The Effects Of Alumina On The Dense Calcium Phosphate Synthesized From Eggshell Waste.

Faculty of Manufacturing Engineering

THE EFFECTS OF ALUMINA ON THE DENSE CALCIUM
PHOSPHATE SYNTHESIZED FROM EGGSHELL WASTE

Fatimah Binti Misran

Master of Science in Manufacturing Engineering

2015

THE EFFECTS OF ALUMINA ON THE DENSE CALCIUM PHOSPHATE
SYNTHESIZED FROM EGGSHELL WASTE

FATIMAH BINTI MISRAN

A thesis submitted
in fulfilment of the requirements for the degree of Master of Science in Manufacturing
Engineering

Faculty of Manufacturing Engineering


UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

DECLARATION

I declare that this thesis entitled “The Effects of Alumina on The Dense Calcium Phosphate
Synthesized from Eggshell Waste” is the result of my own research except as cited in the
references. The thesis has not been accepted for any degree and is not concurrently submitted in
candidature of any other degree.

Signature

:

……………………...............................

Name


:

………………………………….……..

Date

:

……………………………….………..

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of
scope and quality for the award of Master in Manufacturing Engineering (Materials).

Signature

:

……………………...............................


Supervisor’s Name :

………………………………….……..

Date

……………………………….………..

:

DEDICATION

Dedicated to all my beloved Muslim brothers and sisters throughout the world struggling to
gain Allah S.W.T's pleasures (Redha) in this Life and for the Hereafter

ABSTRACT

Eggshell (ES) wastes were processed and used as starting materials for the synthesis of calcium
phosphates (CaP) such as hydroxyapatite (HA) and tricalcium phosphates (TCP). Hydrothermal

and mechanochemical synthesis methods were applied to synthesize hydroxyapatite and
hydroxyapatite-alumina bioceramic composite powders with ultrafine microstructures from
both eggshell wastes and chemical calcium precursors to develop bioceramics with enhanced
mechanical properties for medical applications. Despite its attractive, bioactive and
biocompatibile properties, CaP has been limited in applications due to the poor processability
and mechanical strengths of the material. To further toughen the CaP matrix, nanocrystalline
alumina (Al2O3) with the addition amounts of 15wt.% and 35wt.% was introduced. CaP in the
form of dense compacts was prepared by uniaxial pressing and sintered through pressureless
sintering method in air atmosphere at various sintering temperatures. The effects of the type of
calcium sources, the synthesis pH conditions, the Al2O3 incorporation and the sintering
temperature on the phase behaviour and the mechanical properties of the developed ceramic
bodies were evaluated. The presence of HA and Al2O3 phase in the powder synthesis was
confirmed through XRD, FT-IR and TGA analyses. However, the major phase detected in the
developed dense compacts after sintering conducts was TCP. FESEM and EDX assessments
showed nano-sized rods and spherical morphologies with corresponding element analysis of the
synthesized powders. SEM analyses were used to observe the morphology and densification
behaviour of the bioceramic compacts. Density, porosity, compression, elasticity,
microhardness and fracture toughness tests were used to monitor the physical and mechanical
properties. Statistical analysis using MINITAB was used to summarize the mechanical
evaluations. The leading mechanical attributes were achieved by dense bioceramics synthesized

from ES-based calcium precursor at pH 9 conditions after being sintered at 1250°C. Al2O3
reinforcements were preferred in small quantities to achieve better mechanical properties. The
highest measurement of Vickers hardness and facture toughness was acquired through the
sample that was synthesized at alkaline conditions, 15wt% alumina content and after being
sintered at 1250°C with values of 4.76 GPa and 4.12 MPam1/2 respectively. Sintering
temperature was concluded to be the most influencing variable parameter for every evaluation
particularly for the enhancement of mechanical strength of the developed bioceramics.

i

ABSTRAK

Sisa kulit telur telah diproses dan digunakan sebagai bahan pemula untuk sintesis fosfat kalsium
(CaP) seperti hydroxyapatite (HA) dan fosfat trikalsium (TCP). Kaedah sintesis secara
hidroterma dan mekano-kimia telah digunakan untuk mensintesis hidroksiapatit dan serbuk
komposit bioseramik hidroksiapatit-alumina dengan mikrostruktur ultrahalus daripada keduadua sisa kulit telur dan pelopor kalsium berkimia untuk membangunkan bioseramik dengan
peningkatan sifat mekanik untuk aplikasi perubatan. Meskipun bersifat penarik, bioaktif dan
serasi secara biologi, penggunaan CaP adalah terhad kerana kekurangan dari segi kebolehan
daya pemprosessan dan kekuatan mekanikal bahan tersebut. Bagi menguatkan matriks CaP,
alumina (Al2O3) yang bersifat nanokristalin dengan pertambahan 15wt.% dan 35wt.%

dicampurkan. CaP dalam komponen yang padat telah disediakan melalui kaedah tekanan
ekapaksi dan disinter melaui kaedah pensinteran tanpa tekanan pada atmosfera udara yang
pelbagai suhu pembakarannya. Kesan jenis sumber kalsium, keadaan pH semasa sintesis,
penampahan kandungan Al2O3 dan suhu pensinteran terhadap pola fasa dan sifat-sifat mekanik
bioseramik yang disediakan dinilai. Kehadiran fasa-fas HA dan Al2O3 dalam serbuk sinstesis
telah dikenal pasti melalui analisa XRD, FT-IR dan TGA. Namun begitu, fasa perubahan utama
yang dikesan dalam komponen padat selepas pensinderan dijalankan ialah TCP. Penilaian
terhadap FESEM dan EDX menunjukkan morfologi rod bersaiz nano yang berbentuk sfera
konsisten dengan analisa unsur sepadan pada serbuk yang telah disintesiskan. Analisis
terhadap SEM digunakan untuk memperhatikan pola morfologi dan ketumpatan komponen
bioseramik. Ujian ketumpatan, keliangan, pemampatan, keanjalan, kekerasan mikro dan
keliatan patah digunakan untuk memantau ciri-ciri fizikal dan mekanikal. Analisis statistik
menggunakan MINITAB juga digunakan untuk merumuskan penilaian mekanikal. Ciri-ciri
utama mekanikal dicapai oleh bioseramik padat yang telah disintesis daripada sisa kulit telur
sebagai pelopor kalsium pada kondisi pH 9 dan selepas disinter pada suhu 1250 °C. Bagi
mencapai ciri-ciri mekanikal yang lebih baik hanya kuantiti Al2O3 yang kecil diperlukan.
Bacaan tertinggi bagi kekerasan Vickers dan keliangan padat telah diperolehi oleh sampel ES9-15A-1250 yang disintesis dengan kondisi alkali, 15wt% kandungan alumina dan setelah
disinter pada suhu 1250 °C adalah masing-masing bernilai 4.76 GPa dan 4.12 MPam1/2. Suhu
pensinteran dikonklusikan sebagai parameter pemboleh ubah paling berpengaruh untuk setiap
penilaian terutamanya bagi peningkatan kekuatan mekanikal bioseramik yang telah disediakan.


ii

ACKNOWLEDGEMENTS

In the name of Allah, the Most Merciful, the Most Compassionate

AlhamdulillahiRabbil’alamin, praises be to Allah SWT, the exclusive Owner of the utmost
Glory. As a Muslim, we should express our gratefulness for each and every one of His mercies.
He is the absolute Inventor and Designer of everything and nothing can be accomplished without
His permission. I hope that this study is blessed with His Guidance and Compassion. Nothing I
strive for, except His Pleasures. Peace and blessings are to our beloved prophet, Muhammad
(peace be upon him), who has shown us the right path to achieve Allah’s pleasures and rahmah.
On a personal note, it gives me great pleasure to record my gratitude to every individual who
had assisted and motivated me to struggle to complete this study. First, I would like to mention
my supervisors, Assoc. Prof. Dr. Azizah Binti Shaaban and Mrs. Toibah Binti Abdul Rahim for
their continuous concern and support. Thank you for every suggestion both of you have made
and for every knowledge both of you have shared with me.
Last but not least, my heartiest thanks to the members of my family and in-laws. To my loving
husband, Mohd. Farid Bin Ismail, what could I do without your love, care and support. A special

appreciation goes to my beloved mother, Dr. Salbiah Binti Seliman who always reminded me
on the importance of finishing my work. To my children, Muhammad Al-Fateh and Farihah
Mardhiyyah, your cries, kisses and sincere faces have helped me to dissolve my boredom and
tiredness in doing this research. To my mother in-law, Siti Hajar Binti Abdul Aziz, I appreciate
every technical and spiritual support you gave me. Finally, I wish to thank the lecturers and
members of the staff of the Faculty of Manufacturing Engineering, my course seniors and all
my colleagues for all the assistance offered to me in order to complete this research.
May Allah grant each and every good deed you have showered me in the form of countless
rewards and may peace and blessings of Allah be upon all of you.

iii

TABLE OF CONTENTS
PAGE
DECLARATION
DEDICATION
ABSTRACT

i


ABSTRAK

ii

ACKNOWLEDGEMENTS

iii

TABLE OF CONTENTS

iv

LIST OF TABLES

vii

LIST OF FIGURES

ix


LIST OF APPENDICES

xiv

LIST OF ABBREVIATIONS

xv

LIST OF SYMBOLS

xviii

LIST OF PUBLICATIONS

xix

CHAPTER
1.

2.


INTRODUCTION ........................................................................................................ 1
1.0

Research Background ......................................................................................... 1

1.1

Problem Statement.............................................................................................. 3

1.2

Research Objectives ........................................................................................... 4

1.3

Scope of Research .............................................................................................. 5

1.4

Thesis Organization ............................................................................................ 5

LITERATURE REVIEW ............................................................................................ 7
2.0

Introduction ........................................................................................................ 7

2.1

Eggshell Contents ............................................................................................... 7

2.2

2.1.1

Eggshell Waste .......................................................................................... 9

2.1.2

Utilization of Eggshells ........................................................................... 10

2.1.3

Processing of Eggshells ........................................................................... 12

Bio-Ceramic Materials ..................................................................................... 13
2.2.1

Biomaterial Classifications...................................................................... 13

2.2.2

Calcium Phosphates ................................................................................ 15

2.2.3

HA and TCP Ceramics ............................................................................ 18

2.2.4

Human Bone Mineral .............................................................................. 20
iv

2.3

2.4

3.

2.3.1

Potentials of Hydrothermal Synthesis ..................................................... 25

2.3.2

Hydrothermal Process Parameters ........................................................... 25

2.3.3

Powder Characteristics and Forms .......................................................... 26

Dense Calcium Phosphate-based Ceramics ...................................................... 27
2.4.1

Load-Bearing Properties .......................................................................... 28

2.4.2

Reinforced Calcium Phosphate Composites ........................................... 30

2.4.3

Calcium Phosphate-Alumina Systems .................................................... 33

2.4.4

Preparation Methods of Dense Ceramics ................................................ 36

METHODOLOGY ..................................................................................................... 39
3.0

Introduction ...................................................................................................... 39

3.1

Starting Materials ............................................................................................. 40

3.2

Powder Preparation .......................................................................................... 41
3.2.1

Preparation of Eggshell-based Calcium Oxide ....................................... 41

3.2.2

Hydrothermal Synthesis Method ............................................................. 42

3.2.3

Mechanochemical Process ...................................................................... 45

3.3

Design of Experiment ....................................................................................... 47

3.4

Dense CaP-Al2O3 Preparation .......................................................................... 50

3.5

3.6

4.

Processing of Calcium Phosphates ................................................................... 22

3.4.1

Uniaxial Pressing ..................................................................................... 50

3.4.2

Sintering .................................................................................................. 51

Material Characterization ................................................................................. 54
3.5.1

X-ray Diffraction ..................................................................................... 54

3.5.2

Fourier Transformed Infrared Spectroscopy ........................................... 57

3.5.3

Thermal Analysis .................................................................................... 58

3.5.4

Scanning Electron Microscopy................................................................ 58

Physical and Mechanical Characterization ....................................................... 59
3.6.1

Bulk Density ............................................................................................ 60

3.6.2

Apparent Porosity .................................................................................... 61

3.6.3

Compressive Strength .............................................................................. 61

3.6.4

Microhardness ......................................................................................... 62

3.6.5

Fracture Toughness ................................................................................. 64

RESULTS AND DISCUSSIONS .............................................................................. 65
v

4.0

Introduction ...................................................................................................... 65

4.1

Characteristics of CaP-Al2O3 Powders ............................................................. 65
4.1.1

Preparation of CaP from Eggshells ......................................................... 65
4.1.1.1 Thermal Analysis by TG/DTA and DSC ...................................... 66
4.1.1.2 Phase Analysis by XRD ................................................................ 72
4.1.1.3 Chemical Analysis by FT-IR......................................................... 76
4.1.1.4 Microstructural Analysis by Electron Microscopy ....................... 80

4.1.2
4.2

4.3

4.5

5.

Synthesis of CaP-Al2O3 Powders ............................................................ 89

Design Analysis of Dense CaP-Al2O3 Pellets ................................................ 101
4.2.1

Plots of Main Effects ............................................................................. 102

4.2.2

Contour Plots of Mechanical Properties ................................................ 102

Characterization of CaP-Al2O3 Pellets ........................................................... 106
4.3.1

Phase Analysis ....................................................................................... 108

4.3.2

Chemical Analysis ................................................................................. 115

4.3.3

Microstructural Analysis ....................................................................... 116

Physical and Mechanical Properties of CaP-Al2O3 Pellets ............................ 127
4.5.1

Physical Properties ................................................................................ 127

4.5.2

Mechanical Strength .............................................................................. 136

4.5.3

Hardness ................................................................................................ 140

CONCLUSIONS AND RECOMMENDATIONS ................................................. 146
5.0

Conclusions .................................................................................................... 146

5.1

Recommendations for Future Research .......................................................... 147

REFERENCES ................................................................................................................ 149
APPENDIX A .................................................................................................................. 172
APPENDIX B ................................................................................................................... 186
APPENDIX C .................................................................................................................. 189
APPENDIX D .................................................................................................................. 192
APPENDIX E ................................................................................................................... 194

vi

LIST OF TABLES

TABLE

TITLE

PAGE

2.1

Chemical Compositions of the Calcium Phosphate Family

17

2.2

Methods to Generate CaP Powders

24

2.3

Properties of Ceramic Powders

26

2.4

Load-Bearing Properties of Bone Components

29

2.5

Effects of Several CaP Compositional Substitutions

31

2.6

Mechanical Properties of Alumina

34

3.1

Chemical specification of CaO from R&M Chemicals

41

3.2

Ratio of Al2O3 to CaP Powders

46

3.3

Preparation Parameters of The Synthesized CaP Powder Samples

47

3.4

Design of Experiment to Develop CaP-Al2O3 Dense Ceramics

49

3.5

Varied Parameters of The Developed CaP-Al2O3 Dense Ceramics

53

3.6

X-Ray Diffraction Reference Code Numbers of The Phases
Analysed

55

4.1

Changes in Thermal Analysis of CaP powders with Increasing
Temperatures and Probable Phenomena

70

4.2

Crystallization Temperature from DSC Curves

71

4.3

Crystallite Sizes and Degree of Crystallinity of CaP Powders

76

4.4

The Chemical Identification Groups of CaP Structures

77

4.5

Calculated Degree of Crystallinity (Xc) and Relative Intensity
Ratio (RIR) HA to Alumina of The Prepared CaP-ES Samples

92

4.6

Calculated Degree of Crystallinity (Xc) and Relative Intensity
Ratio (RIR) HA to Alumina of The Prepared CaP-CH Samples

94

4.7

Plots of Mean Effects for (1) Degree of Crystallinity, (2)
Crystallite Size and (3) Ca/P Ratio Corresponding to Parameters
(a) CaO, (b) pH Levels, (c) Alumina Additions and (d) Sintering
Temperature

103

4.8

SEM Images of CaP-ES-9 Samples with 5000 X Magnification

121

4.9

SEM Images of CaP-ES-5 Samples with 5000 X Magnification

122

4.10

SEM Images of CaP-CH-9 Samples with 5000 X Magnification

123

vii

4.11

SEM Images of CaP-CH-5 Samples with 5000 X Magnification

124

A-1

Various Experimental Methodologies Used for Synthesizing CaP
Powders through Hydrothermal Method

176

A-2

HA Reinforced Composites with Mechanical Properties

181

A-3

Dense CaP-Al2O3 Ceramics with Their Processing Methods and
Mechanical Properties

183

D-1

Experimental Data Results with The Parameters Analyzed

192

viii

LIST OF FIGURES

FIGURE

TITLE

PAGE

2.1

(a) Main Components of Chicken’s Eggs (b) Chicken Eggshells

8

2.2

Relative Reactivity of the Three Generations of Bio-Ceramic
Materials

15

2.3

(a) Detailed Structure of HA Crystals (b) The Unit Cells of HA
Projected along C Axis (c) Structural Sketch of HA Crystal of
Hexagonal Spaced Group Links

19

2.4

Compact and Spoungy Parts of Bone

21

2.5

Hierarcial Structure of Dense Bone with Scale Magnifications

22

2.6

Current CaP Synthetic (a) CellyardTM HA Dense Pellet and
Scaffold, (b) 3D Implant Scaffold (c) Granulated Bone Graft
Fillers, GranuMAS® and (d) CaP Bone Cement

27

2.7

Schematic Diagram of CA Formation, (a) Ca2+ from HA Diffuse
into Alumina (b) Ca-Deficient HA becomes TCP when Ca/P
Ration Reaches 1.5 and (c) Formation of TCP and CA at The
Interface

36

2.8

Illustrations of Sintering Phenomena of Ceramic Materials at
Three Stages (a) Particles Before Sintering (b) Neck Formation
During Sintering and (c) Pores Disappear After Sintering

38

3.1

Chart of Research Methodology

40

3.2

Graph of Heat Treatments during Calcination of Eggshells

42

3.3

Hydrothermal Process to Synthesize CaP

43

3.4

Graph of Heat Treatment during Calcination of CaP Powders

44

3.5

Flowchart of Hydrothermal Synthesis to Produce CaP Powder

45

3.6

(a) Polyethylene Bottle and Ball Milling Machine used to Mix CaP
and Alumina (b) Cross Sectional Schematic Diagram of Ball
Milling Mixing Process

46

3.7

Flow Chart of Dense CaP-Al2O3 Ceramic Development

50

3.8

(a) Uniaxial Pressing Machine with 13 mm Diameter Pellet Mould
(b) Pressed Dense Ceramic Pellet Measured by Digital Calliper

51

3.9

Schematic Drawings of Pressing Process with Stages (a) Powder
Fill, (b) Compaction and (c) Pellet Ejection

51

ix

3.10

Sintering Profile of CaP-Al2O3 Dense Ceramics

52

3.11

(a) PANalytical XRD Equipment (b) Schematic Diagram of XRD
Diffratometer

55

3.12

(a) Single Reflection ATR Accessory (b) Schematic Diagram of
FTIR-ATR Reflection System

58

3.13

Sputter Gold Coated Dense Pellet

59

3.14

(a) Universal Testing Machine and Compression Test Apparatus
(b) Schematic Operation of Compression Test

62

3.15

Schematic Diagram of Vicker’s Hardness Indentation Test

63

3.16

(a) Indentation Diagonal Measurements of Sample, d1 (b)
Schematic Image of Measuring Vicker’s Indentation; c1, c2 –
Crack Length and d1, d2 – Diagonal Length of Vickers’s
Indentation

64

4.1

Processed Eggshells, (a) Cleaned Eggshells, (b) Powdered
Eggshells and (c) Calcined Eggshells at 1000°C Producing CaO
Powder

66

4.2

TG/DTA Curve for Eggshell (CaCO3)

67

4.3

TGA/DSC Data Curves of Eggshell-Derived CaP Samples (a)
Synthesized at pH 5 and (b) Synthesized at pH 9

69

4.4

TG/DSC Data Curves of Chemical-Derived CaP Samples (a)
Synthesized at pH 5 and (b) Synthesized at pH 9

72

4.5

XRD Patterns Showing Conversion of CaCO3 to CaO (a) CaCO3ES, (b) CaO-ES, (c) CaP-ES-5 and (d) CaP-ES-9

74

4.6

XRD Patterns Showing Conversion of Chemical-Based CaO to
HA (a) CaO-CH, (b) CaP-CH-5 and (c) CaP-CH-9

75

4.7

FT-IR Spectra of The Synthesized CaP-ES Samples at (a) pH 5
and (b) pH 9

78

4.8

FT-IR Spectra of Synthesized CaP-CH Samples at (a) pH 5 and (b)
pH 9

79

4.9

SEM-EDX Micrograph of The As-refined CaCO3 Powder From
Eggshells at 500 X Magnification Showing (a) Shell and (b) Outer
Membrane

82

4.10

SEM Image of CaO Powder From Eggshells at (a) 500 X and (b)
3000 X Magnification and (c) the EDX Analysis (CaO-ES)

83

4.11

SEM-EDX Analysis of Commersial CaO Powder (a) at 500 X
Magnification and (b) the EDX Analysis (CaO-CH)

84

4.12

FESEM Image of Synthesized Eggshell-Derived CaP Powders at
(a) pH 5 and 50k X Magnification with (b) Aspect Ratio of CaPES-5 Crystals

85

4.13

FESEM Image of Synthesized Eggshell-Derived CaP Powders at
(a) pH 9 and 50k X Magnification with (b) Aspect Ratio of CaPES-9 Crystals

86

x

4.14

FESEM Image of Synthesized Eggshell-Derived CaP Powders (a)
CaP-ES- 5, Ca/P = 1.55 (b) CaP-ES-9, Ca/P = 1.48

87

4.15

FESEM Images of Synthesized CaP Powders of (a) Chemicalbased CaO, CaP-CH-9 with 50k X Magnification and (b) Aspect
Ratio for CaP-CH-9 Crystals

89

4.16

XRD Patterns of The Synthesized CaP-ES at Two Level pH with
Increasing Alumina; 0wt.%, 15wt.% and 35wt.% Additons

91

4.17

XRD Patterns of The Synthesized CaP-CH at Two pH Level with
Increasing Alumina; 0wt.%, 15wt.% and 35wt.% Additions

93

4.18

IR Spectrum of As-Received Alumina Powder

95

4.19

FT-IR Spectra of Prepared CaP-ES Sample Powders with Alumina
Additions

97

4.20

FT-IR Spectra of Prepared CaP-CH Sample Powders with
Alumina Additions

98

4.21

FESEM Images at Two Magnifications of Prepared CaP Samples
with Increasing Alumina Additions (a) 0wt.% (10k), (b) 0wt.%
(50k), (c) 15wt.% (10k), (d) 15wt.% (50k), (e) 35wt.% (10k) and
(f) 35wt.% (50k)

99

4.22

EDX with SEM Images at 10k X Magnification View for Samples
(a) CaP-ES-5-35A and (b) CaP-ES-9-35A

101

4.23

Countour Plots of The Mechanical Properties Anlayzed as A
Function of Alumina Additions and Sintering Temperature, (a)
Density, (b) Porosity, (c) Compressive Strength, (d) Elasticity, (e)
Vickers Harness and (f) Fracture Toughness

107

4.24

Sintered CaP Pellet with Lighter White Colour (The Left Pellet)

108

4.25

XRD Patterns of CaP-ES-9 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)

111

4.26

XRD Patterns of CaP-ES-5 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)

112

4.27

XRD Patterns of CaP-CH-9 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)

113

4.28

XRD Patterns of CaP-CH-5 Samples ( , α-TCP; , CaO; ,
Calcium Aluminates)

114

4.29

FT-IR Spectrum of CaP-ES Samples with Increasing Alumina
Additions and Sintering Temperature

117

4.30

FT-IR Spectrum of CaP-CH Samples with Increasing Alumina
Additions and Sintering Temperature

118

4.31

SEM-EDX Micrograph of Sample CaP-ES-5-15A

120

4.32

SEM Images of Densification Behavior of Sample CaP-ES-9-15 at
Increasing Sintering Temperature (a) 900°C (b) 1050°C and (c)
1250°C

125

xi

4.33

SEM Images of Densification Behavior of Sample CaP-CH-9-15
at Increasing Sintering Temperature (a) 900°C (b) 1050°C and (c)
1250°C

126

4.34

Bulk Density for ES-Derived CaP Dense Ceramics, (a) ES-9-0A,
(b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f)
ES-5-35A

129

4.35

Bulk Density for CH-Derived CaP Dense Ceramics, (a) CH-9-0A,
(b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f)
CH-5-35A

129

4.36

SEM-EDX Analysis on Sample ES-9-15A-1250 (Density, 3.04
g/cm3)

130

4.37

SEM-EDX Analysis on Sample ES-5-35A-1250 (Density, 2.28
g/cm3)

131

4.38

SEM-EDX Analysis on Sample CH-9-0A-1250 (Density, 3.26
g/cm3)

132

4.39

SEM-EDX Analysis on Sample CH-9-15A-1250 (Density, 2.07
g/cm3)

133

4.40

Porosity for ES-derived CaP Dense Ceramics, (a) ES-9-0A, (b)
ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f) ES5-35A

135

4.41

Porosity for CH-derived CaP Dense Ceramics, (a) CH-9-0A, (b)
CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f)
CH-5-35A

135

4.42

Compression Strength of ES-derived CaP Dense Ceramics, (a) ES9-0A, (b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A
and (f) ES-5-35A

138

4.43

Compression Strength of CH-derived CaP Dense Ceramics, (a)
CH-9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-515A and (f) CH-5-35A

138

4.44

Elastic Modulus of ES-derived CaP Dense Ceramics, (a) ES-9-0A,
(b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f)
ES-5-35A

139

4.45

Elastic Modulus of CH-derived CaP Dense Ceramics, (a) CH-90A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A
and (f) CH-5-35A

139

4.46

HV values of ES-derived CaP Dense Ceramics, (a) ES-9-0A, (b)
ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f) ES5-35A

141

4.47

HV values of CH-derived CaP Dense Ceramics, (a) CH-9-0A, (b)
CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f)
CH-5-35A

141

4.48

Vickers’s Micrograph Indentation Impression Image of A Polished
Surface (a) Before and (b) After Indentation of Sample Sintered at

143

xii

900°C (10X Magnification) and (c) Before and (d) After
Indentation of Sample Sintered at 1250°C (50 X Magnification)
4.49

Fracture Toughness of ES-derived CaP Dense Ceramics, (a) ES-90A, (b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and
(f) ES-5-35A

145

4.50

Fracture Toughness of CH-derived CaP Dense Ceramics, (a) CH9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A
and (f) CH-5-35A

145

A-1

Ternary Phase Diagram of CaO-P2O5-H2O System Showing The
Stability Reagions of CaP Phases – SHAp, Stoichiometric HA;
DCP, Dicalcium Phosphate; DCPD, Dicalcium Phosphate
Dihydrate and CDHA, Calcium deficient HA

172

A-2

Anhydrous Phase Diagram of CaO-P2O5 Binary System at
Elevated Temperatures – C, CaO and P, P2O5

172

xiii

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A

Literature Searches

172

B

Joint Committee on Powder Diffraction Standards (JCPDS) for

186

Hydroxyapatite
C

Joint Committee on Powder Diffraction Standards (JCPDS) for

189

Alumina
D

Experimental Results

192

E

Sacred Quranic Revelations

194

xiv

LIST OF ABBREVIATIONS

BCP

-

Bi-phasic calcium phosphate

CaP

-

Calcium phosphate

CH

-

Commercial chemical

ES

-

Eggshells

CDHA

-

Calcium-deficient hydroxyapatite

FA

-

Fluorapatite

HA

-

Hydroxyapatite

TCP

-

Tri-calcium phosphate

(NH4)2HPO4 -

Di-ammonium hydrogen phosphate

Al2O3

-

Alumina

Ca(NO3)2

-

Calcium nitrate

Ca(OH)2

-

Calcium hydroxide

CaCO3

-

Calcium carbonate

CaO

-

Calcium oxide

CaTiO3

-

Calcium titanate

CH3COOH

-

Acetic acid

CO2

-

Carbon dioxide

CO3

-

Carbonate

HPO4

-

Hydrogen phosphate

MgO

-

Magnesium oxide

NH4H2PO4

-

Ammonium di-hydrogen phosphate

NH4OH

-

Ammonium solution

P2O7

-

Pyrophosphate

SO4

-

Sulphate

TiO2

-

Titanium dioxide

ZrO2

-

Zirconia

Ca2+

-

Calcium ion

OH-

-

Hydroxide ion
xv

PO43-

-

Phosphate ion

C

-

Carbon

Cl

-

Chlorine

Cu

-

Copper

F

-

Fluorine

Fe

-

Iron

Mg

-

Magnesium

O

-

Oxygen

Pb

-

Lead

Si

-

Silicon

Sr

-

Strontium

dH2O

-

Distilled water

Ca/P

-

Calcium to phosphate ion molar ratio

RIR

-

Relative intensity ratio

FWHM

-

Full width at half maximum

TC

-

Crystallization temperature

TG

-

Glass transition temperature

TM

-

Melting temperature

XC

-

Degree of crystallization

XS

-

Crystallite size

E

-

Elasticity

FS

-

Flexural strength

HV

-

Vickers’s hardness

KIC

-

Fracture toughness indentation

TS

-

Tensile Strength

ATR

-

Attenuated Total Refractance

DSC

-

Differential Scanning Calorimetry

EDX

-

Energy Dispersive X-Ray

FESEM

-

Field Emission Scanning Electron Microscopy

FT-IR

-

Fourier Transformed Infrared

SEM

-

Scanning Electron Microscopy

TG/DTA

-

Thermo-gravinomety and Differential Thermal Analyser

XRD

-

X-Ray Diffraction

MINITAB

-

Minitab Statistical Software

JCPDS

-

Joint Committee on Powder Diffraction Standards
xvi

3D

-

Three dimensions

NA

-

Not available

Ref.

Reference

xvii

LIST OF SYMBOLS

%

-

a

Percentage
Rupture Strength

Å

-

Angstrom

Dia.

-

Diameter

h

-

Hour

K

-

Scherer’s constant = 0.94

min

-

Minute

L

Length

n

-

Order of reflection

º

-

Degree

ºC/min

-

Degree Celsius per minute

pH

-

Measurement of the acidity or basicity

rpm

-

Revolution per minute

kgf

-

Kilogram force

T

-

Temperature

V

-

Valley between peaks

wt. %

-

Weight percentage

X

-

Times magnification

α

-

Alpha crystal polymorph

β

-

Beta crystal polymorph

θ

-

Angle of diffraction

λ

-

Wavelength

xviii

LIST OF PUBLICATIONS

YEAR

JOURNALS

2013

Misran, F., Shaaban, A., and Rahim, T. A., 2013. Synthesis and
Characterization of Hydroxyapatite-Alumina Powders from Waste Egg
Shells. Sains Malaysiana. (In Review).
Fatimah, M., Azizah, S., Seliman, S. and Rahim, T. A., 2013. Calcium
Phosphate From Waste Animal Bones - Phase Identification Analysis.
International Journal of Mechanical and Materials Engineering. (In
Review).
CONFERENCE PAPERS

2012

Rahim, T. A, Hamid, R. A, Misran, F., Mahamood, M. A., Shamsuri, S. R.,
2012. Preparation of Porous Hydroxyapatite from Animal Bones via
Polymeric Sponge Method. In: Faculty of Manufacturing Engineering
UTeM, Proceedings of International Conference on Design and Concurrent
Engineering, Melaka, Malaysia, 15-16 October 2012. Penerbit UTeM.
Toibah, A. R., Fatimah, M., Siti-Sainillah, S., Mohammad-Ikmal, M.,
Mazlin-Aida, M. and Shaaban, A., 2012. Calcium Phosphate Ceramics
Prepared from Natural Waste Materials. In: Faculty of Industrial Science and
Technology UMP, Proceedings of International Conference of
Nanotechnology, Pahang, Malaysia, 30 May – 1 June 2012
Fatimah, M., Shaaban, A., Toibah, A. R. and Seliman, S., 2012. Overview:
Process Parameters for Hydrothermal Synthesis of Hydroxyapatite. In:
Faculty of Mechanical Engineering UTeM, Proceedings of the 3rd
International Conference on Engineering and ICT, Melaka, Malaysia, 4-6
April 2012. Penerbit UTeM.

2011

Fatimah, M., Shaaban, A., Toibah, A. R. and Seliman, S., 2011.
Hydroxyapatite-alumina Powder Synthesized through Hydrothermal
Method. In: AKEPT, Proceedings of the 1st Annual Young Research
Conference, Kuala Lumpur, Malaysia, 19-20 December 2011.
AWARDS

2012

Honoured Participation for “Halal Bone Implants from Natural Waste
Materials” at Innovative Exhibition, World Halal Research Expo from 4-5
xix