Proceedings of MatricesFor IITTEP – ICoMaNSEd 2015
ISBN: 978-602-74204-0-3
Keynote Invited Papers Page 25
To obtain an optimum condition on formaldehyde sensor, the pH of buffer solution is varied at pH 1.0
– 8.0. The calibration curve for formaldehyde standard solution at different pH is presented in Figure 7. It is seen that the buffer condition influenced the sensor sensitivity,
where the optimum condition is obtained at pH 3.0. The sensor give a relative high sensitivity at low pH pH 1.0-5.0 and consistently decrease the sensitivity at high pH condition pH 6.0
– 8.0. However, the detection linearity is not influenced by the pH condition. Therefore, all measurement is carried out at pH 3.0.
13. Selectivity of Formaldehyde Sensor
The selectivity of formaldehyde sensor has been examine for formaldehyde in the absence and in the presence of suspected interfering agents. Interferents 2.0 ppm, which are commonly
found in food samples are added in to 2.0 ppm formaldehyde standard solution. The single and mixture analytes are determined by using formaldehyde sensor, and the response
sensitivity is summarised in Figure 8. The results showed that every single interfering agents give small response in UV-vis spectrophotometer. At high concentration of interfereing
agents are also reduce 4-5 the responses formaldehyde standard solution. However, the sensor is free from interferent when the concentration of interfering agents are low 2 ppm.
Ascorbic acid is the most potential interfering agent.
Figur 8. Response selectivity of a sensor into formaldehyde and interference. Single interfering agents 5.0 ppm and their mixture with 2.0 ppm formaldehyde standard solution is analysed in UV-vis
spectrophotometer at λ 560 nm. Experimental parameter is the same as in Figure 6.
14. Conclusion
The electrodeposited polymer has been demonstrated to be compatible in the production of reprooducible sensor. The application of electrodeposited polymer film as a very good matrix
polymer for immobilization of active materials which are suited for the construction of biosensor and chemical sensors. An uric acid biosensor in electrochemical detection system is
the example of reproducible biosensor which is developed by using deposited polytyramine. The uric acid biosensor showed a sensitive response to uric acid with a linear calibration
curve lies in the concentration range of 0.1
– 2.5 mM, slope 0.066 µAmM, and the limit detection was 0.05 mM uric acid SN=3. Another example of sensor is formaldehyde sensor
that is developed by immobilization of chromatophic acid onto a conducting transparent plastic and interfaced in UV-Vis spectrophotometer detection system. The linearity of
formaldehyde sensor lies in the range concentration of 0.1-4.0 ppm formaldehyde, where the detection limit is 0.05 ppm formaldehyde.
0,2 0,4
0,6 0,8
1
A b
so rb
a n
ce a
u
Formaldehyde 2 ppm and Interfering agents 5 ppm
Proceedings of MatricesFor IITTEP – ICoMaNSEd 2015
ISBN: 978-602-74204-0-3
Keynote Invited Papers Page 26
Acknowledgement
The research grand from Project KOMPETENSI DP2M Kemenristek Dikti Indonesia for funding aspects of this work is gratefully acknowledged.
References
[1]. Turner, A.P.F., 1987, In: Biosensors ed. Turner, A.P.F.; Karube, I. and Wilson,
G.S., Oxford University Press. Oxford. [2].
Hall, E.A.H., 1991, Biosensor, Prentice Hall. Englewood Cliffs, New Jersey. [3].
Trougakos, I.P., 2013, The Molecular Chaperone Apolipoprotein JClusterin as a Sensor of Oxidative Stress: Implications in Therapeutic Approaches
– A Mini-Review,
Gerontology 59: 514-523.
[4]. Llandro, J., Palfreyman, J. J., Ionescu, A., and Barnes, C. H. W., 2010, Magnetic
biosensor technologies for medical applications: a review., Med Biol Eng Comput 48: 977-998.
[5]. Situmorang, M., Gooding, J.J., Hibbert, D.B., and Barnett, D., 2001, Development of
Potentiometric Biosensors Using Electrodeposited Polytyramine as the Enzyme Immobilisation Matrix, Electroanalysis 1318, 2001: 1469-1474
[6]. Situmorang, M., 2005, Pembuatan Sensor Potensiometri Dalam Sistem Flow Injeksi
Analisis Untuk Penentuan Timbal Menggunakan Ionofor Diazacrown, Jurnal Sain Indonesia 292: 55-61
[7]. Situmorang, M., Alexander, P.W., and Hibbert, D.B., 1998, Flow Injection
Potentiometry for Enzymatic Assay of Cholesterol With a Tungsten Electrode Sensor, Talanta 493: 639-649
[8]. Skoog, D. A., and Leary, J. J., 1992, Principles of Instrumental Analysis, 4th ed.,
Saunders College Publishers, New York. [9].
Situmorang, M., Siregar, T.H., Simatupang, R., and Krisnawati, H., 2008, Spektrofotometri Penentuan Asam Urat Dalam Daging Dan Makanan Kaleng
Menggunakan Pengabsorbsi O-Dianisidin, Jurnal Sain Indonesia 322: 109-115
[10]. Situmorang, M., Simanjuntak, E.P., and Silaen, D, 2010, Pengembangan Metode Analisis Spektrofotometry Melalui Reaksi Enzimasi Untuk Penentuan Glukosa Di
Dalam Buah-Buahan, Jurnal Sain Indonesia 343: 8-14
[11]. Situmorang, M., Silitonga, P.M., Nurwahyuni
,
I., Siregar, L.S., dan Purba
,
R., 2012, Pengembangan Metode Analisis Spektrofotometry Untuk Penentuan Kolesterol Di
Dalam Makanan Tradisional, Jurnal Penelitian Saintika 122: 90-97
[12]. Sinaga, M., Sihombing, K., Saputra, A., Hakim, L., and Situmorang, M., 2013, Rancang Bangun Sensor Kimia Sebagai Instrumen Analisis Dalam Deteksi
Spektrofotometri Untuk Penentuan Pengawet Nitrit, Jurnal Penelitian Saintika 132: 126-135.
[13]. Sinaga, M., Simanjuntak, H.J., and Situmorang, M., 2013, Rancang Bangun Sensor
Kimia Untuk Penentuan Formaldehida, Prosiding Seminar Hasil Penelitian Lembaga Penelitian Unimed Tahun 2013 Bidang Sain,Teknologi, Sosial, Bahasa dan
Humaniora, 14-16 November 2013, pp. 7-13.
Proceedings of MatricesFor IITTEP – ICoMaNSEd 2015
ISBN: 978-602-74204-0-3
Keynote Invited Papers Page 27
[14]. Sinaga, M., Simanungkalit, B., and Situmorang, M., 2013, Pengembangan Sensor Kimia Untuk Monitoring Pengawet Benzoat di dalam Berbagai Jenis Minuman, Jurnal
Penelitian Saintika 131: 1-9.
[15]. Medendorp, J.P., Paudel, K.S., Lodder, R.A., and Stinchcomb, A.L., 2007, Near Infrared Spectrometry for the Quantification of Human Dermal Absorption of
Econazole Nitrate and Estradiol, Pharmaceutical Research, 241: 186-193.
[16]. Sihombing, E., Situmorang, M., Sembiring, T., and Nasruddin, 2015, The Development Of Mercury Ion Selective Electrode With Ionophore 7,16-Di-2-
methylquinolyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane DQDC,
Modern
Applied Science 99: In press..
[17]. Situmorang, M., Gooding, J.J., Hibbert, D.B., and Barnett, D., 1999, Potentiometric Biosensor by Using Electrodeposited Polytyramine as Matrix Polymer for Enzyme
Immobilisation, Proceeding of The 7
th
Research Development Topics, 6-8 December 1999, Sydney, NSW, Australia, pp: 56-60.
[18]. Situmorang, M., 2012, The Development of Biosensor by Using Electrodeposited Polymer and its Application, Disajikan dan terbit dalam Proceeding of International
Seminar of Analytical Sciences 2012 SKAM 25, 12 - 14 November, 2012 di Tiara Convention Centre Medan, Indonesia, pp. 234-244.
[19]. Situmorang, M., 1999, The Utility Of Polytyramine as an Immobilisation Matrix for the
Enzymatic Measurement of Analytes in Wine, Proceeding of The Combined 23
rd
Australian Society for Biophysics and 3
rd
Asia Pacific Biosensor Symposium, Tgl 30 September – 3
October 1999, di Goldcoast, Qld, Australia. [20].
Situmorang, M., Hibbert, D.B., and Gooding, J.J., 2000, An Experimental Design Study of Interferences of Clinical Relevance of a Polytyramine Immobilized-Enzyme Biosensor,
Electroanalysis 122: 111-119.
[21]. Situmorang, M., Gooding, J.J., Hibbert, D.B., and Barnett, D., 1998, Electrodeposited Polytyramine as an Immobilisation Matrix for Enzyme Biosensors,
Biosensors Bioelectronics 139: 953-962.
[22]. Situmorang, M., Gooding, J.J., and Hibbert, D.B., 1999, Immobilisation of Enzyme Throughout a Polytyramine Matrix: A Versatile Procedure for Fabricating Biosensors,
Analytica Chimica Acta 3942-3: 211-223.
[23]. Situmorang, M., Gooding, J.J., Hibbert, D.B., and Barnett, D., 2002, The Development of a Pyruvate Biosensor Using Electrodeposited Polytyramine,
Electroanalysis 141, 2002: 17-21..
[24]. Situmorang, M., Hibbert, D.B., Gooding, J.J., and Barnett, D., 1999, A Sulfite Biosensor Fabricated Using Electrodeposited Polytyramine: Application to Wine
Analysis, Analyst 12412: 1775-1779.
[25]. Purba, J., Sibuea, G.V., Tarigan, M.L., Fonica, A., and Situmorang, M., 2013, Sintesis
Ionofor Sebagai Bahan Aktif Ion Selektif Elektroda ISE Untuk Analisis Penentuan Ion Logam Berat di Dalam Sampel Lingkungan, Jurnal Penelitian Saintika 132: 94-104.
[26]. Sinaga, M., Naibaho, R.T., and Situmorang, M., 2013, Rancang Bangun Sensor Kimia
Dalam Deteksi Spektrofotometri Untuk Penentuan Pengawet Nitrit, Prosiding Seminar dan Rapat Tahunan BKS PTN-B Bidang MIPA di Bandar Lampung, 10-12 May 2013, pp. 251-255
[27]. Sinaga, M., Simanjuntak, H.J., and Situmorang, M., 2014, Rancang Bangun Sensor Kimia
Untuk Penentuan Formaldehida, Prosiding Seminar Nasional dan Rapat Tahunan BKS PTN-B Bidang MIPA di IPB Bogor, 9-11 May 2014
Proceedings of MatricesFor IITTEP – ICoMaNSEd 2015
ISBN: 978-602-74204-0-3
Keynote Invited Papers Page 28
[28]. Situmorang, M., Sinaga, B.J., Situmorang, I.F., and Marpaung, F.M.T., 2009,
Rancang Bangun Strip Biosensor Untuk Penentuan Asam Urat Dalam Daging Dan Ikan Kaleng, Jurnal Sain Indonesia 331: 1-7
[29]. Frederickx, C., Verheggen, F.J., and Haubruge, E., 2011, Biosensors in forensic
sciences, Biotechnol. Agron. Soc. Environ. 154,449-458
[30]. Situmorang, M., Silitonga, P.M., and Nurwahyuni, I., 2011, Pengembangan Biosensor Sebagai Instrumen Analisis Untuk Menguji Kualitas Makanan dan
Minuman, Research Report, UNIMED, Medan. [31]. Situmorang, M., Simanjuntak, E.P., and Silaen, D., 2010, Pengembangan Metode
Analisis Spektrofotometry Melalui Reaksi Enzimasi Untuk Penentuan Glukosa Di Dalam Buah-Buahan, Jurnal Sain Indonesia 343: 8-14.
[32]. Sinaga, M., Sihombing, K., and Situmorang, M., 2014, Rancang Bangun Sensor
Kimia Sebagai Instrumen Analisis Dalam Deteksi Spektrofotometri Untuk Penentuan Pengawet Formaldehida dan Nitrit, Research Report, UNIMED, Medan.
Proceedings of MatricesFor IITTEP – ICoMaNSEd 2015
ISBN: 978-602-74204-0-3
Keynote Invited Papers Page 29
ENHANCING STUDENTS’ HIGHER ORDER THINKING SKILLS THROUGH SCIENCE EDUCATION
Liliasari
1
1
Department of Science Education, Faculty of Mathematics and Science Education, Indonesia University of Education, Bandung, Indonesia
liliasariupi.edu
Abstract To face against the 21
st
century challenges Indonesian people have to develop their higher order thinking skills. The development of the skills could be done through science education. The science
knowledge as vehicle of thought was needed to solve Indonesian people’ problems in their life.It will
make them survive and contribute to overcome the world crisis. There are many models of teaching science based on the educational level, from integrated models in primary education, to combined in
junior high schools and separated models in high schools up to universities. In the science teacher training institutions the variation of teaching science was also appropriate in-
line with teachers’ requirement at schools. Thinking
science conducted through students’ generic science skills development and comprehension of multimodal representation of science subjects. Besides the
difficulty of subject matter mastery there are also gaps in information spreading in the remote society that should be attack through information communication technology ICT.
Keywords
: science education, higher order thinking skills, generic science skills
1. Introduction