Pengujian Rangkaian Display Seven Segmen Rangkaian Pengirim Data Melalui Infra Merah

Jadi waktu yang dibutuhkan untuk mengerjakan program di atas adalah 131.073 μdetik atau 0,131073 detik dan dapat dibulatkan menjadi 0,13 detik. Jika program tersebut diisikan ke mikrokontroler AT89S51, kemudian mikrokontroler dapat berjalan sesuai dengan program yang diisikan, maka rangkaian minimum mikrokontroler AT89S51 telah bekerja dengan baik.

4.3 Pengujian Rangkaian Display Seven Segmen

Pengujian pada rangkaian ini dapat dilakukan dengan menghubungkan rangkaian ini dengan rangkaian mikrokontroler, kemudian memberikan data tertentu pada port serial dari mikrokontroler. Seven segmen yang digunakan adalah common anoda, dimana semen akan menyala jika diberi logika 0 dan sebaliknya segmen akan mati jika diberi logika 1. Dari hasil pengujian diperoleh data yang harus dikirimkan ke port serial untuk menampilkan angka desimal adalah sebagai berikut: Angka Data yang dikirim 1 0EDH 2 19H 3 89H Universitas Sumatera Utara 4 0C5H 5 83H 6 03H 7 0E9H 8 01h 9 81H 21H Program yang diisikan pada mikrokontroler untuk menampilkan nilai-nilai tersebut adalah sebagai berikut: bil0 equ 21h bil1 equ 0edh bil2 equ 19h bil3 equ 89h bil4 equ 0c5h bil5 equ 83h bil6 equ 03h bil7 equ 0e9h bil8 equ 01h bil9 equ 81h Loop: mov sbuf,bil0 Jnb ti, Clr ti sjmp loop Universitas Sumatera Utara Program di atas akan menampilkan angka 0 pada semua seven segmen. Sedangkan untuk menampilkan 3 digit angka yang berbeda pada seven segmen adalah dengan mengirimkan ke 3 data angka yang akan ditampilkan pada seven segmen. Programnya adalah sebagai berikut : Loop: mov sbuf,bil1 Jnb ti, Clr ti mov sbuf,bil2 Jnb ti, Clr ti mov sbuf,bil3 Jnb ti, Clr ti sjmp loop Program di atas akan menampilkan angka 1 pada seven segmen ketiga, angka 2 pada seven segmen kedua dan angka 3 pada seven segmen pertama. Universitas Sumatera Utara

4.4 Rangkaian Pengirim Data Melalui Infra Merah

Data yang yang telah diolah mikrokontroler AT89S51, selain ditampilkan pada display seven segmen, data tersebut juga dikirimkan ke rangkaian penerima dengan menggunakan LED infra merah. Rangkaiannya seperti gambar di bawah ini : Gambar 4.1 Rangkaian Pengirim Data Melalui Infra Merah Pada rangkaian di atas LED infra merah akan menyala jika basis pada transistor C945 diberi tegangan yang lebih besar dari 0,7 volt, ini akan sama artinya jika pada P3.7 AT89S51 diberi logika high 1, karena pin yang diberi logika high akan mempunyai tegangan 4 sd 5 volt, cukup untuk mengaktifkan transistor. Sedangkan untuk mematikan LED infra merah, maka P3.7 AT89S51 harus diberi logika low 0, karena dengan memberikan logika low pada P3.7, maka P3.7 akan P3.7 AT89S51 LED_ir 5V VCC 330 ฀ R2 4.7k ฀ 2SA733 Universitas Sumatera Utara memiliki tegangan 0 sd 0,009 volt, tegangan ini akan menyebabkan transistor tidak aktif. Untuk pengiriman data agar data dapat dikirimkan dari jarak yang jauh, maka LED infra merah harus dipancarkan dengan frekuensi 38 KHz karena frekuensi ini bebas dari gangguan frekuensi infra merah alam. Jika LED infra merah dipancarkan dengan frekuensi 38 KHz, maka pancarannya akan terganggu oleh frekuensi-frekuensi infra merah dari alam, seperti frekuensi infra merah yang dipancarkan oleh matahari, tumbuhan, bahkan badan manusia. Dengan menggunakan frekuensi 38 KHz, maka pancaran LED infra merah yang dihasilkan oleh rangkaian tidak terganggu oleh pancaran infra merah alam, sehingga jarak pengiriman data semakin jauh. Untuk memancarkan frekuensi 38 KHz dari LED infra merah, langkah yang harus dilakukan adalah dengan mengedipkannya menghidupkan dan mematikannya dengan frekuensi tersebut, yaitu dengan memberikan logika high dan low pada P3.7 dengan selang waktu perioda : 3 1 1 1 0, 0000263 26, 3 38 38 10 T s s f KHz x Hz µ = = = == Untuk mendapatkan perioda tersebut, maka program yang harus diberikan pada mikrokontroler AT89S51 adalah: 38KHz: clr p3.7 nop Universitas Sumatera Utara nop nop nop nop nop nop nop nop nop nop nop setb p3.7 nop nop nop nop nop nop nop nop nop nop sjmp 38KHz Mikrokontroler AT89S51 memerlukan 12 Clock setiap satu siklus mesin. Dengan demikian, jika digunakan kristal 12 MHz, maka waktu yang diperlukan untuk satu siklus mesin adalah : Universitas Sumatera Utara T = 6 12 1 10 1 12 Clock x sekon s MHz µ = = Jika dihitung lamanya mikrokontroler AT89S51 mengerjakan perintah di atas adalah sebagai berikut: Instruksi Siklus mesin Waktu μS CLR NOP SETB SJMP 1 1 1 2 1 1 1 2 Berdasarkan tabel di atas, maka lamanya logika low 0 pada P3.7 adalah 13 μs dan lamanya logika high 1 adalah 13 μs, sehingga periodanya menjadi 26 μs. 13 μs 13 μs Low High 26 μs Dengan demikian frekuensi yang dihasilkan oleh P3.7 adalah : 6 6 1 1 1 1 10 38461 38, 461 26 26 10 26 x f Hz KHz T s x s µ − = = = = = = Universitas Sumatera Utara Jika LED infra merah dipancarkan dengan frekuensi ini, maka pancaran LED infra merah dari rangkaian tidak akan terganggu oleh frekuensi infra merah alam. Sebagai catatan frekuensi infra merah yang tidak dipengaruhi oleh frekuensi infra merah dari alam adalah anatara 38 KHz sd 40 KHz, frekuensi inilah yang digunakan sebagai frekuensi remote kontrol dari TV, VCD dan DVD di seluruh dunia. Ketika penerima infra merah menerima pancaran infra merah dengan frekuensi 38 KHz dari rangkaian pemancar, maka output dari penerima akan berlogika high 1, jika pancaran infra merah ini dihentikan, maka penerima akan mendapatkan logika low 0 sesaat ± 1200 μs kemudian berubah menjadi high 1 kembali walaupun tidak ada pancaran infra merah dengan frekuensi 38 KHz. Ini sudah merupakan karakteristik dari penerima infra merah yang digunakan TSOP 1738. Pada alat ini, logika high setelah setelah logika low sesaat itulah yang dijadikan sebagai data, sehingga dengan mengatur lebar pulsa high 1 tersebut dengan suatu nilai tertentu dan menjadikan nilai tersebut sebagai datanya, maka pengiriman data dapat dilakukan. Pada alat ini, data yang dikirimkan sebanyak 3 data, yaitu data untuk nilai ratusan, nilai puluhan dan nilai. Setiap pengiriman masing-masing data dari ketiga data tersebut, didahului dengan pengiriman sinyal low, jadi ada 3 sinyal low dan ada 3 data. Akan terjadi masalah jika pengiriman data dilakukan seperti ini, yaitu data yang diterima urutannya tidak sesuai dengan data yang dikirimkan. Misalnya 3 data yang Universitas Sumatera Utara dikirimkan adalah 567, kemungkinan data yang diterima adalah: 675, dan 756. Sehingga hanya 13 kemungkinannya data yang dikirimkan benar. Kesalahan pengambilan data oleh penerima disebabkan karena adanya penghalang atau karena kesalahan pengambilan data ketika alat pertama kali dihidupkan. Seharusnya penerima mengambil sinyal low dari data yang pertama, kemudian mengambil data pertama, setelah itu mengambil sinyal low dari data kedua, kemudian mengambil data kedua, dan demikian seterusnya, sehingga data tersebut sesuai dengan urutannya. Namun jika ada penghalang sesaat atau ketika pertama kali dihidupkan terjadi kesalahan pengambilan sinyal low, maka pengambilan data seterusnya akan salah. Misalnya jika ada penghalang sesaat, sehingga sinyal low yang diterima adalah sinyal low yang kedua, maka data kedua akan dianggap sebagai data pertama, dan data ketiga akan dianggap sebagai data kedua, demikian seterusnya, sehingga urutan data menjadi salah. Untuk menghindari kesalahan dalam pengambilan data, maka pada alat ini ditambahkan satu data yang berfungsi sebagai startbit atau data awal. Data awal ini mempunyai nilai tertentu, jadi ketika penerima mendapatkan sinyal low, penerima akan mengambil 1 data setelah sinyal low tersebut dan membandingkannya apakah sesuai dengan data awal atau tidak. Jika tidak sama, maka penerima akan mengambil data berikutnya , kemudian membandingkan lagi sesuai atau tidak dengan data awal. Langkah ini dilakukan terus sampai didapat data awal. Ketika penerima mendapatkan Universitas Sumatera Utara data yang sesuai dengan data awal, maka penerima akan mengambil data pertama setelah data awal sebagai data pertama, data kedua setelah data awal sebagai data kedua, dan seterusnya hingga data ketiga. Dengan demikian tidak akan terjadi kesalahan urutan data, walaupun ada penghalang sesaat. Setiap data mempunyai lebar pulsa high 1 tertentu. Untuk nilai data 0, maka lebar pulsa high yang dikirim adalah ± 1131 μ sekon. Programnya seperti berikut: Mov 70h,0 Inc 70h Kirim: Mov r0,70h Acall data Sjmp kirim data: loop1: acall pulsa djnz r0,loop1 ret pulsa: Clr P0.0 ; 1 μ s Mov r7,2 ; 1 μ s pls: mov r6,255 ฀ ; 1 μ s Universitas Sumatera Utara P3.7 AT89S51 5V VCC 100 ฀ 10uF i _1 i i _1 i djnz r6, ฀ ; 2x255=510 μ s djnz r7,pls ; 2 μ s =513x2=1026 μ s mov r7,50 ; 1 μ s djnz r7, ฀ ; 2x50=100 μ s ret ฀ ; 2 μ s Total 1131 μ s Demikian juga seterusnya jika yang dikirimkan data 1 sd data 9, maka data ini akan ditambah dengan nilai 1, dan kemudian hasil penjumlahannya digunakan sebagai banyaknya perulangan dalam pengiriman pulsa. Sebagai contoh jika data yang dikirimkan adalah data 1, maka data ini akan ditambahkan 1 sehingga hasilnya menjadi 2. 2 inilah yang merupakan banyaknya perulangan pengiriman pulsa. Jadi pulsa untuk data satu ± 2 x 1.131 μs = 2.262 μs. Demikian pula untuk data-data yang lainnya.

4.5 Rangkaian Penerima Infra Merah