Stochastic bounds on a single loss: unknown marginals

216 H. Cossette et al. Insurance: Mathematics and Economics 26 2000 213–222 Table 1 Extremal distributions in 3.1, two moments known, infinite spectrum Value of s M µ,σ s W µ,σ s − M µ,σ s 0 s µ σ 2 s − µ 2 + σ 2 µ s δ 2 µ s − µs µs s δ 2 µ s − µ 2 s − µ 2 + σ 2 σ 2 s − µ 2 + σ 2 positively orthant dependent POD, in short. For more details about POD, the interested reader is referred e.g. to Szekli 1995, pp. 144–145.

3. Stochastic bounds on a single loss: unknown marginals

We now examine the construction of bounds on F X when only the support and the first few moments of the marginals F X j , j = 1, 2, . . . , m, are known. We first derive the best stochastic upper and lower bounds on the X j i ’s. For that purpose, we use the following results of Kaas and Goovaerts 1985. Consider a non-negative random variable Y for which only the mean µ, and the standard deviation σ are known. Then, there exists two cumulative distribution functions, M µ,σ and W µ,σ , say, such that M µ,σ s ≤ F Y s ≤ W µ,σ s 3.1 is verified for all s ≥ 0. Explicit expressions for the extremal distributions in 3.1 are provided in Table 1 Table 2 in Kaas and Goovaerts, 1985, where δ 2 stands for the second moment of Y , i.e. δ 2 = EY 2 . When it is further known that there exists an upper bound b for Y , i.e. P [Y ≤ b] = 1, the extremal distributions in 3.1 can be refined as M µ,σ,b s ≤ F Y s ≤ W µ,σ,b s, 3.2 which is verified for all s ≥ 0. Explicit expressions for these extremal distributions are provided in Table 2 Table 1 in Kaas and Goovaerts, 1985. When the skewness γ of Y is also known, tighter bounds M µ,σ,γ and W µ,σ,γ , say, can be found such that M µ,σ,γ s ≤ F Y s ≤ W µ,σ,γ s 3.3 is verified for all s ≥ 0. Explicit expressions for the extremal distributions in 3.3 are provided in Table 3 Table 4 in Kaas and Goovaerts, 1985, where the following symbols are used: δ 3 stands for third moment of Y , i.e. δ 3 = EY 3 , β 1 s = γ + 3σ 2 + µ 3 − sδ 2 δ 2 − sµ , β 2 s = δ 2 − µs µ − s , and α ± = δ 3 − µδ 2 ± q δ 3 − µδ 2 2 − 4σ 2 µδ 3 − δ 2 2 2σ 2 . Table 2 Extremal distributions in 3.2, two moments known, finite spectrum Value of s M µ,σ,b s W µ,σ,b s − M µ,σ,b s 0 s µ − σ 2 b − µ σ 2 s − µ 2 + σ 2 µ − σ 2 b − µ s δ 2 µ σ 2 + µ − bµ − ssb σ 2 + µµ − bss − b s δ 2 µ s − µ 2 s − µ 2 + σ 2 σ 2 s − µ 2 + σ 2 H. Cossette et al. Insurance: Mathematics and Economics 26 2000 213–222 217 Table 3 Extremal distributions in 3.3, three moments known, infinite spectrum Value of s M µ,σ,γ s W µ,σ,γ s − M µ,σ,γ s 0 s α − µ − β 2 ss − β 2 s α − s δ 2 µ σ 2 + µ − sµ − β 1 ssβ 1 s σ 2 + µ − β 1 sµss − β 1 s δ 2 µ s α + µ − sβ 2 s − s µ − β 2 ss − β 2 s s α + σ 2 + µ − sµ − β 1 ssβ 1 s + σ 2 + µ − sµβ 1 s − sβ 1 s σ 2 + µ − β 1 sµss − β 1 s As in 3.2, when it is further known that there exists an upper bound b for Y , the extremal distributions in 3.3 can be refined as M µ,σ,γ ,b s ≤ F Y s ≤ W µ,σ,γ ,b s, 3.4 which is verified for all s ≥ 0. Explicit expressions for these extremal distributions are provided in Table 4 Table 3 in Kaas and Goovaerts, 1985, where the following symbols are used: ζ = γ + 3σ 2 + µ 3 − bδ 2 δ 2 − bµ , β ∗ 2 s = γ + 3σ 2 + µ 3 − b + sδ 2 + bsµ δ 2 − b + sµ + bs . Now, let µ j , σ j and γ j be the mean, the standard deviation and the skewness corresponding to F X j , j = 1, 2, . . . , m. With Tables 1 and 3, we can find the best upper and lower bounds on F X j , j = 1, 2, . . . , m, namely M j s ≤ F X j s ≤ W j s for j = 1, 2, . . . , m, 3.5 where M j resp. W j stands for either M µ j ,σ j or M µ j ,σ j ,γ j resp. W µ j ,σ j or W µ j ,σ j ,γ j . When there exist b j such that F X j b j = 1, j = 1, 2, . . . , m, then 3.5 becomes M b j j s ≤ F X j s ≤ W b j j s for j = 1, . . . , m, 3.6 where M b j j resp. W b j j stands for either M µ j ,σ j ,b j or M µ j ,σ j ,γ j ,b j resp. W µ j ,σ j ,b j resp. W µ j ,σ j ,γ j ,b j , j = 1, 2, . . . , m. Then, ˜ F min s ≤ F X s ≤ ˜ F max s for all s ≥ 0, 3.7 with, for s ∈ R, ˜ F min s = sup x 1 ,x 2 ,... ,x m ∈ Ps max    m X j =1 lim n →∞ M j x j − 1 n − m − 1, 0    , Table 4 Extremal distributions in 3.4, three moments known, finite spectrum Value of s M µ,σ,γ ,b s W µ,σ,γ ,b s − M µ,σ,γ ,b s 0 s α − σ 2 + µ − β ∗ 2 sµ − bs − β ∗ 2 ss − b α − s ζ σ 2 + µ − sµ − β 1 ssβ 1 s σ 2 + µ − β 1 sµss − β 1 s ζ s α + σ 2 + µ − sµ − bβ ∗ 2 s − sβ ∗ 2 s − b σ 2 + µ − β ∗ 2 sµ − bs − β ∗ 2 ss − b s α + σ 2 + µ − sµ − β 1 ssβ 1 s + σ 2 + µ − sµβ 1 s − sβ 1 s σ 2 + µ − β 1 sµss − β 1 s 218 H. Cossette et al. Insurance: Mathematics and Economics 26 2000 213–222 and ˜ F max s = inf x 1 ,x 2 ,... ,x m ∈ Ps min    m X j =1 W j x j , 1    . Of course, when there exist b j such that F X j b j = 1, j = 1, . . . , m, M j and W j in the expressions of ˜ F min and ˜ F max are replaced by M b j j and W b j j , respectively. If the X 1 i , X 2 i , . . . , X m i ’s are POD, then 3.7 is valid with the following improved bounds: ˜ F min s = sup x 1 ,x 2 ,... ,x m ∈ Ps m Y j =1 M j x j and ˜ F max s = 1 − sup x 1 ,x 2 ,... ,x m ∈ Ps m Y j =1 1 − W j x j .

4. Stochastic bounds on the total amount of loss

Dokumen yang terkait

PERANCANGAN DAN IMPLEMENTASI SISTEM PENGENALAN BAHASA ISYARAT INDONESIA DENGANMENGKOMBINASIKAN RGB DAN SKELETON KINECT MENGGUNAKAN HIDDEN MARKOV MODEL Design And Implementation Of Indonesia Sign Language Recognition System By Combining RGB And Skeleton Ki

0 0 8

Speed And Position Control Of Automated Guide Vehicle Using Fuzzy Logic And Pid Control

0 0 8

WAVELET PADA FRAME YANG DIPILIH BERDASARKAN DETEKSI FASA Analysis And Simulation Of Video Steganography Using Wavelet Method In Selected Frame Based On Phase Detection

0 0 8

System Design And Monitoring Current Power Generated by Piezoelectric Floor for Battery Charging

0 0 8

Sistem Informasi Akuntansi Dan Sistem Transaksi Menggunakan RFID Dengan Sistem Saldo Pada Pembeli Untuk Toko Pintar Tanpa Kasir Accounting Information System And Transaction System Using RFID With Balance System on Buyer For Cashierless Smartshop

0 0 7

KLASIFIKASI JENIS KUALITAS KEJU DENGAN MENGGUNAKAN METODE GRAY LEVEL CO- OCCURRENCE MATRIX (GLCM) DAN SUPPORT VECTOR MACHINE (SVM) PADA CITRA DIGITAL Types Of Cheese Quality Classification Using Gray Level Co-Occurrence Matrix (GLCM) And Support Vector Ma

1 0 8

IDENTIFIKASI DAN KLASIFIKASI JENIS BATUAN BEKU BERDASARKAN TEKSTUR BATUAN MENGGUNAKAN DISCRETE COSINE TRANSFORM (DCT) DAN K-NEAREST NEIGHBOR (K-NN) PADA CITRA DIGITAL Identification And Classification of Igneous Rock Based on Texture Using Discrete Cosine

1 2 8

Implementation Of Automatic Lock Using Face Recognition And Automatic Door Using Speech Recognition Based On Raspberry Pi

0 0 8

Halal Label On Food Products By Mui (Indonesian Ulama Council) And Students Purchasing Decision Of Faculty Of Business And Economic Universitas Muhammadiyah Surakarta

0 0 30

A Comparative Study Of The Translation Of Similes In The Novel “The Old Man And The Sea” Into Indonesian

0 1 121