukan ketersediaan

resource, layer aplikasi harus memutuskan apakah resource jaringan dapat

memenuhi kebutuhan komunikasi yang terjadi. Contoh aplikasi yang bekerja di

layer aplikasi yaitu : World Wide Web (WWW), E-mail Gateway.

b. Layer Presentation

Layer presentasi berfungsi untuk menyediakan sistem penyajian data ke layer aplikasi. Layer ini berfungsi menyediakan sistem pembentuk kode (format coding) dan menyediakan proses konversi antar format coding yang berbeda.

Dengan menyediakan layanan translation, layer presentasi menjamin data yang dikirimkan dari layer aplikasi suatu sistem dapat dibaca oleh layer aplikasi dari sistem yang lain. Selain menyediakan format coding, layer ini pun menyediakan sarana untuk melakukan compression, decompression, encryption dan decryption. Contoh aplikasi yang bekerja di layer presentasi antara lain : PICT, TIFF, JPEG (untuk gambar) dan MIDI, MPEG, Quicktime (untuk suara dan film)


(64)

c. Session Layer

Session layer bertanggungjawab pada proses pembentukan, pengelolaan dan

pemutusan session antar sistem aplikasi. Session layer bertugas mengendalikan dialog antar device dan nodes. Session layer mengkoordinasikan jalannya komunikasi antar sistem dengan tiga mode, yaitu : simplex, half-duplex, dan

full-duplex.

d. Layer Transport

Layer transport bertanggungjawab dalam proses :

- Pengemasan data Upper layer ke dalam segment dan menyediakan mekanisme

multiplexing aplikasi dari Upper layer.

- Pengiriman segment antar host (end to end connection).

- Penetapan hubungan secara logik antar host pengirim dan host penerima dengan membentuk virtual circuit.

- Secara optional, menjamin proses pengiriman data yang dapat diandalkan.

e. Network Layer

Network Layer bertanggungjawab untuk mengarahkan perjalanan (routing)

melalui internetwork dan bertanggungjawab mengelola sistem pengalamatan

network. Router merupakan device yang bekerja di layer network dan

bertanggungjawab untuk membawa trafik antar device yang terletak dalam

network yang berbeda.

Ketika paket diterima oleh interface sebuah router, maka alamat tujuan akan diperiksa. Jika alamat tujuan tidak ditemukan maka paket tersebut akan dibuang. Tetapi jika alamat tujuan ditemukan dalam routing table maka paket akan dikeluarkan melalui outbound interface menuju ke alamat tujuan.

Pada network layer terdapat dua jenis paket, yaitu :

Packet Data, digunakan untuk membawa data milik user yang dikirimkan

melalui jaringan. Protokol yang digunakan untuk mengelola paket data disebut

Routed Protocol. Contoh protokol routed protocol antara lain : IP dan IPX.


(65)

Route Update Packet, digunakan untuk meng-update informasi yang terdapat routing table milik router yang terhubung dengan router lainnya. Protokol

yang mengelola routing table disebut dengan Routing Protocol. Contoh protokol yang tergolong dalam routing protocol antara lain : RIP, IGRP, OSPF, dan sebagainya.

Routing tabel yang terdapat di router berisi informasi tentang :

Alamat network, alamat yang dicatat dalam routing table merupakan alamat

network tujuan.

Interface, sebagai jalan keluar paket dari router untuk menjangkau tujuan.

Metric, jarak yang perlu ditempuh untuk menjangkau network tujuan. Tiap routing protokol memiliki cara yang berbeda dalam menentukan nilai metric.

Router bersifat memecahkan atau memisahkan broadcast domain artinya broadcast tidak dapat dilewatkan oleh router (router akan menahan broadcast). Router juga bersifat memisahkan collision domain. Setiap interface router

terhubung dengan network yang berbeda. Beberapa hal yang berkaitan dengan

device router antara lain :

Router tidak akan melewatkan packet broadcast.

Router menggunakan sistem pengalamatan logical bagi interface-nya.

Router dapat menggunakan access-list yang dipasang oleh administrator

dengan tujuan membatasi traffic ataupun untuk kepentingan keamanan. Router dapat menyediakan fungsi bridging jika diperlukan.

Router menyediakan kemampuan untuk menghubungkan antar Virtual LAN

(VLAN).

f. Data Link Layer

Data link layer menjamin bahawa pesan yang dikirimkan ke media yang

tepat dan menerjemahkan pesan dari Network layer ke dalam bentuk bit di

Physical layer untuk dikirim ke host lain. Data link layer akan membentuk paket

ke dalam bentuk frame dan menambahkan sebuah header yang berisi alamat


(66)

g. Physical Layer

Tanggungjawab dari layer ini adalah melakukan pengiriman dan penerimaan bit. Physical layer secara langsung menghubungkan media komunikasi yang berbeda-beda. Physical layer menetapkan kebutuhan-kebutuhannya secara electrical, mechanical, prosedural untuk mengaktifkan, memelihara dan memutuskan jalur antar sistem secara fisik.

2.5 Internet Protokol

2.5.1 TCP / IP dan Model Referensi DoD

Model referensi DoD merupakan salah satu arsitektur jaringan yang terdiri dari empat lapisan (layer), yaitu[3] :

Layer Process / Application

Layer Host to Host / Transport

Layer Internet

Layer Network Access

Secara konsep model referensi DoD dan Model referensi OSI hampir sama. Perbandingan model referensi DoD dan OSI diperlihatkan pada Gambar 2.8.

DoD Model OSI Model

Process/ Application

Aplication Presentation

Session

Host to Host Transport

Internet Network

Network Access

Data Link Physical

Gambar 2.8 Model Referensi DoD dan OSI


(67)

a. Layer Process / Aplication

Pada model DoD, layer process / application menggabungkan kegiatan atau fungsi yang disediakan oleh layer application, presentation dan session pada referensi model OSI.

Beberapa protokol yang berfungsi di layer process adalah : Telnet (Telecommunication Network)

Telnet merupakan protokol yang menyediakan kemampuan bagi user untuk dapat mengakses resource di sebuah mesin (Telnet server) dari mesin lain (Telnet client) secara remote, seolah-olah user berada dekat dengan mesin dimana resource tersimpan.

FTP (File Transfer Protocol)

FTP merupakan sebuah program / protokol yang berfungsi mengirimkan file dari satu host ke host lain melalui jaringan. FTP menggunakan protokol TCP yang menggunakan hubungan connection-oriented sehingga pengiriman file dapat lebih handal.

TFTP (Trivial File Transfer Protocol)

TFTP merupakan protokol FTP yang disederhanakan. Hubungan yang terbentuk bersifat connection-less dan TFTP bekerja dengan menggunakan protokol UDP. Karena hubungannya bersifat connection-less TFTP tidak efektif untuk mengirimkan file berukuran besar.

LPD (Line Printer Daemon)

LPD merupakan protokol yang mengatur mekanisme printer sharing, yakni penggunaan printer secara bersama dalam suatu jaringan komputer.

SMTP (Simple Mail Transfer Protocol) SMTP berfungsi mengatur pengiriman e-mail. SNMP (Simple Network Management Protocol)

SNMP merupakan salah satu jenis protokol yang memberikan kemampuan untuk mengawasi dan mengatur peralatan-peralatan dalam jaringan komputer.  NFS (Network File System) dan X Window

Merupakan protokol yang mengatur mekanisme client-server pada mesin-mesin UNIX.


(68)

DNS (Domain Name System)

Mekanisme pemetaan antara FQDN (Fully Qualified Domain Name) dengan alamat IP. FQDN merupakan sebuah hirarki yang secara logika menempatkan sistem berbasis pada domain pengenal.

b. Layer Host to Host / Transport

Layer host to host memiliki fungsi yang sama dengan layer Transport dari

referensi OSI, mendefenisikan protokol untuk membentuk koneksi end to end yang reliable dan menjamin integritas data. Protokol yang berfungsi di layer

transport atau host to host adalah :

TCP (Transmission Control Protocol)

TCP merupakan protokol yang bersifat connection-oriented. TCP mengubah serangkaian blok data menjadi segment yang dinomori dan disusun secara berurutan agar penerima dapat menyusun segment-segment tersebut kembali seperti semula.

UDP (User Datagram Protocol)

UDP merupakan jenis protokol connection-less. Keutuhan data dijamin atau dikontrol oleh layer yang lebih atas. UDP banyak digunakan pada jenis aplikasi yang tidak peka terhadap gangguan atau aplikasi yang bersifat real time dan biasanya bentuk pengirimannya dilakukan secara broadcast.

c. Layer Internet

Layer internet berhubungan dengan layer Network dari referensi OSI, terdiri dari beberapa protokol yang berkaitan dengan pengiriman paket ke seluruh jaringan. Selain menangani masalah pengiriman paket, layer internet juga bertugas menangani sistem pengalamatan logika (khusus sistem pengalamatan berbasis IP). Protokol-protokol yang berfungsi pada lapisan ini antara lain :

IP (Internet Protocol)

IP merupakan protokol yang mengelola sistem pengalamatan logika. Sistem pengalamatan IP terbentuk dari 32 bit yang terbagi ke dalam empat kelompok untuk mewakili sebuah alamat. IP menerima segment dari host to host dan membungkus ke dalam bentuk paket atau datagram.


(69)

ARP (Address Resolution Protocol)

ARP merupakan protokol yang melakukan translasi dari IP address ke MAC

address. Ketika IP memiliki datagram yang akan dikirim, IP harus mengetahui hardware address tujuan. Jika IP tidak menemukan hardware address dari host

tujuan di dalam ARP cache, IP akan menggunakan ARP untuk mencari informasi tersebut. ARP akan melakukan broadcast dengan cara bertanya pada tiap mesin tentang hardware address yang dituju dan jika terdapat hardware

address yang dimaksud host akan merespon dengan memberikan MAC address ke mesin pengirim, kemudian mesin pengirim akan mencatat informasi

tersebut ke dalam tabel ARP. Penulisan informasi MAC address ke dalam tabel ARP dimaksudkan agar proses pengiriman data berikutnya dapat lebih cepat dibanding dengan yang pertama.

RARP (Reverse ARP)

RARP merupakan kebalikan dari protokol ARP, RARP melakukan translasi dari MAC address ke IP address, biasa digunakan pada komputer yang bersifat

diskless (komputer client yang tidak memiliki diskdrive atau harddisk). Ketika

sebuah komputer diskless, komputer tidak mengetahui IP address, tetapi mengetahui MAC address. RARP mengirimkan paket yang berisi MAC

address dan meminta alamat IP untuk dipasangkan dengan MAC address.

Mesin yang menyediakan IP disebut RARP server, akan merespon permintaan tersebut.

ICMP (Internet Control Message Protocol)

ICMP merupakan sebuah protokol manajemen dan penyedia layanan

messaging untuk IP. ICMP berfungsi untuk melaporkan jika terjadi suatu

masalah dalam pengiriman data. Berbagai hal yang dilaporkan adalah :

- Destination Unreachable, merupakan laporan yang mengindikasikan bahwa

tujuan tidak dapat dijangkau.

- Buffer Full, memberitahukan kepada pengirim jika memori penuh.

- Hops, memberitahu pengirim bahwa paket telah melalui jumlah hop

maksimum dan akan diabaikan.


(70)

BootP (Bootsrap Protocol)

BootP merupakan sebuah protokol yang digunakan untuk proses boot dari komputer diskless (tidak memiliki diskdrive atau harddisk).

d Layer Network Access

Memiliki kesamaan dengan layer Data Link dan Physical pada referensi OSI, mengelola sistem pengalamatan hardware dan mendefinisikan protokol-protokol untuk pengiriman data secara fisik.

Beberapa protokol yang menggunakan referensi model DoD diperlihatkan pada Gambar 2.9.

DoD Model

Process / Telnet FTP LPD SNMP

Application TFTP SMTP NFS X Window

Host to Host TCP UDP

Internet ICMP BootP ARP RARP

IP

Network

Access Ethernet

Fast Ethernet

Token

Ring FDDI

Gambar 2.9 Protokol - protokol TCP / IP

2.5.2 Pengalamatan IP

IP address merupakan bilangan yang digunakan sebagai pengenal bagi tiap-tiap mesin yang berada pada jaringan IP. IP address ditujukan untuk mengetahui lokasi dari device dalam sebuah jaringan. IP address merupakan logical

addressing bukan hardware addressing. IP address didesain agar dapat

mengijinkan sebuah host berkomunikasi dengan host lain tanpa mempedulikan jenis teknologi LAN yang dipergunakan.


(71)

Terminologi dari IP address terdiri dari :  Bit, terdiri dari bilangan 0 atau 1

Byte, terdiri dari 7 atau 8 bit tergantung apakah menggunakan bit parity atau

tidak.

Alamat network (Network address), alamat yang menandai satu kelompok jaringan. Network address digunakan dalam proses routing guna mengirimkan paket ke jaringan lain.

Broadcast address, alamat yang digunakan untuk mengirimkan data ke semua

host dalam sebuah jaringan.

Sebuah alamat IP address terdiri dari 32 bit. Dari 32 bit tersebut dibagi menjadi empat bagian, masing-masing terdiri dari satu byte (8 bit). Banyaknya bit yang digunakan oleh network dan host address diatur oleh nilai subnet mask.

Subnet masuk terbentuk dari bilangan 0 dan 1

Bit 1 mewakili bagian dari network address

Bit 0 mewakili bagian dari host address

Secara administratif IP address terbagi dalam lima kelas. Kelas A, B dan C memiliki nilai Subnet mask default, yakni :

Default Subnet mask kelas A : 255.0.0.0

Default Subnet mask kelas B : 255.255.0.0

Default Subnet mask kelas C : 255.255.255.0

Kelas D dan E tidak memiliki subnet miask.

Untuk menentukan sebuah IP address termasuk ke dalam kelas tertentu dilihat nilai pada kelompok pertama, pengelompokan kelas IP address diperlihatkan pada Gambar 2.10

1 2 3 4

Kelas A 1-126 1-255 1-255 1-255

Kelas B 128-191 1-255 1-255 1-255 Kelas C 192-223 1-255 1-255 1-255


(72)

2.5.3 Subnetting

Subnetting merupakan sebuah teknik peminjaman bagian host untuk

dijadikan bagian network, yang berakibat memperbanyak jumlah subnet dan memperkecil jumlah host. Tujuan dilakukan subnetting, antara lain :

 Mengurangi trafik jaringan

Jika tidak menggunakan router, sebuah host tidak dapat berkomunikasi dengan

host yang memiliki alamat network berbeda. Dengan melakukan subnetting ,

memperbanyak jumlah broadcast domain dan memperkecil ukuran broadcast

domain, dan mengurangi lalu lintas data dalam sebuah jaringan.

Meningkatkan performance jaringan

Dengan berkurangnya trafik yang terjadi, maka kinerja jaringan akan meningkat.

 Menyederhanakan manajemen

Jika terjadi masalah dalam jaringan, untuk mengidentifikasi dan mengisolasi masalah dapat dilakukan dengan lebih mudah.

2.6 Protokol IP Routing

Protokol IP routing hanya digunakan oleh router. Salah satu fungsi router adalah menentukan jalur yang akan digunakan untuk melewatkan paket dari satu jaringan ke jaringan lain. Mekanisme pangambilan keputusan tentang jalur yang akan digunakan untuk mengirimkan paket dikelola oleh protokol routing. Routing merupakan sebuah mekanisme yang digunakan untuk mengarahkan dan menentukan jalur yang akan dilewati paket dari satu device ke device yang berada di jaringan lain. Sedangkan proses perpindahan paket dari satu interface ke

interface lain dinamakan switching.

Router merekomendasikan tentang jalur yang digunakan untuk melewatkan

paket berdasarkan informasi yang terdapat dalam tabel routing. Informasi yang terdapat dalam tabel routing dapat diperoleh melalui administrator (dilakukan secara manual) atau melalui router tetangga yang saling bertukar informasi.


(73)

Tabel routing umumnya berisi informasi tentang : Alamat network tujuan

Interface router lokal yang terdekat dengan network tujuan.

Metric, merupakan sebuah nilai yang menunjukkan jarak untuk mencapai network tujuan.

Proses pengisian dan pemeliharaan tabel routing dapat dilakukan dengan cara : Static Routing

Default Routing

Dinamic Routing

2.6.1 Static Routing

Static routing merupakan sebuah mekanisme pengisian tabel routing yang

dilakukan oleh administrator secara manual pada tiap-tiap router. Static routing memiliki beberapa keuntungan, yaitu :

- Meringankan kerja processor yang terdapat di router

- Tidak ada bandwidth yang digunakan untuk pertukaran informasi antar router. - Tingkat keamanan lebih tinggi dibanding dengan mekanisme lainnya.

Sedangkan kekurangan static routing yaitu :

- Administrator harus mengetahui informasi tiap-tiap router yang terhubung

dengan jaringan.

- Jika terdapat penambahan atau perubahan topologi jaringan, administrator harus mengubah isi tabel routing.

- Tidak cocok untuk jaringan router yang besar.

2.6.2 Default Routing

Default routing digunakan agar ketika router menerima paket yang alamat

tujuannya tidak dikenal, paket tersebut akan disalurkan ke interface yang dipilih berdasarkan informasi default routing. Default routing juga digunakan jika alamat


(74)

2.6.3 Dynamic Routing

Pengisian dan pemeliharaan tabel routing tidak dilakukan secara manual oleh administrator. Router akan bertukar informasi routing agar dapat mengetahui alamat tujuan dan memelihara tabel routing. Pemilihan jalur dilakukan berdasarkan pada jarak terpendek antara device pengirim dengan device tujuan.

Untuk mereprentasikan jarak, dynamic routing menggunakan nilai metric. Parameter yang digunakan untuk menghasilkan nilai metric, yaitu :

Hop count, berdasarkan pada banyaknya router yang dilewati.

Ticks, berdasarkan waktu yang diperlukan dengan satuan waktu ticks.

Cost, berdasarkan pada perbandingan nilai standard dengan bandwidth yang

tersedia.

Composite metric, berdasarkan nilai perhitungan dari parameter bandwidth, delay, load, reliability, MTU (Maximum Transmit Unit)

Dari lima parameter tersebut hanya dua parameter yang umum digunakan yaitu

bandwidth dan delay. Penggunaan dari parameter tersebut tergantung pada jenis routing protocol yang digunakan oleh router dalam memelihara dan membentuk

tabel routing. Ada tiga konsep yang digunakan dalam protocol routing, diantaranya Distance Vector, Link State, Hybrid, dan Path Vector.

a. Konsep Distance Vector

Routing Distance Vector menggunakan algoritma Bellman-Ford, dimana

tiap router pada jaringan memiliki informasi jalur yang terpendek untuk menghubungi segmen berikutnya. Kemudian antar router akan saling mengirimkan informasi tersebut, dan akhirnya jalur yang lebih pendek akan lebih sering dipilih untuk menjadi jalur menuju ke host tujuan.

Berikut proses pembentukan tabel pada protokol routing yang menggunakan konsep distance vector :

1. Pertama tabel routing yang dimiliki oleh masing-masing router akan berisi informasi alamat jaringan yang terhubung langsung dengan router tersebut. 2. Secara periodik masing-masing router akan saling bertukar informasi sehingga

isi tabel routing dari semua router yang ada akan terisi lengkap (converged).


(75)

Jika terjadi perubahan topologi pada jaringan router, router akan segera

meng-update informasi routing. Proses meng-update informasi routing di setiap router

dilakukan secara bertahap, sehingga router yang lokasinya jauh akan lebih lama menerima informasi perubahan jaringan. Hal ini mengakibatkan terjadinya masalah routing loop, yang dapat menghabiskan bandwidth dan menambah beban

router. Protokol yang menggunakan konsep distance vector yaitu : RIP (Routing Information Protocol) dan IGRP (Interior Gateway Routing Protocol).

b. Konsep Link State

Protokol routing yang menggunakan konsep link state akan membentuk tabel routing menurut pandangan atau perhitungan routing masing-masing, tidak bergantung pada router tetangga. Tabel routing yang dibentuk dengan menggunakan konsep link state melalui tahapan sebagai berikut :

1. Pada awalnya setiap router akan saling mengirimkan dan melewatkan paket

link state.

2. Paket link state yang diterima dari router lain dikumpulkan dalam sebuah

database topologi.

3. Berdasarkan informasi yang terkumpul di dalam database, router melakukan perhitungan dengan menggunakan algoritma short path first (SPF).

4. Algoritma SPF menghasilkan short path first tree. 5. Akhirnya SPF Tree membentuk daftar isi tabel routing.

Protokol yang menggunakan konsep link state yaitu OSPF (Open Short Path

First)

c. Konsep Hybrid

Konsep hybrid merupakan gabungan antara konsep distance vector dengan konsep link state. Konsep ini mengambil keuntungan dari kedua konsep sebelumnya. Proses pemilihan jalurnya menggunakan mekanisme distance vector sedangkan proses update data menggunakan mekanisme link state karena memiliki kemampuan convergenced dengan cepat. Protokol yang menggunakan konsep hybrid yaitu EIGRP (Enhanced Interior Gateway Routing Protocol).


(76)

d. Konsep Path Vector

Path Vector hampir mirip dengan distance vector. Pada Path Vector

diasumsikan tidak ada node di setiap autonomous system. Sebagai gantinya ada

node khusus yang disebut speaker node. Speaker node menghasilkan sebuah tabel routing dan menyebarkannya kepada speaker node tetangga yang ada di autonomous system tetangga. Idenya mirip dengan distance vector, dimana speaker node menyebarkan path bukan metric.

Algoritma path vector mirip dengan distance vector. Namun informasi yang disebarkan bukanlah tujuan (vector) dan jarak (distance). Yang disebarkan adalah alamat tujuan dan deskripsi path untuk mencapai tujuannya. Algoritma yang digunakan Bellman – Ford untuk menghitung dan mencegah masalah “Count to Infinity” (perhitungan tanpa henti). Contoh protokol yang menggunakan konsep ini adalah EGP dan BGP (Border Gateway Protocol).

2.7 Cisco Packet Tracer

2.7.1 Definisi Cisco Packet Tracer

Cisco Packet Tracer adalah sebuah simulator alat-alat jaringan Cisco yang

sering digunakan sebagai media pembelajaran dan pelatihan, dan juga dalam bidang penelitian simulasi jaringan komputer. Program ini dibuat oleh Cisco

Systems dan disediakan gratis untuk fakultas, siswa dan alumni yang telah

berpartisipasi di Cisco Networking Academy. Tujuan utama Packet Tracer adalah untuk menyediakan alat bagi siswa dan pengajar agar dapat memahami prinsip jaringan komputer dan juga membangun skill di bidang alat-alat jaringan Cisco. Dalam simulasi ini jenis cisco packet tracer yang digunakan adalah CISCO Packet

Tracer Student Versi 6.1.

2.7.2 Pengenalan Jendela Cisco Packet Tracer

Dalam packet tracer disediakan beberapa komponen yang sering digunakan dalam membuat suatu jaringan yang diproduksi oleh cisco. Tampilan jendela

cisco packet tracer akan diperlihatkan pada Gambar 2.11.


(77)

Gambar 2.11 Tampilan Jendela Cisco Packet Tracer

Adapun fitur yang umum dipakai dalam cisco packet tracer yaitu : 1. Lembaran Kerja

Pada lembaran kerja merupakan tempat untuk menampilkan layout / gambar yang akan disimulasikan.

2. Tools tambahan

Pada bagian tools tambahan terdapat beberapa bagian, select (dapat memindahkan object yang dipilih), move layout (dapat memindahkan tata ruang), place note (dapat memberikan catatan yang diperlukan di dalam lembaran kerja), delete (dapat menghapus object yang telah dibuat), inspect (dapat melihat / memeriksa informasi dari object yang di-klik), add simple

PDU dan add complex PDU (sebagai paket sederhana dan paket kompleks).

3. Komponen Jaringan (Device)

Pada bagian komponen jaringan terdapat beberapa komponen yang umum digunakan seperti router, switch, end device (PC dan Server), dan connection (Copper Straight – Through dan Copper Cross – Over). Dalam pengkabelan

ada beberapa aturan yang ditentukan :

a. Untuk mengkoneksikan device yang berbeda digunakan kabel Straight

Through, misalnya Router Switch, Router Hub, PC Switch, PC Hub. b. Untuk mengkoneksikan peralatan yang sama digunakan kabel Copper Cross


(78)

Berikut bentuk komponen jaringan (device) diperlihatkan pada Gambar 2.12

Gambar 2.12 Komponen Jaringan (Device) Cisco Packet Tracer

4. Skenario

Pada bagian skenario merupakan tempat untuk membuat sample simulasi yang akan dilakukan.

5. Real Time dan Simulation

Pada bagian ini dapat diketahui apakah paket berhasil dikirimkan atau tidak. Jika berhasil maka akan terdapat status succesfull dan jika gagal akan muncul status failed. Sedankan pada bagian simulation itu untuk melihat proses yang akan dilakukan.

6. Hasil simulasi

Pada kolom hasil simulasi akan berisi tampilan succesfull (berhasil) atau failed (gagal).

2.8 Parameter Kinerja Jaringan

Pada simulasi ini, ada tiga parameter kinerja jaringan yang akan digunakan yaitu :

1. Delay

Delay adalah waktu yang dibutuhkan untuk transmisi data dari daerah asal

(source) menuju daerah tujuan (destination). Delay juga dapat didefinisikan


(79)

sebagai selisih antara waktu paket sampai ke daerah tujuan dengan waktu pengiriman. Delay dapat dihitung dengan Persamaan (2-1) :

pengiriman waktu

-penerimaan waktu

Delay  (2-1)

Berdasarkan standard yang dikeluarkan oleh Telecommunications and Internet

Protocol Harmonization Over Networks (TIPHON); General aspects of Quality of Service (QoS) TR 101 329 V2.1.1 (1999-06)[7]. Standar delay yang

dipakai dapat dilihat pada Tabel 2.1

Tabel 2.1 Standar Delay

Kategori Standar Delay Sangat Baik 0 s/d 149 ms

Baik 150 s/d 249 ms Sedang 250 s/d 349ms Buruk 350 s/d 449 ms

2. Packet Loss

Packet loss merupakan parameter yang menggambarkan suatu kondisi yang

menunjukkan jumlah total paket yang hilang. Packet loss dapat dihitung dengan menggunakan Persamaan (2-2).

Dikirim Paket Diterima Paket -Dikirim Paket Loss

Packet  (2-2)

Berdasarkan standard yang dikeluarkan oleh Telecommunications and Internet

Protocol Harmonization Over Networks (TIPHON); General aspects of Quality of Service (QoS) TR 101 329 V2.1.1 (1999-06)[7]. Standar packet loss


(80)

Tabel 2.2 Standar Packet Loss

Kategori Standar Packet Loss

Sangat Baik 0

Baik 3%

Sedang 15%

Buruk 25%

3. Throughput

Throughput merupakan kecepatan (rate) transfer data efektif, yang diukur

dalam bps. Troughput merupakan jumlah total kedatangan paket yang sukses yang diamati pada daerah tujuan (destination) selama interval waktu tertentu dibagi oleh durasi interval waktu tersebut. Persamaan throughput dapat dilihat pada Persamaan (2-3).

(s) data pengiriman Waktu

terkirim sukses

yang paket Jumlah x

dikirim yang

data Besar

Throughput  (2-3)


(81)

BAB I PENDAHULUAN

1.1 Latar Belakang

Dalam jaringan komputer yang semakin berkembang pesat dewasa ini dibutuhkan sistem jaringan yang dapat mengirim dan menerima informasi baik pesan (message), packet data maupun packet suara dengan cepat, dapat dilakukan secara full duplex. Jaringan komputer merupakan suatu jaringan yang terdiri atas beberapa perangkat seperti komputer, hub, switch, server, router, dan lain sebagainya yang didesain dengan tujuan untuk dapat melakukan pertukaran informasi. Pihak yang meminta atau menerima layanan disebut client dan pihak yang memberikan layanan disebut server.

Pada jaringan komputer terdapat tiga koneksi yaitu koneksi point to point,

point to multipoint dan multipoint to point. Koneksi point to point merupakan

koneksi dimana satu komputer asal (source) mengirimkan informasi satu komputer tujuan (destination) tanpa adanya koneksi lain ke komputer tujuan (destination). Koneksi point to multipoint merupakan koneksi dimana satu komputer asal (source) mengirimkan informasi ke beberapa komputer tujuan (destination) dalam waktu yang bersamaan. Dan koneksi multipoint to point merupakan koneksi dimana beberapa komputer asal (source) mengirimkan informasi ke satu komputer tujuan (destination) dalam waktu yang bersamaan. Contoh koneksi point to multipoint yang ditemui di kehidupan sehari-hari yaitu pesan broadcast, dan contoh konesi multipoint to point dapat ditemui pada proses penge-print-an dimana beberapa komputer ingin menge-print pada sebuah

printer. Kualitas jaringan komputer yang terbaik yaitu apabila informasi yang

dikirimkan dari komputer asal (source) diterima pada komputer tujuan (destination) dengan waktu yang relatif cepat. Oleh karena itu, penulis tertarik untuk meneliti tentang jaringan komputer dalam skala kecil. Dengan demikian, maka penulis mengangkat judul tugas akhir “ANALISIS KINERJA JARINGAN


(1)

2.7.1 Definisi Cisco Packet Tracer... 26

2.7.2 Pengenalan Jendela Cisco Packet Tracer... 26

2.8 Parameter Kinerja Jaringan... 28

BAB III SIMULASI JARINGAN LAN... 31

3.1 Proses Simulasi... 31

3.2 Perancangan Jaringan LAN... 32

3.2.1 Perancangan Topologi Jaringan... 32

3.2.2 Konfigurasi Perangkat... 33

3.3 RIP (Routing Information Protocol)... 46

3.4 Trafik Jaringan LAN... 48

BAB IV ANALISIS HASIL SIMULASI... 51

4.1 Analisis Hasil Simulasi Point to Point... 51

4.2 Analisis Hasil Simulasi Point to Multipoint... 53

4.3 Analisis Hasil Simulasi Multipoint to Point... 55

BAB V PENUTUP... 58

5.1 Kesimpulan... 58

5.2 Saran... 58


(2)

DAFTAR GAMBAR

Gambar 2.1 Jaringan Point to Point... 7

Gambar 2.2 Topologi Bus... 8

Gambar 2.3 Topologi Star... 8

Gambar 2.4 Topologi Ring... 9

Gambar 2.5 Topologi Mesh... 10

Gambar 2.6 Topologi Tree... 10

Gambar 2.7 Dua Kelompok di dalam OSI Layer... 13

Gambar 2.8 Model Referensi DoD dan OSI... 16

Gambar 2.9 Protokol - protokol TCP / IP... 20

Gambar 2.10 Pengelompokan Kelas... 21

Gambar 2.11 Tampilan Jendela Cisco Packet Tracer... 27

Gambar 2.12 Komponen Jaringan (Device) Cisco Packet Tracer... 28

Gambar 3.1 Diagram Alir Simulasi Jaringan LAN... 31

Gambar 3.2 Tampilan Jendela Cisco Packet Tracer... 27

Gambar 3.3 Komponen Jaringan (Device) Cisco Packet Tracer... 28

Gambar 3.2 Topologi Jaringan LAN yang disimulasikan... 32

Gambar 3.3 Pengkonfigurasian IP Server... 33

Gambar 3.4 Konfigurasi DHCP... 34

Gambar 3.5 Konfigurasi DHCP pada PC... 34

Gambar 3.6 Tampilan Konfigurasi IP pada Router A... 37

Gambar 3.7 Tampilan Konfigurasi IP pada Router B... 37

Gambar 3.8 Tampilan Konfigurasi IP pada Router C... 38

Gambar 3.9 Tampilan Konfigurasi IP pada Router D... 38

Gambar 3.10 Tampilan Konfigurasi IP pada Router E... 38

Gambar 3.11 Tabel routing pada Router A... 39

Gambar 3.12 Tabel routing pada Router B... 40

Gambar 3.13 Tabel routing pada Router C... 41

Gambar 3.14 Tabel routing pada Router D... 42

Gambar 3.15 Tabel routing pada Router E... 42


(3)

Gambar 3.17 IP routing BGP pada Router B... 44

Gambar 3.18 IP routing BGP pada Router C... 44

Gambar 3.19 IP routing BGP pada Router D... 45

Gambar 3.20 IP routing BGP pada Router E... 45

Gambar 3.21 Konfigurasi RIP pada router A... 46

Gambar 3.22 Konfigurasi RIP pada router B... 46

Gambar 3.23 Konfigurasi RIP pada router C... 47

Gambar 3.24 Konfigurasi RIP pada router D... 47

Gambar 3.25 Konfigurasi RIP pada router E... 48

Gambar 3.26 Trafik jaringan untuk koneksi point to point... 49

Gambar 3.27 Trafik jaringan untuk koneksi point to multipoint... 49

Gambar 3.28 Trafik jaringan untuk koneksi multipoint to point... 50

Gambar 4.1 (a) Perbandingan Delay rata rata koneksi point to point... 52

Gambar 4.1 (b) Perbandingan Packet Loss koneksi point to point... 52

Gambar 4.1 (c) Perbandingan Throughput koneksi point to point... 53

Gambar 4.2 (a) Perbandingan Delay rata rata koneksi point to multipoint... 54

Gambar 4.2 (b) Perbandingan Packet Loss koneksi point to multipoint... 55

Gambar 4.2 (c) Perbandingan Throughput koneksi point to multipoint... 55

Gambar 4.3 (a) Perbandingan Delay rata rata koneksi multipoint to point... 57

Gambar 4.3 (b) Perbandingan Packet Loss koneksi multipoint to point... 57


(4)

DAFTAR TABEL

Tabel 2.1 Standar Delay... 29

Tabel 2.2 Standar Packet Loss... 30

Tabel 3.1 IP address untuk Server DHCP... 35

Tabel 3.2 IP address untuk PC... 35

Tabel 4.1 Tabel Hasil Pengujian Koneksi Point to Point... 51

Tabel 4.2 Tabel Hasil Pengujian Koneksi Point to Multipoint... 53


(5)

DAFTAR SINGAKATAN

LAN : Local Area Network

MAN : Metropolitan Area Network WAN : Wide Area Network

ISO : International for Standarization Organization WWW : World Wide Web

VLAN : VirtualLocal Area Network

Telnet : Telecommunication Network FTP : File Transfer Protocol

TFTP : Trivial File Transfer Protocol LPD : Line Printer Daemon

SMTP : Simple Mail Transfer Protocol

SNMP : Simple Network Management Protocol NFS : Network File System

DNS : Domain Name System

FQDN : Fully Qualified Domain Name TCP : Transmission Control Protocol UDP : User Datagram Protocol IP : Internet Protocol

ARP : Address Resolution Protocol

RARP : Reverse Address Resolution Protocol ICMP : Internet Control Message Protocol BootP (Bootsrap Protocol)

MTU : Maximum Transmit Unit RIP : Routing Information Protocol

IGRP : Interior Gateway Routing Protocol OSPF : Open Short Path First

EIGRP : Enhanced Interior Gateway Routing Protocol DHCP : Dynamic Host Configuration Protocol

BGP : Border Gateway Protocol CLI : Command Line Interface


(6)

TIPHON : Telecommunications and Internet Protocol Harmonization Over

Networks