The Effects Of Alumina On The Dense Calcium Phosphate Synthesized From Eggshell Waste.
Faculty of Manufacturing Engineering
THE EFFECTS OF ALUMINA ON THE DENSE CALCIUM
PHOSPHATE SYNTHESIZED FROM EGGSHELL WASTE
Fatimah Binti Misran
Master of Science in Manufacturing Engineering
2015
THE EFFECTS OF ALUMINA ON THE DENSE CALCIUM PHOSPHATE
SYNTHESIZED FROM EGGSHELL WASTE
FATIMAH BINTI MISRAN
A thesis submitted
in fulfilment of the requirements for the degree of Master of Science in Manufacturing
Engineering
Faculty of Manufacturing Engineering
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
2015
DECLARATION
I declare that this thesis entitled “The Effects of Alumina on The Dense Calcium Phosphate
Synthesized from Eggshell Waste” is the result of my own research except as cited in the
references. The thesis has not been accepted for any degree and is not concurrently submitted in
candidature of any other degree.
Signature
:
……………………...............................
Name
:
………………………………….……..
Date
:
……………………………….………..
APPROVAL
I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of
scope and quality for the award of Master in Manufacturing Engineering (Materials).
Signature
:
……………………...............................
Supervisor’s Name :
………………………………….……..
Date
……………………………….………..
:
DEDICATION
Dedicated to all my beloved Muslim brothers and sisters throughout the world struggling to
gain Allah S.W.T's pleasures (Redha) in this Life and for the Hereafter
ABSTRACT
Eggshell (ES) wastes were processed and used as starting materials for the synthesis of calcium
phosphates (CaP) such as hydroxyapatite (HA) and tricalcium phosphates (TCP). Hydrothermal
and mechanochemical synthesis methods were applied to synthesize hydroxyapatite and
hydroxyapatite-alumina bioceramic composite powders with ultrafine microstructures from
both eggshell wastes and chemical calcium precursors to develop bioceramics with enhanced
mechanical properties for medical applications. Despite its attractive, bioactive and
biocompatibile properties, CaP has been limited in applications due to the poor processability
and mechanical strengths of the material. To further toughen the CaP matrix, nanocrystalline
alumina (Al2O3) with the addition amounts of 15wt.% and 35wt.% was introduced. CaP in the
form of dense compacts was prepared by uniaxial pressing and sintered through pressureless
sintering method in air atmosphere at various sintering temperatures. The effects of the type of
calcium sources, the synthesis pH conditions, the Al2O3 incorporation and the sintering
temperature on the phase behaviour and the mechanical properties of the developed ceramic
bodies were evaluated. The presence of HA and Al2O3 phase in the powder synthesis was
confirmed through XRD, FT-IR and TGA analyses. However, the major phase detected in the
developed dense compacts after sintering conducts was TCP. FESEM and EDX assessments
showed nano-sized rods and spherical morphologies with corresponding element analysis of the
synthesized powders. SEM analyses were used to observe the morphology and densification
behaviour of the bioceramic compacts. Density, porosity, compression, elasticity,
microhardness and fracture toughness tests were used to monitor the physical and mechanical
properties. Statistical analysis using MINITAB was used to summarize the mechanical
evaluations. The leading mechanical attributes were achieved by dense bioceramics synthesized
from ES-based calcium precursor at pH 9 conditions after being sintered at 1250°C. Al2O3
reinforcements were preferred in small quantities to achieve better mechanical properties. The
highest measurement of Vickers hardness and facture toughness was acquired through the
sample that was synthesized at alkaline conditions, 15wt% alumina content and after being
sintered at 1250°C with values of 4.76 GPa and 4.12 MPam1/2 respectively. Sintering
temperature was concluded to be the most influencing variable parameter for every evaluation
particularly for the enhancement of mechanical strength of the developed bioceramics.
i
ABSTRAK
Sisa kulit telur telah diproses dan digunakan sebagai bahan pemula untuk sintesis fosfat kalsium
(CaP) seperti hydroxyapatite (HA) dan fosfat trikalsium (TCP). Kaedah sintesis secara
hidroterma dan mekano-kimia telah digunakan untuk mensintesis hidroksiapatit dan serbuk
komposit bioseramik hidroksiapatit-alumina dengan mikrostruktur ultrahalus daripada keduadua sisa kulit telur dan pelopor kalsium berkimia untuk membangunkan bioseramik dengan
peningkatan sifat mekanik untuk aplikasi perubatan. Meskipun bersifat penarik, bioaktif dan
serasi secara biologi, penggunaan CaP adalah terhad kerana kekurangan dari segi kebolehan
daya pemprosessan dan kekuatan mekanikal bahan tersebut. Bagi menguatkan matriks CaP,
alumina (Al2O3) yang bersifat nanokristalin dengan pertambahan 15wt.% dan 35wt.%
dicampurkan. CaP dalam komponen yang padat telah disediakan melalui kaedah tekanan
ekapaksi dan disinter melaui kaedah pensinteran tanpa tekanan pada atmosfera udara yang
pelbagai suhu pembakarannya. Kesan jenis sumber kalsium, keadaan pH semasa sintesis,
penampahan kandungan Al2O3 dan suhu pensinteran terhadap pola fasa dan sifat-sifat mekanik
bioseramik yang disediakan dinilai. Kehadiran fasa-fas HA dan Al2O3 dalam serbuk sinstesis
telah dikenal pasti melalui analisa XRD, FT-IR dan TGA. Namun begitu, fasa perubahan utama
yang dikesan dalam komponen padat selepas pensinderan dijalankan ialah TCP. Penilaian
terhadap FESEM dan EDX menunjukkan morfologi rod bersaiz nano yang berbentuk sfera
konsisten dengan analisa unsur sepadan pada serbuk yang telah disintesiskan. Analisis
terhadap SEM digunakan untuk memperhatikan pola morfologi dan ketumpatan komponen
bioseramik. Ujian ketumpatan, keliangan, pemampatan, keanjalan, kekerasan mikro dan
keliatan patah digunakan untuk memantau ciri-ciri fizikal dan mekanikal. Analisis statistik
menggunakan MINITAB juga digunakan untuk merumuskan penilaian mekanikal. Ciri-ciri
utama mekanikal dicapai oleh bioseramik padat yang telah disintesis daripada sisa kulit telur
sebagai pelopor kalsium pada kondisi pH 9 dan selepas disinter pada suhu 1250 °C. Bagi
mencapai ciri-ciri mekanikal yang lebih baik hanya kuantiti Al2O3 yang kecil diperlukan.
Bacaan tertinggi bagi kekerasan Vickers dan keliangan padat telah diperolehi oleh sampel ES9-15A-1250 yang disintesis dengan kondisi alkali, 15wt% kandungan alumina dan setelah
disinter pada suhu 1250 °C adalah masing-masing bernilai 4.76 GPa dan 4.12 MPam1/2. Suhu
pensinteran dikonklusikan sebagai parameter pemboleh ubah paling berpengaruh untuk setiap
penilaian terutamanya bagi peningkatan kekuatan mekanikal bioseramik yang telah disediakan.
ii
ACKNOWLEDGEMENTS
In the name of Allah, the Most Merciful, the Most Compassionate
AlhamdulillahiRabbil’alamin, praises be to Allah SWT, the exclusive Owner of the utmost
Glory. As a Muslim, we should express our gratefulness for each and every one of His mercies.
He is the absolute Inventor and Designer of everything and nothing can be accomplished without
His permission. I hope that this study is blessed with His Guidance and Compassion. Nothing I
strive for, except His Pleasures. Peace and blessings are to our beloved prophet, Muhammad
(peace be upon him), who has shown us the right path to achieve Allah’s pleasures and rahmah.
On a personal note, it gives me great pleasure to record my gratitude to every individual who
had assisted and motivated me to struggle to complete this study. First, I would like to mention
my supervisors, Assoc. Prof. Dr. Azizah Binti Shaaban and Mrs. Toibah Binti Abdul Rahim for
their continuous concern and support. Thank you for every suggestion both of you have made
and for every knowledge both of you have shared with me.
Last but not least, my heartiest thanks to the members of my family and in-laws. To my loving
husband, Mohd. Farid Bin Ismail, what could I do without your love, care and support. A special
appreciation goes to my beloved mother, Dr. Salbiah Binti Seliman who always reminded me
on the importance of finishing my work. To my children, Muhammad Al-Fateh and Farihah
Mardhiyyah, your cries, kisses and sincere faces have helped me to dissolve my boredom and
tiredness in doing this research. To my mother in-law, Siti Hajar Binti Abdul Aziz, I appreciate
every technical and spiritual support you gave me. Finally, I wish to thank the lecturers and
members of the staff of the Faculty of Manufacturing Engineering, my course seniors and all
my colleagues for all the assistance offered to me in order to complete this research.
May Allah grant each and every good deed you have showered me in the form of countless
rewards and may peace and blessings of Allah be upon all of you.
iii
TABLE OF CONTENTS
PAGE
DECLARATION
DEDICATION
ABSTRACT
i
ABSTRAK
ii
ACKNOWLEDGEMENTS
iii
TABLE OF CONTENTS
iv
LIST OF TABLES
vii
LIST OF FIGURES
ix
LIST OF APPENDICES
xiv
LIST OF ABBREVIATIONS
xv
LIST OF SYMBOLS
xviii
LIST OF PUBLICATIONS
xix
CHAPTER
1.
2.
INTRODUCTION ........................................................................................................ 1
1.0
Research Background ......................................................................................... 1
1.1
Problem Statement.............................................................................................. 3
1.2
Research Objectives ........................................................................................... 4
1.3
Scope of Research .............................................................................................. 5
1.4
Thesis Organization ............................................................................................ 5
LITERATURE REVIEW ............................................................................................ 7
2.0
Introduction ........................................................................................................ 7
2.1
Eggshell Contents ............................................................................................... 7
2.2
2.1.1
Eggshell Waste .......................................................................................... 9
2.1.2
Utilization of Eggshells ........................................................................... 10
2.1.3
Processing of Eggshells ........................................................................... 12
Bio-Ceramic Materials ..................................................................................... 13
2.2.1
Biomaterial Classifications...................................................................... 13
2.2.2
Calcium Phosphates ................................................................................ 15
2.2.3
HA and TCP Ceramics ............................................................................ 18
2.2.4
Human Bone Mineral .............................................................................. 20
iv
2.3
2.4
3.
2.3.1
Potentials of Hydrothermal Synthesis ..................................................... 25
2.3.2
Hydrothermal Process Parameters ........................................................... 25
2.3.3
Powder Characteristics and Forms .......................................................... 26
Dense Calcium Phosphate-based Ceramics ...................................................... 27
2.4.1
Load-Bearing Properties .......................................................................... 28
2.4.2
Reinforced Calcium Phosphate Composites ........................................... 30
2.4.3
Calcium Phosphate-Alumina Systems .................................................... 33
2.4.4
Preparation Methods of Dense Ceramics ................................................ 36
METHODOLOGY ..................................................................................................... 39
3.0
Introduction ...................................................................................................... 39
3.1
Starting Materials ............................................................................................. 40
3.2
Powder Preparation .......................................................................................... 41
3.2.1
Preparation of Eggshell-based Calcium Oxide ....................................... 41
3.2.2
Hydrothermal Synthesis Method ............................................................. 42
3.2.3
Mechanochemical Process ...................................................................... 45
3.3
Design of Experiment ....................................................................................... 47
3.4
Dense CaP-Al2O3 Preparation .......................................................................... 50
3.5
3.6
4.
Processing of Calcium Phosphates ................................................................... 22
3.4.1
Uniaxial Pressing ..................................................................................... 50
3.4.2
Sintering .................................................................................................. 51
Material Characterization ................................................................................. 54
3.5.1
X-ray Diffraction ..................................................................................... 54
3.5.2
Fourier Transformed Infrared Spectroscopy ........................................... 57
3.5.3
Thermal Analysis .................................................................................... 58
3.5.4
Scanning Electron Microscopy................................................................ 58
Physical and Mechanical Characterization ....................................................... 59
3.6.1
Bulk Density ............................................................................................ 60
3.6.2
Apparent Porosity .................................................................................... 61
3.6.3
Compressive Strength .............................................................................. 61
3.6.4
Microhardness ......................................................................................... 62
3.6.5
Fracture Toughness ................................................................................. 64
RESULTS AND DISCUSSIONS .............................................................................. 65
v
4.0
Introduction ...................................................................................................... 65
4.1
Characteristics of CaP-Al2O3 Powders ............................................................. 65
4.1.1
Preparation of CaP from Eggshells ......................................................... 65
4.1.1.1 Thermal Analysis by TG/DTA and DSC ...................................... 66
4.1.1.2 Phase Analysis by XRD ................................................................ 72
4.1.1.3 Chemical Analysis by FT-IR......................................................... 76
4.1.1.4 Microstructural Analysis by Electron Microscopy ....................... 80
4.1.2
4.2
4.3
4.5
5.
Synthesis of CaP-Al2O3 Powders ............................................................ 89
Design Analysis of Dense CaP-Al2O3 Pellets ................................................ 101
4.2.1
Plots of Main Effects ............................................................................. 102
4.2.2
Contour Plots of Mechanical Properties ................................................ 102
Characterization of CaP-Al2O3 Pellets ........................................................... 106
4.3.1
Phase Analysis ....................................................................................... 108
4.3.2
Chemical Analysis ................................................................................. 115
4.3.3
Microstructural Analysis ....................................................................... 116
Physical and Mechanical Properties of CaP-Al2O3 Pellets ............................ 127
4.5.1
Physical Properties ................................................................................ 127
4.5.2
Mechanical Strength .............................................................................. 136
4.5.3
Hardness ................................................................................................ 140
CONCLUSIONS AND RECOMMENDATIONS ................................................. 146
5.0
Conclusions .................................................................................................... 146
5.1
Recommendations for Future Research .......................................................... 147
REFERENCES ................................................................................................................ 149
APPENDIX A .................................................................................................................. 172
APPENDIX B ................................................................................................................... 186
APPENDIX C .................................................................................................................. 189
APPENDIX D .................................................................................................................. 192
APPENDIX E ................................................................................................................... 194
vi
LIST OF TABLES
TABLE
TITLE
PAGE
2.1
Chemical Compositions of the Calcium Phosphate Family
17
2.2
Methods to Generate CaP Powders
24
2.3
Properties of Ceramic Powders
26
2.4
Load-Bearing Properties of Bone Components
29
2.5
Effects of Several CaP Compositional Substitutions
31
2.6
Mechanical Properties of Alumina
34
3.1
Chemical specification of CaO from R&M Chemicals
41
3.2
Ratio of Al2O3 to CaP Powders
46
3.3
Preparation Parameters of The Synthesized CaP Powder Samples
47
3.4
Design of Experiment to Develop CaP-Al2O3 Dense Ceramics
49
3.5
Varied Parameters of The Developed CaP-Al2O3 Dense Ceramics
53
3.6
X-Ray Diffraction Reference Code Numbers of The Phases
Analysed
55
4.1
Changes in Thermal Analysis of CaP powders with Increasing
Temperatures and Probable Phenomena
70
4.2
Crystallization Temperature from DSC Curves
71
4.3
Crystallite Sizes and Degree of Crystallinity of CaP Powders
76
4.4
The Chemical Identification Groups of CaP Structures
77
4.5
Calculated Degree of Crystallinity (Xc) and Relative Intensity
Ratio (RIR) HA to Alumina of The Prepared CaP-ES Samples
92
4.6
Calculated Degree of Crystallinity (Xc) and Relative Intensity
Ratio (RIR) HA to Alumina of The Prepared CaP-CH Samples
94
4.7
Plots of Mean Effects for (1) Degree of Crystallinity, (2)
Crystallite Size and (3) Ca/P Ratio Corresponding to Parameters
(a) CaO, (b) pH Levels, (c) Alumina Additions and (d) Sintering
Temperature
103
4.8
SEM Images of CaP-ES-9 Samples with 5000 X Magnification
121
4.9
SEM Images of CaP-ES-5 Samples with 5000 X Magnification
122
4.10
SEM Images of CaP-CH-9 Samples with 5000 X Magnification
123
vii
4.11
SEM Images of CaP-CH-5 Samples with 5000 X Magnification
124
A-1
Various Experimental Methodologies Used for Synthesizing CaP
Powders through Hydrothermal Method
176
A-2
HA Reinforced Composites with Mechanical Properties
181
A-3
Dense CaP-Al2O3 Ceramics with Their Processing Methods and
Mechanical Properties
183
D-1
Experimental Data Results with The Parameters Analyzed
192
viii
LIST OF FIGURES
FIGURE
TITLE
PAGE
2.1
(a) Main Components of Chicken’s Eggs (b) Chicken Eggshells
8
2.2
Relative Reactivity of the Three Generations of Bio-Ceramic
Materials
15
2.3
(a) Detailed Structure of HA Crystals (b) The Unit Cells of HA
Projected along C Axis (c) Structural Sketch of HA Crystal of
Hexagonal Spaced Group Links
19
2.4
Compact and Spoungy Parts of Bone
21
2.5
Hierarcial Structure of Dense Bone with Scale Magnifications
22
2.6
Current CaP Synthetic (a) CellyardTM HA Dense Pellet and
Scaffold, (b) 3D Implant Scaffold (c) Granulated Bone Graft
Fillers, GranuMAS® and (d) CaP Bone Cement
27
2.7
Schematic Diagram of CA Formation, (a) Ca2+ from HA Diffuse
into Alumina (b) Ca-Deficient HA becomes TCP when Ca/P
Ration Reaches 1.5 and (c) Formation of TCP and CA at The
Interface
36
2.8
Illustrations of Sintering Phenomena of Ceramic Materials at
Three Stages (a) Particles Before Sintering (b) Neck Formation
During Sintering and (c) Pores Disappear After Sintering
38
3.1
Chart of Research Methodology
40
3.2
Graph of Heat Treatments during Calcination of Eggshells
42
3.3
Hydrothermal Process to Synthesize CaP
43
3.4
Graph of Heat Treatment during Calcination of CaP Powders
44
3.5
Flowchart of Hydrothermal Synthesis to Produce CaP Powder
45
3.6
(a) Polyethylene Bottle and Ball Milling Machine used to Mix CaP
and Alumina (b) Cross Sectional Schematic Diagram of Ball
Milling Mixing Process
46
3.7
Flow Chart of Dense CaP-Al2O3 Ceramic Development
50
3.8
(a) Uniaxial Pressing Machine with 13 mm Diameter Pellet Mould
(b) Pressed Dense Ceramic Pellet Measured by Digital Calliper
51
3.9
Schematic Drawings of Pressing Process with Stages (a) Powder
Fill, (b) Compaction and (c) Pellet Ejection
51
ix
3.10
Sintering Profile of CaP-Al2O3 Dense Ceramics
52
3.11
(a) PANalytical XRD Equipment (b) Schematic Diagram of XRD
Diffratometer
55
3.12
(a) Single Reflection ATR Accessory (b) Schematic Diagram of
FTIR-ATR Reflection System
58
3.13
Sputter Gold Coated Dense Pellet
59
3.14
(a) Universal Testing Machine and Compression Test Apparatus
(b) Schematic Operation of Compression Test
62
3.15
Schematic Diagram of Vicker’s Hardness Indentation Test
63
3.16
(a) Indentation Diagonal Measurements of Sample, d1 (b)
Schematic Image of Measuring Vicker’s Indentation; c1, c2 –
Crack Length and d1, d2 – Diagonal Length of Vickers’s
Indentation
64
4.1
Processed Eggshells, (a) Cleaned Eggshells, (b) Powdered
Eggshells and (c) Calcined Eggshells at 1000°C Producing CaO
Powder
66
4.2
TG/DTA Curve for Eggshell (CaCO3)
67
4.3
TGA/DSC Data Curves of Eggshell-Derived CaP Samples (a)
Synthesized at pH 5 and (b) Synthesized at pH 9
69
4.4
TG/DSC Data Curves of Chemical-Derived CaP Samples (a)
Synthesized at pH 5 and (b) Synthesized at pH 9
72
4.5
XRD Patterns Showing Conversion of CaCO3 to CaO (a) CaCO3ES, (b) CaO-ES, (c) CaP-ES-5 and (d) CaP-ES-9
74
4.6
XRD Patterns Showing Conversion of Chemical-Based CaO to
HA (a) CaO-CH, (b) CaP-CH-5 and (c) CaP-CH-9
75
4.7
FT-IR Spectra of The Synthesized CaP-ES Samples at (a) pH 5
and (b) pH 9
78
4.8
FT-IR Spectra of Synthesized CaP-CH Samples at (a) pH 5 and (b)
pH 9
79
4.9
SEM-EDX Micrograph of The As-refined CaCO3 Powder From
Eggshells at 500 X Magnification Showing (a) Shell and (b) Outer
Membrane
82
4.10
SEM Image of CaO Powder From Eggshells at (a) 500 X and (b)
3000 X Magnification and (c) the EDX Analysis (CaO-ES)
83
4.11
SEM-EDX Analysis of Commersial CaO Powder (a) at 500 X
Magnification and (b) the EDX Analysis (CaO-CH)
84
4.12
FESEM Image of Synthesized Eggshell-Derived CaP Powders at
(a) pH 5 and 50k X Magnification with (b) Aspect Ratio of CaPES-5 Crystals
85
4.13
FESEM Image of Synthesized Eggshell-Derived CaP Powders at
(a) pH 9 and 50k X Magnification with (b) Aspect Ratio of CaPES-9 Crystals
86
x
4.14
FESEM Image of Synthesized Eggshell-Derived CaP Powders (a)
CaP-ES- 5, Ca/P = 1.55 (b) CaP-ES-9, Ca/P = 1.48
87
4.15
FESEM Images of Synthesized CaP Powders of (a) Chemicalbased CaO, CaP-CH-9 with 50k X Magnification and (b) Aspect
Ratio for CaP-CH-9 Crystals
89
4.16
XRD Patterns of The Synthesized CaP-ES at Two Level pH with
Increasing Alumina; 0wt.%, 15wt.% and 35wt.% Additons
91
4.17
XRD Patterns of The Synthesized CaP-CH at Two pH Level with
Increasing Alumina; 0wt.%, 15wt.% and 35wt.% Additions
93
4.18
IR Spectrum of As-Received Alumina Powder
95
4.19
FT-IR Spectra of Prepared CaP-ES Sample Powders with Alumina
Additions
97
4.20
FT-IR Spectra of Prepared CaP-CH Sample Powders with
Alumina Additions
98
4.21
FESEM Images at Two Magnifications of Prepared CaP Samples
with Increasing Alumina Additions (a) 0wt.% (10k), (b) 0wt.%
(50k), (c) 15wt.% (10k), (d) 15wt.% (50k), (e) 35wt.% (10k) and
(f) 35wt.% (50k)
99
4.22
EDX with SEM Images at 10k X Magnification View for Samples
(a) CaP-ES-5-35A and (b) CaP-ES-9-35A
101
4.23
Countour Plots of The Mechanical Properties Anlayzed as A
Function of Alumina Additions and Sintering Temperature, (a)
Density, (b) Porosity, (c) Compressive Strength, (d) Elasticity, (e)
Vickers Harness and (f) Fracture Toughness
107
4.24
Sintered CaP Pellet with Lighter White Colour (The Left Pellet)
108
4.25
XRD Patterns of CaP-ES-9 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)
111
4.26
XRD Patterns of CaP-ES-5 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)
112
4.27
XRD Patterns of CaP-CH-9 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)
113
4.28
XRD Patterns of CaP-CH-5 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)
114
4.29
FT-IR Spectrum of CaP-ES Samples with Increasing Alumina
Additions and Sintering Temperature
117
4.30
FT-IR Spectrum of CaP-CH Samples with Increasing Alumina
Additions and Sintering Temperature
118
4.31
SEM-EDX Micrograph of Sample CaP-ES-5-15A
120
4.32
SEM Images of Densification Behavior of Sample CaP-ES-9-15 at
Increasing Sintering Temperature (a) 900°C (b) 1050°C and (c)
1250°C
125
xi
4.33
SEM Images of Densification Behavior of Sample CaP-CH-9-15
at Increasing Sintering Temperature (a) 900°C (b) 1050°C and (c)
1250°C
126
4.34
Bulk Density for ES-Derived CaP Dense Ceramics, (a) ES-9-0A,
(b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f)
ES-5-35A
129
4.35
Bulk Density for CH-Derived CaP Dense Ceramics, (a) CH-9-0A,
(b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f)
CH-5-35A
129
4.36
SEM-EDX Analysis on Sample ES-9-15A-1250 (Density, 3.04
g/cm3)
130
4.37
SEM-EDX Analysis on Sample ES-5-35A-1250 (Density, 2.28
g/cm3)
131
4.38
SEM-EDX Analysis on Sample CH-9-0A-1250 (Density, 3.26
g/cm3)
132
4.39
SEM-EDX Analysis on Sample CH-9-15A-1250 (Density, 2.07
g/cm3)
133
4.40
Porosity for ES-derived CaP Dense Ceramics, (a) ES-9-0A, (b)
ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f) ES5-35A
135
4.41
Porosity for CH-derived CaP Dense Ceramics, (a) CH-9-0A, (b)
CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f)
CH-5-35A
135
4.42
Compression Strength of ES-derived CaP Dense Ceramics, (a) ES9-0A, (b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A
and (f) ES-5-35A
138
4.43
Compression Strength of CH-derived CaP Dense Ceramics, (a)
CH-9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-515A and (f) CH-5-35A
138
4.44
Elastic Modulus of ES-derived CaP Dense Ceramics, (a) ES-9-0A,
(b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f)
ES-5-35A
139
4.45
Elastic Modulus of CH-derived CaP Dense Ceramics, (a) CH-90A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A
and (f) CH-5-35A
139
4.46
HV values of ES-derived CaP Dense Ceramics, (a) ES-9-0A, (b)
ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f) ES5-35A
141
4.47
HV values of CH-derived CaP Dense Ceramics, (a) CH-9-0A, (b)
CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f)
CH-5-35A
141
4.48
Vickers’s Micrograph Indentation Impression Image of A Polished
Surface (a) Before and (b) After Indentation of Sample Sintered at
143
xii
900°C (10X Magnification) and (c) Before and (d) After
Indentation of Sample Sintered at 1250°C (50 X Magnification)
4.49
Fracture Toughness of ES-derived CaP Dense Ceramics, (a) ES-90A, (b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and
(f) ES-5-35A
145
4.50
Fracture Toughness of CH-derived CaP Dense Ceramics, (a) CH9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A
and (f) CH-5-35A
145
A-1
Ternary Phase Diagram of CaO-P2O5-H2O System Showing The
Stability Reagions of CaP Phases – SHAp, Stoichiometric HA;
DCP, Dicalcium Phosphate; DCPD, Dicalcium Phosphate
Dihydrate and CDHA, Calcium deficient HA
172
A-2
Anhydrous Phase Diagram of CaO-P2O5 Binary System at
Elevated Temperatures – C, CaO and P, P2O5
172
xiii
LIST OF APPENDICES
APPENDIX
TITLE
PAGE
A
Literature Searches
172
B
Joint Committee on Powder Diffraction Standards (JCPDS) for
186
Hydroxyapatite
C
Joint Committee on Powder Diffraction Standards (JCPDS) for
189
Alumina
D
Experimental Results
192
E
Sacred Quranic Revelations
194
xiv
LIST OF ABBREVIATIONS
BCP
-
Bi-phasic calcium phosphate
CaP
-
Calcium phosphate
CH
-
Commercial chemical
ES
-
Eggshells
CDHA
-
Calcium-deficient hydroxyapatite
FA
-
Fluorapatite
HA
-
Hydroxyapatite
TCP
-
Tri-calcium phosphate
(NH4)2HPO4 -
Di-ammonium hydrogen phosphate
Al2O3
-
Alumina
Ca(NO3)2
-
Calcium nitrate
Ca(OH)2
-
Calcium hydroxide
CaCO3
-
Calcium carbonate
CaO
-
Calcium oxide
CaTiO3
-
Calcium titanate
CH3COOH
-
Acetic acid
CO2
-
Carbon dioxide
CO3
-
Carbonate
HPO4
-
Hydrogen phosphate
MgO
-
Magnesium oxide
NH4H2PO4
-
Ammonium di-hydrogen phosphate
NH4OH
-
Ammonium solution
P2O7
-
Pyrophosphate
SO4
-
Sulphate
TiO2
-
Titanium dioxide
ZrO2
-
Zirconia
Ca2+
-
Calcium ion
OH-
-
Hydroxide ion
xv
PO43-
-
Phosphate ion
C
-
Carbon
Cl
-
Chlorine
Cu
-
Copper
F
-
Fluorine
Fe
-
Iron
Mg
-
Magnesium
O
-
Oxygen
Pb
-
Lead
Si
-
Silicon
Sr
-
Strontium
dH2O
-
Distilled water
Ca/P
-
Calcium to phosphate ion molar ratio
RIR
-
Relative intensity ratio
FWHM
-
Full width at half maximum
TC
-
Crystallization temperature
TG
-
Glass transition temperature
TM
-
Melting temperature
XC
-
Degree of crystallization
XS
-
Crystallite size
E
-
Elasticity
FS
-
Flexural strength
HV
-
Vickers’s hardness
KIC
-
Fracture toughness indentation
TS
-
Tensile Strength
ATR
-
Attenuated Total Refractance
DSC
-
Differential Scanning Calorimetry
EDX
-
Energy Dispersive X-Ray
FESEM
-
Field Emission Scanning Electron Microscopy
FT-IR
-
Fourier Transformed Infrared
SEM
-
Scanning Electron Microscopy
TG/DTA
-
Thermo-gravinomety and Differential Thermal Analyser
XRD
-
X-Ray Diffraction
MINITAB
-
Minitab Statistical Software
JCPDS
-
Joint Committee on Powder Diffraction Standards
xvi
3D
-
Three dimensions
NA
-
Not available
Ref.
Reference
xvii
LIST OF SYMBOLS
%
-
a
Percentage
Rupture Strength
Å
-
Angstrom
Dia.
-
Diameter
h
-
Hour
K
-
Scherer’s constant = 0.94
min
-
Minute
L
Length
n
-
Order of reflection
º
-
Degree
ºC/min
-
Degree Celsius per minute
pH
-
Measurement of the acidity or basicity
rpm
-
Revolution per minute
kgf
-
Kilogram force
T
-
Temperature
V
-
Valley between peaks
wt. %
-
Weight percentage
X
-
Times magnification
α
-
Alpha crystal polymorph
β
-
Beta crystal polymorph
θ
-
Angle of diffraction
λ
-
Wavelength
xviii
LIST OF PUBLICATIONS
YEAR
JOURNALS
2013
Misran, F., Shaaban, A., and Rahim, T. A., 2013. Synthesis and
Characterization of Hydroxyapatite-Alumina Powders from Waste Egg
Shells. Sains Malaysiana. (In Review).
Fatimah, M., Azizah, S., Seliman, S. and Rahim, T. A., 2013. Calcium
Phosphate From Waste Animal Bones - Phase Identification Analysis.
International Journal of Mechanical and Materials Engineering. (In
Review).
CONFERENCE PAPERS
2012
Rahim, T. A, Hamid, R. A, Misran, F., Mahamood, M. A., Shamsuri, S. R.,
2012. Preparation of Porous Hydroxyapatite from Animal Bones via
Polymeric Sponge Method. In: Faculty of Manufacturing Engineering
UTeM, Proceedings of International Conference on Design and Concurrent
Engineering, Melaka, Malaysia, 15-16 October 2012. Penerbit UTeM.
Toibah, A. R., Fatimah, M., Siti-Sainillah, S., Mohammad-Ikmal, M.,
Mazlin-Aida, M. and Shaaban, A., 2012. Calcium Phosphate Ceramics
Prepared from Natural Waste Materials. In: Faculty of Industrial Science and
Technology UMP, Proceedings of International Conference of
Nanotechnology, Pahang, Malaysia, 30 May – 1 June 2012
Fatimah, M., Shaaban, A., Toibah, A. R. and Seliman, S., 2012. Overview:
Process Parameters for Hydrothermal Synthesis of Hydroxyapatite. In:
Faculty of Mechanical Engineering UTeM, Proceedings of the 3rd
International Conference on Engineering and ICT, Melaka, Malaysia, 4-6
April 2012. Penerbit UTeM.
2011
Fatimah, M., Shaaban, A., Toibah, A. R. and Seliman, S., 2011.
Hydroxyapatite-alumina Powder Synthesized through Hydrothermal
Method. In: AKEPT, Proceedings of the 1st Annual Young Research
Conference, Kuala Lumpur, Malaysia, 19-20 December 2011.
AWARDS
2012
Honoured Participation for “Halal Bone Implants from Natural Waste
Materials” at Innovative Exhibition, World Halal Research Expo from 4-5
xix
THE EFFECTS OF ALUMINA ON THE DENSE CALCIUM
PHOSPHATE SYNTHESIZED FROM EGGSHELL WASTE
Fatimah Binti Misran
Master of Science in Manufacturing Engineering
2015
THE EFFECTS OF ALUMINA ON THE DENSE CALCIUM PHOSPHATE
SYNTHESIZED FROM EGGSHELL WASTE
FATIMAH BINTI MISRAN
A thesis submitted
in fulfilment of the requirements for the degree of Master of Science in Manufacturing
Engineering
Faculty of Manufacturing Engineering
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
2015
DECLARATION
I declare that this thesis entitled “The Effects of Alumina on The Dense Calcium Phosphate
Synthesized from Eggshell Waste” is the result of my own research except as cited in the
references. The thesis has not been accepted for any degree and is not concurrently submitted in
candidature of any other degree.
Signature
:
……………………...............................
Name
:
………………………………….……..
Date
:
……………………………….………..
APPROVAL
I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of
scope and quality for the award of Master in Manufacturing Engineering (Materials).
Signature
:
……………………...............................
Supervisor’s Name :
………………………………….……..
Date
……………………………….………..
:
DEDICATION
Dedicated to all my beloved Muslim brothers and sisters throughout the world struggling to
gain Allah S.W.T's pleasures (Redha) in this Life and for the Hereafter
ABSTRACT
Eggshell (ES) wastes were processed and used as starting materials for the synthesis of calcium
phosphates (CaP) such as hydroxyapatite (HA) and tricalcium phosphates (TCP). Hydrothermal
and mechanochemical synthesis methods were applied to synthesize hydroxyapatite and
hydroxyapatite-alumina bioceramic composite powders with ultrafine microstructures from
both eggshell wastes and chemical calcium precursors to develop bioceramics with enhanced
mechanical properties for medical applications. Despite its attractive, bioactive and
biocompatibile properties, CaP has been limited in applications due to the poor processability
and mechanical strengths of the material. To further toughen the CaP matrix, nanocrystalline
alumina (Al2O3) with the addition amounts of 15wt.% and 35wt.% was introduced. CaP in the
form of dense compacts was prepared by uniaxial pressing and sintered through pressureless
sintering method in air atmosphere at various sintering temperatures. The effects of the type of
calcium sources, the synthesis pH conditions, the Al2O3 incorporation and the sintering
temperature on the phase behaviour and the mechanical properties of the developed ceramic
bodies were evaluated. The presence of HA and Al2O3 phase in the powder synthesis was
confirmed through XRD, FT-IR and TGA analyses. However, the major phase detected in the
developed dense compacts after sintering conducts was TCP. FESEM and EDX assessments
showed nano-sized rods and spherical morphologies with corresponding element analysis of the
synthesized powders. SEM analyses were used to observe the morphology and densification
behaviour of the bioceramic compacts. Density, porosity, compression, elasticity,
microhardness and fracture toughness tests were used to monitor the physical and mechanical
properties. Statistical analysis using MINITAB was used to summarize the mechanical
evaluations. The leading mechanical attributes were achieved by dense bioceramics synthesized
from ES-based calcium precursor at pH 9 conditions after being sintered at 1250°C. Al2O3
reinforcements were preferred in small quantities to achieve better mechanical properties. The
highest measurement of Vickers hardness and facture toughness was acquired through the
sample that was synthesized at alkaline conditions, 15wt% alumina content and after being
sintered at 1250°C with values of 4.76 GPa and 4.12 MPam1/2 respectively. Sintering
temperature was concluded to be the most influencing variable parameter for every evaluation
particularly for the enhancement of mechanical strength of the developed bioceramics.
i
ABSTRAK
Sisa kulit telur telah diproses dan digunakan sebagai bahan pemula untuk sintesis fosfat kalsium
(CaP) seperti hydroxyapatite (HA) dan fosfat trikalsium (TCP). Kaedah sintesis secara
hidroterma dan mekano-kimia telah digunakan untuk mensintesis hidroksiapatit dan serbuk
komposit bioseramik hidroksiapatit-alumina dengan mikrostruktur ultrahalus daripada keduadua sisa kulit telur dan pelopor kalsium berkimia untuk membangunkan bioseramik dengan
peningkatan sifat mekanik untuk aplikasi perubatan. Meskipun bersifat penarik, bioaktif dan
serasi secara biologi, penggunaan CaP adalah terhad kerana kekurangan dari segi kebolehan
daya pemprosessan dan kekuatan mekanikal bahan tersebut. Bagi menguatkan matriks CaP,
alumina (Al2O3) yang bersifat nanokristalin dengan pertambahan 15wt.% dan 35wt.%
dicampurkan. CaP dalam komponen yang padat telah disediakan melalui kaedah tekanan
ekapaksi dan disinter melaui kaedah pensinteran tanpa tekanan pada atmosfera udara yang
pelbagai suhu pembakarannya. Kesan jenis sumber kalsium, keadaan pH semasa sintesis,
penampahan kandungan Al2O3 dan suhu pensinteran terhadap pola fasa dan sifat-sifat mekanik
bioseramik yang disediakan dinilai. Kehadiran fasa-fas HA dan Al2O3 dalam serbuk sinstesis
telah dikenal pasti melalui analisa XRD, FT-IR dan TGA. Namun begitu, fasa perubahan utama
yang dikesan dalam komponen padat selepas pensinderan dijalankan ialah TCP. Penilaian
terhadap FESEM dan EDX menunjukkan morfologi rod bersaiz nano yang berbentuk sfera
konsisten dengan analisa unsur sepadan pada serbuk yang telah disintesiskan. Analisis
terhadap SEM digunakan untuk memperhatikan pola morfologi dan ketumpatan komponen
bioseramik. Ujian ketumpatan, keliangan, pemampatan, keanjalan, kekerasan mikro dan
keliatan patah digunakan untuk memantau ciri-ciri fizikal dan mekanikal. Analisis statistik
menggunakan MINITAB juga digunakan untuk merumuskan penilaian mekanikal. Ciri-ciri
utama mekanikal dicapai oleh bioseramik padat yang telah disintesis daripada sisa kulit telur
sebagai pelopor kalsium pada kondisi pH 9 dan selepas disinter pada suhu 1250 °C. Bagi
mencapai ciri-ciri mekanikal yang lebih baik hanya kuantiti Al2O3 yang kecil diperlukan.
Bacaan tertinggi bagi kekerasan Vickers dan keliangan padat telah diperolehi oleh sampel ES9-15A-1250 yang disintesis dengan kondisi alkali, 15wt% kandungan alumina dan setelah
disinter pada suhu 1250 °C adalah masing-masing bernilai 4.76 GPa dan 4.12 MPam1/2. Suhu
pensinteran dikonklusikan sebagai parameter pemboleh ubah paling berpengaruh untuk setiap
penilaian terutamanya bagi peningkatan kekuatan mekanikal bioseramik yang telah disediakan.
ii
ACKNOWLEDGEMENTS
In the name of Allah, the Most Merciful, the Most Compassionate
AlhamdulillahiRabbil’alamin, praises be to Allah SWT, the exclusive Owner of the utmost
Glory. As a Muslim, we should express our gratefulness for each and every one of His mercies.
He is the absolute Inventor and Designer of everything and nothing can be accomplished without
His permission. I hope that this study is blessed with His Guidance and Compassion. Nothing I
strive for, except His Pleasures. Peace and blessings are to our beloved prophet, Muhammad
(peace be upon him), who has shown us the right path to achieve Allah’s pleasures and rahmah.
On a personal note, it gives me great pleasure to record my gratitude to every individual who
had assisted and motivated me to struggle to complete this study. First, I would like to mention
my supervisors, Assoc. Prof. Dr. Azizah Binti Shaaban and Mrs. Toibah Binti Abdul Rahim for
their continuous concern and support. Thank you for every suggestion both of you have made
and for every knowledge both of you have shared with me.
Last but not least, my heartiest thanks to the members of my family and in-laws. To my loving
husband, Mohd. Farid Bin Ismail, what could I do without your love, care and support. A special
appreciation goes to my beloved mother, Dr. Salbiah Binti Seliman who always reminded me
on the importance of finishing my work. To my children, Muhammad Al-Fateh and Farihah
Mardhiyyah, your cries, kisses and sincere faces have helped me to dissolve my boredom and
tiredness in doing this research. To my mother in-law, Siti Hajar Binti Abdul Aziz, I appreciate
every technical and spiritual support you gave me. Finally, I wish to thank the lecturers and
members of the staff of the Faculty of Manufacturing Engineering, my course seniors and all
my colleagues for all the assistance offered to me in order to complete this research.
May Allah grant each and every good deed you have showered me in the form of countless
rewards and may peace and blessings of Allah be upon all of you.
iii
TABLE OF CONTENTS
PAGE
DECLARATION
DEDICATION
ABSTRACT
i
ABSTRAK
ii
ACKNOWLEDGEMENTS
iii
TABLE OF CONTENTS
iv
LIST OF TABLES
vii
LIST OF FIGURES
ix
LIST OF APPENDICES
xiv
LIST OF ABBREVIATIONS
xv
LIST OF SYMBOLS
xviii
LIST OF PUBLICATIONS
xix
CHAPTER
1.
2.
INTRODUCTION ........................................................................................................ 1
1.0
Research Background ......................................................................................... 1
1.1
Problem Statement.............................................................................................. 3
1.2
Research Objectives ........................................................................................... 4
1.3
Scope of Research .............................................................................................. 5
1.4
Thesis Organization ............................................................................................ 5
LITERATURE REVIEW ............................................................................................ 7
2.0
Introduction ........................................................................................................ 7
2.1
Eggshell Contents ............................................................................................... 7
2.2
2.1.1
Eggshell Waste .......................................................................................... 9
2.1.2
Utilization of Eggshells ........................................................................... 10
2.1.3
Processing of Eggshells ........................................................................... 12
Bio-Ceramic Materials ..................................................................................... 13
2.2.1
Biomaterial Classifications...................................................................... 13
2.2.2
Calcium Phosphates ................................................................................ 15
2.2.3
HA and TCP Ceramics ............................................................................ 18
2.2.4
Human Bone Mineral .............................................................................. 20
iv
2.3
2.4
3.
2.3.1
Potentials of Hydrothermal Synthesis ..................................................... 25
2.3.2
Hydrothermal Process Parameters ........................................................... 25
2.3.3
Powder Characteristics and Forms .......................................................... 26
Dense Calcium Phosphate-based Ceramics ...................................................... 27
2.4.1
Load-Bearing Properties .......................................................................... 28
2.4.2
Reinforced Calcium Phosphate Composites ........................................... 30
2.4.3
Calcium Phosphate-Alumina Systems .................................................... 33
2.4.4
Preparation Methods of Dense Ceramics ................................................ 36
METHODOLOGY ..................................................................................................... 39
3.0
Introduction ...................................................................................................... 39
3.1
Starting Materials ............................................................................................. 40
3.2
Powder Preparation .......................................................................................... 41
3.2.1
Preparation of Eggshell-based Calcium Oxide ....................................... 41
3.2.2
Hydrothermal Synthesis Method ............................................................. 42
3.2.3
Mechanochemical Process ...................................................................... 45
3.3
Design of Experiment ....................................................................................... 47
3.4
Dense CaP-Al2O3 Preparation .......................................................................... 50
3.5
3.6
4.
Processing of Calcium Phosphates ................................................................... 22
3.4.1
Uniaxial Pressing ..................................................................................... 50
3.4.2
Sintering .................................................................................................. 51
Material Characterization ................................................................................. 54
3.5.1
X-ray Diffraction ..................................................................................... 54
3.5.2
Fourier Transformed Infrared Spectroscopy ........................................... 57
3.5.3
Thermal Analysis .................................................................................... 58
3.5.4
Scanning Electron Microscopy................................................................ 58
Physical and Mechanical Characterization ....................................................... 59
3.6.1
Bulk Density ............................................................................................ 60
3.6.2
Apparent Porosity .................................................................................... 61
3.6.3
Compressive Strength .............................................................................. 61
3.6.4
Microhardness ......................................................................................... 62
3.6.5
Fracture Toughness ................................................................................. 64
RESULTS AND DISCUSSIONS .............................................................................. 65
v
4.0
Introduction ...................................................................................................... 65
4.1
Characteristics of CaP-Al2O3 Powders ............................................................. 65
4.1.1
Preparation of CaP from Eggshells ......................................................... 65
4.1.1.1 Thermal Analysis by TG/DTA and DSC ...................................... 66
4.1.1.2 Phase Analysis by XRD ................................................................ 72
4.1.1.3 Chemical Analysis by FT-IR......................................................... 76
4.1.1.4 Microstructural Analysis by Electron Microscopy ....................... 80
4.1.2
4.2
4.3
4.5
5.
Synthesis of CaP-Al2O3 Powders ............................................................ 89
Design Analysis of Dense CaP-Al2O3 Pellets ................................................ 101
4.2.1
Plots of Main Effects ............................................................................. 102
4.2.2
Contour Plots of Mechanical Properties ................................................ 102
Characterization of CaP-Al2O3 Pellets ........................................................... 106
4.3.1
Phase Analysis ....................................................................................... 108
4.3.2
Chemical Analysis ................................................................................. 115
4.3.3
Microstructural Analysis ....................................................................... 116
Physical and Mechanical Properties of CaP-Al2O3 Pellets ............................ 127
4.5.1
Physical Properties ................................................................................ 127
4.5.2
Mechanical Strength .............................................................................. 136
4.5.3
Hardness ................................................................................................ 140
CONCLUSIONS AND RECOMMENDATIONS ................................................. 146
5.0
Conclusions .................................................................................................... 146
5.1
Recommendations for Future Research .......................................................... 147
REFERENCES ................................................................................................................ 149
APPENDIX A .................................................................................................................. 172
APPENDIX B ................................................................................................................... 186
APPENDIX C .................................................................................................................. 189
APPENDIX D .................................................................................................................. 192
APPENDIX E ................................................................................................................... 194
vi
LIST OF TABLES
TABLE
TITLE
PAGE
2.1
Chemical Compositions of the Calcium Phosphate Family
17
2.2
Methods to Generate CaP Powders
24
2.3
Properties of Ceramic Powders
26
2.4
Load-Bearing Properties of Bone Components
29
2.5
Effects of Several CaP Compositional Substitutions
31
2.6
Mechanical Properties of Alumina
34
3.1
Chemical specification of CaO from R&M Chemicals
41
3.2
Ratio of Al2O3 to CaP Powders
46
3.3
Preparation Parameters of The Synthesized CaP Powder Samples
47
3.4
Design of Experiment to Develop CaP-Al2O3 Dense Ceramics
49
3.5
Varied Parameters of The Developed CaP-Al2O3 Dense Ceramics
53
3.6
X-Ray Diffraction Reference Code Numbers of The Phases
Analysed
55
4.1
Changes in Thermal Analysis of CaP powders with Increasing
Temperatures and Probable Phenomena
70
4.2
Crystallization Temperature from DSC Curves
71
4.3
Crystallite Sizes and Degree of Crystallinity of CaP Powders
76
4.4
The Chemical Identification Groups of CaP Structures
77
4.5
Calculated Degree of Crystallinity (Xc) and Relative Intensity
Ratio (RIR) HA to Alumina of The Prepared CaP-ES Samples
92
4.6
Calculated Degree of Crystallinity (Xc) and Relative Intensity
Ratio (RIR) HA to Alumina of The Prepared CaP-CH Samples
94
4.7
Plots of Mean Effects for (1) Degree of Crystallinity, (2)
Crystallite Size and (3) Ca/P Ratio Corresponding to Parameters
(a) CaO, (b) pH Levels, (c) Alumina Additions and (d) Sintering
Temperature
103
4.8
SEM Images of CaP-ES-9 Samples with 5000 X Magnification
121
4.9
SEM Images of CaP-ES-5 Samples with 5000 X Magnification
122
4.10
SEM Images of CaP-CH-9 Samples with 5000 X Magnification
123
vii
4.11
SEM Images of CaP-CH-5 Samples with 5000 X Magnification
124
A-1
Various Experimental Methodologies Used for Synthesizing CaP
Powders through Hydrothermal Method
176
A-2
HA Reinforced Composites with Mechanical Properties
181
A-3
Dense CaP-Al2O3 Ceramics with Their Processing Methods and
Mechanical Properties
183
D-1
Experimental Data Results with The Parameters Analyzed
192
viii
LIST OF FIGURES
FIGURE
TITLE
PAGE
2.1
(a) Main Components of Chicken’s Eggs (b) Chicken Eggshells
8
2.2
Relative Reactivity of the Three Generations of Bio-Ceramic
Materials
15
2.3
(a) Detailed Structure of HA Crystals (b) The Unit Cells of HA
Projected along C Axis (c) Structural Sketch of HA Crystal of
Hexagonal Spaced Group Links
19
2.4
Compact and Spoungy Parts of Bone
21
2.5
Hierarcial Structure of Dense Bone with Scale Magnifications
22
2.6
Current CaP Synthetic (a) CellyardTM HA Dense Pellet and
Scaffold, (b) 3D Implant Scaffold (c) Granulated Bone Graft
Fillers, GranuMAS® and (d) CaP Bone Cement
27
2.7
Schematic Diagram of CA Formation, (a) Ca2+ from HA Diffuse
into Alumina (b) Ca-Deficient HA becomes TCP when Ca/P
Ration Reaches 1.5 and (c) Formation of TCP and CA at The
Interface
36
2.8
Illustrations of Sintering Phenomena of Ceramic Materials at
Three Stages (a) Particles Before Sintering (b) Neck Formation
During Sintering and (c) Pores Disappear After Sintering
38
3.1
Chart of Research Methodology
40
3.2
Graph of Heat Treatments during Calcination of Eggshells
42
3.3
Hydrothermal Process to Synthesize CaP
43
3.4
Graph of Heat Treatment during Calcination of CaP Powders
44
3.5
Flowchart of Hydrothermal Synthesis to Produce CaP Powder
45
3.6
(a) Polyethylene Bottle and Ball Milling Machine used to Mix CaP
and Alumina (b) Cross Sectional Schematic Diagram of Ball
Milling Mixing Process
46
3.7
Flow Chart of Dense CaP-Al2O3 Ceramic Development
50
3.8
(a) Uniaxial Pressing Machine with 13 mm Diameter Pellet Mould
(b) Pressed Dense Ceramic Pellet Measured by Digital Calliper
51
3.9
Schematic Drawings of Pressing Process with Stages (a) Powder
Fill, (b) Compaction and (c) Pellet Ejection
51
ix
3.10
Sintering Profile of CaP-Al2O3 Dense Ceramics
52
3.11
(a) PANalytical XRD Equipment (b) Schematic Diagram of XRD
Diffratometer
55
3.12
(a) Single Reflection ATR Accessory (b) Schematic Diagram of
FTIR-ATR Reflection System
58
3.13
Sputter Gold Coated Dense Pellet
59
3.14
(a) Universal Testing Machine and Compression Test Apparatus
(b) Schematic Operation of Compression Test
62
3.15
Schematic Diagram of Vicker’s Hardness Indentation Test
63
3.16
(a) Indentation Diagonal Measurements of Sample, d1 (b)
Schematic Image of Measuring Vicker’s Indentation; c1, c2 –
Crack Length and d1, d2 – Diagonal Length of Vickers’s
Indentation
64
4.1
Processed Eggshells, (a) Cleaned Eggshells, (b) Powdered
Eggshells and (c) Calcined Eggshells at 1000°C Producing CaO
Powder
66
4.2
TG/DTA Curve for Eggshell (CaCO3)
67
4.3
TGA/DSC Data Curves of Eggshell-Derived CaP Samples (a)
Synthesized at pH 5 and (b) Synthesized at pH 9
69
4.4
TG/DSC Data Curves of Chemical-Derived CaP Samples (a)
Synthesized at pH 5 and (b) Synthesized at pH 9
72
4.5
XRD Patterns Showing Conversion of CaCO3 to CaO (a) CaCO3ES, (b) CaO-ES, (c) CaP-ES-5 and (d) CaP-ES-9
74
4.6
XRD Patterns Showing Conversion of Chemical-Based CaO to
HA (a) CaO-CH, (b) CaP-CH-5 and (c) CaP-CH-9
75
4.7
FT-IR Spectra of The Synthesized CaP-ES Samples at (a) pH 5
and (b) pH 9
78
4.8
FT-IR Spectra of Synthesized CaP-CH Samples at (a) pH 5 and (b)
pH 9
79
4.9
SEM-EDX Micrograph of The As-refined CaCO3 Powder From
Eggshells at 500 X Magnification Showing (a) Shell and (b) Outer
Membrane
82
4.10
SEM Image of CaO Powder From Eggshells at (a) 500 X and (b)
3000 X Magnification and (c) the EDX Analysis (CaO-ES)
83
4.11
SEM-EDX Analysis of Commersial CaO Powder (a) at 500 X
Magnification and (b) the EDX Analysis (CaO-CH)
84
4.12
FESEM Image of Synthesized Eggshell-Derived CaP Powders at
(a) pH 5 and 50k X Magnification with (b) Aspect Ratio of CaPES-5 Crystals
85
4.13
FESEM Image of Synthesized Eggshell-Derived CaP Powders at
(a) pH 9 and 50k X Magnification with (b) Aspect Ratio of CaPES-9 Crystals
86
x
4.14
FESEM Image of Synthesized Eggshell-Derived CaP Powders (a)
CaP-ES- 5, Ca/P = 1.55 (b) CaP-ES-9, Ca/P = 1.48
87
4.15
FESEM Images of Synthesized CaP Powders of (a) Chemicalbased CaO, CaP-CH-9 with 50k X Magnification and (b) Aspect
Ratio for CaP-CH-9 Crystals
89
4.16
XRD Patterns of The Synthesized CaP-ES at Two Level pH with
Increasing Alumina; 0wt.%, 15wt.% and 35wt.% Additons
91
4.17
XRD Patterns of The Synthesized CaP-CH at Two pH Level with
Increasing Alumina; 0wt.%, 15wt.% and 35wt.% Additions
93
4.18
IR Spectrum of As-Received Alumina Powder
95
4.19
FT-IR Spectra of Prepared CaP-ES Sample Powders with Alumina
Additions
97
4.20
FT-IR Spectra of Prepared CaP-CH Sample Powders with
Alumina Additions
98
4.21
FESEM Images at Two Magnifications of Prepared CaP Samples
with Increasing Alumina Additions (a) 0wt.% (10k), (b) 0wt.%
(50k), (c) 15wt.% (10k), (d) 15wt.% (50k), (e) 35wt.% (10k) and
(f) 35wt.% (50k)
99
4.22
EDX with SEM Images at 10k X Magnification View for Samples
(a) CaP-ES-5-35A and (b) CaP-ES-9-35A
101
4.23
Countour Plots of The Mechanical Properties Anlayzed as A
Function of Alumina Additions and Sintering Temperature, (a)
Density, (b) Porosity, (c) Compressive Strength, (d) Elasticity, (e)
Vickers Harness and (f) Fracture Toughness
107
4.24
Sintered CaP Pellet with Lighter White Colour (The Left Pellet)
108
4.25
XRD Patterns of CaP-ES-9 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)
111
4.26
XRD Patterns of CaP-ES-5 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)
112
4.27
XRD Patterns of CaP-CH-9 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)
113
4.28
XRD Patterns of CaP-CH-5 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)
114
4.29
FT-IR Spectrum of CaP-ES Samples with Increasing Alumina
Additions and Sintering Temperature
117
4.30
FT-IR Spectrum of CaP-CH Samples with Increasing Alumina
Additions and Sintering Temperature
118
4.31
SEM-EDX Micrograph of Sample CaP-ES-5-15A
120
4.32
SEM Images of Densification Behavior of Sample CaP-ES-9-15 at
Increasing Sintering Temperature (a) 900°C (b) 1050°C and (c)
1250°C
125
xi
4.33
SEM Images of Densification Behavior of Sample CaP-CH-9-15
at Increasing Sintering Temperature (a) 900°C (b) 1050°C and (c)
1250°C
126
4.34
Bulk Density for ES-Derived CaP Dense Ceramics, (a) ES-9-0A,
(b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f)
ES-5-35A
129
4.35
Bulk Density for CH-Derived CaP Dense Ceramics, (a) CH-9-0A,
(b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f)
CH-5-35A
129
4.36
SEM-EDX Analysis on Sample ES-9-15A-1250 (Density, 3.04
g/cm3)
130
4.37
SEM-EDX Analysis on Sample ES-5-35A-1250 (Density, 2.28
g/cm3)
131
4.38
SEM-EDX Analysis on Sample CH-9-0A-1250 (Density, 3.26
g/cm3)
132
4.39
SEM-EDX Analysis on Sample CH-9-15A-1250 (Density, 2.07
g/cm3)
133
4.40
Porosity for ES-derived CaP Dense Ceramics, (a) ES-9-0A, (b)
ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f) ES5-35A
135
4.41
Porosity for CH-derived CaP Dense Ceramics, (a) CH-9-0A, (b)
CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f)
CH-5-35A
135
4.42
Compression Strength of ES-derived CaP Dense Ceramics, (a) ES9-0A, (b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A
and (f) ES-5-35A
138
4.43
Compression Strength of CH-derived CaP Dense Ceramics, (a)
CH-9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-515A and (f) CH-5-35A
138
4.44
Elastic Modulus of ES-derived CaP Dense Ceramics, (a) ES-9-0A,
(b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f)
ES-5-35A
139
4.45
Elastic Modulus of CH-derived CaP Dense Ceramics, (a) CH-90A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A
and (f) CH-5-35A
139
4.46
HV values of ES-derived CaP Dense Ceramics, (a) ES-9-0A, (b)
ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f) ES5-35A
141
4.47
HV values of CH-derived CaP Dense Ceramics, (a) CH-9-0A, (b)
CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f)
CH-5-35A
141
4.48
Vickers’s Micrograph Indentation Impression Image of A Polished
Surface (a) Before and (b) After Indentation of Sample Sintered at
143
xii
900°C (10X Magnification) and (c) Before and (d) After
Indentation of Sample Sintered at 1250°C (50 X Magnification)
4.49
Fracture Toughness of ES-derived CaP Dense Ceramics, (a) ES-90A, (b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and
(f) ES-5-35A
145
4.50
Fracture Toughness of CH-derived CaP Dense Ceramics, (a) CH9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A
and (f) CH-5-35A
145
A-1
Ternary Phase Diagram of CaO-P2O5-H2O System Showing The
Stability Reagions of CaP Phases – SHAp, Stoichiometric HA;
DCP, Dicalcium Phosphate; DCPD, Dicalcium Phosphate
Dihydrate and CDHA, Calcium deficient HA
172
A-2
Anhydrous Phase Diagram of CaO-P2O5 Binary System at
Elevated Temperatures – C, CaO and P, P2O5
172
xiii
LIST OF APPENDICES
APPENDIX
TITLE
PAGE
A
Literature Searches
172
B
Joint Committee on Powder Diffraction Standards (JCPDS) for
186
Hydroxyapatite
C
Joint Committee on Powder Diffraction Standards (JCPDS) for
189
Alumina
D
Experimental Results
192
E
Sacred Quranic Revelations
194
xiv
LIST OF ABBREVIATIONS
BCP
-
Bi-phasic calcium phosphate
CaP
-
Calcium phosphate
CH
-
Commercial chemical
ES
-
Eggshells
CDHA
-
Calcium-deficient hydroxyapatite
FA
-
Fluorapatite
HA
-
Hydroxyapatite
TCP
-
Tri-calcium phosphate
(NH4)2HPO4 -
Di-ammonium hydrogen phosphate
Al2O3
-
Alumina
Ca(NO3)2
-
Calcium nitrate
Ca(OH)2
-
Calcium hydroxide
CaCO3
-
Calcium carbonate
CaO
-
Calcium oxide
CaTiO3
-
Calcium titanate
CH3COOH
-
Acetic acid
CO2
-
Carbon dioxide
CO3
-
Carbonate
HPO4
-
Hydrogen phosphate
MgO
-
Magnesium oxide
NH4H2PO4
-
Ammonium di-hydrogen phosphate
NH4OH
-
Ammonium solution
P2O7
-
Pyrophosphate
SO4
-
Sulphate
TiO2
-
Titanium dioxide
ZrO2
-
Zirconia
Ca2+
-
Calcium ion
OH-
-
Hydroxide ion
xv
PO43-
-
Phosphate ion
C
-
Carbon
Cl
-
Chlorine
Cu
-
Copper
F
-
Fluorine
Fe
-
Iron
Mg
-
Magnesium
O
-
Oxygen
Pb
-
Lead
Si
-
Silicon
Sr
-
Strontium
dH2O
-
Distilled water
Ca/P
-
Calcium to phosphate ion molar ratio
RIR
-
Relative intensity ratio
FWHM
-
Full width at half maximum
TC
-
Crystallization temperature
TG
-
Glass transition temperature
TM
-
Melting temperature
XC
-
Degree of crystallization
XS
-
Crystallite size
E
-
Elasticity
FS
-
Flexural strength
HV
-
Vickers’s hardness
KIC
-
Fracture toughness indentation
TS
-
Tensile Strength
ATR
-
Attenuated Total Refractance
DSC
-
Differential Scanning Calorimetry
EDX
-
Energy Dispersive X-Ray
FESEM
-
Field Emission Scanning Electron Microscopy
FT-IR
-
Fourier Transformed Infrared
SEM
-
Scanning Electron Microscopy
TG/DTA
-
Thermo-gravinomety and Differential Thermal Analyser
XRD
-
X-Ray Diffraction
MINITAB
-
Minitab Statistical Software
JCPDS
-
Joint Committee on Powder Diffraction Standards
xvi
3D
-
Three dimensions
NA
-
Not available
Ref.
Reference
xvii
LIST OF SYMBOLS
%
-
a
Percentage
Rupture Strength
Å
-
Angstrom
Dia.
-
Diameter
h
-
Hour
K
-
Scherer’s constant = 0.94
min
-
Minute
L
Length
n
-
Order of reflection
º
-
Degree
ºC/min
-
Degree Celsius per minute
pH
-
Measurement of the acidity or basicity
rpm
-
Revolution per minute
kgf
-
Kilogram force
T
-
Temperature
V
-
Valley between peaks
wt. %
-
Weight percentage
X
-
Times magnification
α
-
Alpha crystal polymorph
β
-
Beta crystal polymorph
θ
-
Angle of diffraction
λ
-
Wavelength
xviii
LIST OF PUBLICATIONS
YEAR
JOURNALS
2013
Misran, F., Shaaban, A., and Rahim, T. A., 2013. Synthesis and
Characterization of Hydroxyapatite-Alumina Powders from Waste Egg
Shells. Sains Malaysiana. (In Review).
Fatimah, M., Azizah, S., Seliman, S. and Rahim, T. A., 2013. Calcium
Phosphate From Waste Animal Bones - Phase Identification Analysis.
International Journal of Mechanical and Materials Engineering. (In
Review).
CONFERENCE PAPERS
2012
Rahim, T. A, Hamid, R. A, Misran, F., Mahamood, M. A., Shamsuri, S. R.,
2012. Preparation of Porous Hydroxyapatite from Animal Bones via
Polymeric Sponge Method. In: Faculty of Manufacturing Engineering
UTeM, Proceedings of International Conference on Design and Concurrent
Engineering, Melaka, Malaysia, 15-16 October 2012. Penerbit UTeM.
Toibah, A. R., Fatimah, M., Siti-Sainillah, S., Mohammad-Ikmal, M.,
Mazlin-Aida, M. and Shaaban, A., 2012. Calcium Phosphate Ceramics
Prepared from Natural Waste Materials. In: Faculty of Industrial Science and
Technology UMP, Proceedings of International Conference of
Nanotechnology, Pahang, Malaysia, 30 May – 1 June 2012
Fatimah, M., Shaaban, A., Toibah, A. R. and Seliman, S., 2012. Overview:
Process Parameters for Hydrothermal Synthesis of Hydroxyapatite. In:
Faculty of Mechanical Engineering UTeM, Proceedings of the 3rd
International Conference on Engineering and ICT, Melaka, Malaysia, 4-6
April 2012. Penerbit UTeM.
2011
Fatimah, M., Shaaban, A., Toibah, A. R. and Seliman, S., 2011.
Hydroxyapatite-alumina Powder Synthesized through Hydrothermal
Method. In: AKEPT, Proceedings of the 1st Annual Young Research
Conference, Kuala Lumpur, Malaysia, 19-20 December 2011.
AWARDS
2012
Honoured Participation for “Halal Bone Implants from Natural Waste
Materials” at Innovative Exhibition, World Halal Research Expo from 4-5
xix