Shape of Moment Mode Survival and Hazard Rate functions Shannon Entropy of

4 Pdf: , , 1 , log log ] 2 [ , ; 1 3                  x x x x x f 7 Cdf:               2 ] log 2 log 2 [ , ; x x x x F 8 Moment:   , 2 , 1 , 1 , 2 , , ] 2 [ ] 2 [ , ; 3 3         r r r X E r        9 iv. for 2  p , we get new , 2   LL distribution as Pdf: , , 1 , log log 2 6 , ; 1 2 4                  x x x x x f 10 Cdf:           2 6 }] log 3 log 2 6 { log 2 6 [ , ;         x x x x x F 11 Moment:   , 2 , 1 , 1 , 2 , , 3 2 ] 6 2 [ , ; 4 4         r r r X E r        12

2.1 Shape of

,   p LL distributions Here we have drawn some illustrative pdf of ,   p LL distributions for different choices of parameters  , and index p to study their shapes. It is observed that the distribution can be positively negatively skewed, symmetrical, and increasing deceasing type. a b 5 c d e f Figure 1 . Pdf plots of ,   p LL when p = 0 red, 1 green, 3blue, 5 brown, 7 light green for a 001 . , 20     b 1 . , 5     c 5 , 20     d 1 . , 2     e 10 , 5 .     f , 9 .    

2.2 Moment

Here we derive general result for moments of ,   p LL distribution and obtain its particular cases.   , 2 , 1 , 1 , 2 , , ] 1 [ 1 2 1 , ; 2 2                  r p p r p p r X E p p r        13 In particular, p p X E p                      1 1 1 1 , ; 2 . 14 6

2.3 Mode

The mode plays an important role in the usefulness of a distribution. For the ,   p LL distribution the mode occurs at ] 1 2 } 1 1 1 4 1 1 exp[{ 2                  r r r .

2.4 Survival and Hazard Rate functions

] 1 [ 1 log }] log , 1 { 1 [ , , ; 1 1 1                           p p t t t p Ei p p p t S r p p log }] log , 1 { 1 [ log , , ; 1 1 t t t p Ei p p t t p t r p                        15 Some illustrative plots of the hazard function of ,   p LL distributions for different choices of parameters  , and index p are presented in Figure 2 reveals that it can increasing and bath tub shaped. Figure 2 . Hazard rate function plots of ,   p LL when p = 0 red, 1 green, 3blue, 5 brown, 7 light green for a 2 , 9 .     b 2 , 2     c 2 , 5    

2.5 Shannon Entropy of

,   p LL Here we derive the Shannon entropy of ,   p LL in terms of that of ,   LL . ] , , ; log [ p X f E X H p                           1 2 log log ] 1 [ 1 log     X X X p p E p p 7   }] log [log{ 1 log log ] 1 [ 1 log 1 2                      X X E X pE p p p   1 log log ] 1 [ 1 log 2 X pE p p p                                               1 log log 1 log 2 1 2 X X E ] 1 log [log 1 1 1 log X H X pE p p p                  16 It can be checked that for  p , X H p reduces to X H , the Shannon entropy of ,   LL which is the Log-Lindley see proposition 2 in page 51 of Gomez et al., 2014. For integral values of index parameter p, exact expression for   ] 1 log log X E can be obtained using Mathematica as follows.               2 log 2 3 } 1 {log log , 1 X E p        2 6 log 3 2 3 11 } 1 {log log , 2        X E p        6 24 log 4 6 11 50 } 1 {log log , 3        X E p        24 120 log 5 24 50 274 } 1 {log log , 4        X E p ,… For example, Shannon Entropy for , 1   LL using 16 is given by 2 log 2 3 1 2 log 2 1 X H X H                         .

2.6 Stochastic Ordering