New leakage current parameters for newly developed polymeric composite optimized by response surface methodology.

PSZ 19:16 (Pind. 1/07)

UNIVERSITI TEKNOLOGI MALAYSIA
DECLARATION OF THESIS I UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

Author's full name :

AMINUDIN BIN AMAN

Date of birth

29 SEPTEMBER 1973

Title

NEW LEAKAGE CURRENT PARAMETERS FOR NEWLY DEVELOPED POLYMERIC
COMPOSITE OPTIMIZED BY RESPONSE SURFACE METHODOLOGY

Academic Session:

2013/2014-1


1declare that this thesis is classified as :

D

CONFIDENTIAL

(Contains confidential information under the Official Secret
Act 1972)*

D

RESTRICTED

(Contains restricted information as specified by the
organization where research was done)*

[]]

OPEN ACCESS


I agree that my thesis to be published as online open access
(full text)

I acknowledged that Universiti Teknologi Malaysia reserves the right as follows :
1. The thesis is the property of Universiti Teknologi Malaysia.
2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose
of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by :

SIC NATURE

730929-04-5203

4: セ@

NOTES


NAME OF SUPERVISOR

Date:

*

SUPERVISOR

Assoc. Prof. Dr. Mohd Muhridza Bin Yaacob

(NEW IC NO. /PASSPORT NO.)

Date

j

セgna|イョof@

:J..../


10 / !l-0 13

If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from
the organization with period and reasons for confidentiality or restriction.

"I hereby declare that I have read this thesis and in my
opinion this thesis is sufficient in terms of scope and quality for the
award of the degree of Doctor of Philosophy (Electrical Engineering)"

\

Signature

-

: ·········••'" .....................e;-;-•...................................

..

Name of Supervisor : セZNrヲpmᆬyAゥ\Y@

Date

セO@

\0( セPG@

セ@

BAHAGIAN A- Pengesahan Kerjasama*
Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui kerjasama
antara _ _ _ _ _ _ _ _ _ _ dengan _ _ _ _ _ _ _ _ _ __
Disahkan oleh:
Tarikh:

Tandatangan
Nama
Jawatan
(Cop rasmi)

* Jika penyediaan tesis/projek melibatkan kerjasama.

BAHAGIAN B- Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah
Tesis ini telah diperiksa dan diakui oleh:
Nama dan Alamat Pemeriksa Luar

Prof. Madya Dr. Ngah Ramzi bin Hamzah
Fakulti Kejuruteraan Elektrik,
Universiti Teknologi MARA (UiTM),
Kampus Bertam,
Pesiaran Pendidikan Bertam Perdana,
13200 Kepala Batas, Penang.

Nama dan Alamat Pemeriksa Dalam

Prof. Madya Dr. Zolkafle bin Buntat
Fakulti Kejuruteraan Elektrik,
UTM Johor Bahru

Disahkan oleh Timbalan Pendaftar di Sekolah Pengajian Siswazah:

Tarikh:


Tandatangan :
Nama

ZAINUL RASHID BIN ABU BAKAR

NEW LEAKAGE CURRENT PARAMETERS FOR NEWLY DEVELOPED
POLYMERIC COMPOSITE OPTIMIZED BY RESPONSE SURF ACE
METHODOLOGY

AMINUDIN BIN AMAN

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

OCTOBER 2013


11

I declare that this thesis entitled "New Leakage Current Parameters for Newly
Developed Composite Optimized by Response Surface Methodology" is the result of
my own research except as cited in the references. The thesis has not been accepted
for any degree and is not concurrently submitted in candidature of any other degree .

Signature
Name
Date

. . . . Q. . . . . . . . . . . .
Aminudin Bin Aman

.......... ᆬNGセO_Zᄋ@

111

To my beloved wife and sons

Rosmalaili Rahmat
Muhammad Aiman
Muhammad Akmal
Muhammad Azim
"Thank you for your patience and support"

lV

ACKNOWLEDGEMENT

Alhamdulillah. I am greatly indebted to Allah on His mercy and blessing for
making this research successful.
Secondly, I wish to express my sincere appreciation to my supervisor;
Associate Professor Dr. Mohd Muhridza Bin Yaacob for his encouragement,
guidance and valuable advices, without his continued support and interest, this thesis
would not have been the same as presented here.
Next, I would like to express my thankful to Universiti Teknikal Malaysia
Melaka (UTeM) for its financial support and to my colleagues especially in FKE and
FKP for their valuable encouragement during the time of this research.
My sincere appreciation also extends to all my lectures and entire staffs in

IV AT for their assistance at various occasions. Their views, comments and tips are
very helpful in completing this research.
Finally, I am also very grateful to all my family, friends and relative for their
patience, prayers and understanding over the entire period of my studies. Thank you
very much.

v

ABSTRACT

Since polymeric composite insulations are well accepted in high voltage
application, a large number of important studies and research activities for
improvement on their perfonnance had been attained. It involves the development of
newly polymeric composite, the understanding of deterioration, the proper
dimensioning, design and manufacturing process, and the development of practical
testing, monitoring and reliable methods of measuring. In this work, a new polymeric
composite insulation is developed based on thermoplastic polymer and waste
material. The proposed composite materials are Polypropylene (PP) as a matrix and
Artificial Wollastonite (AW) as filler with alongside of Alumina Trihydrate (ATH).
An A W is a product of waste glass and seashell. X-ray diffraction (X-RD) technique

is applied to reveal the chemical composition of an A W. Then Response Surface
Methodology (RSM) statistical technique is employed in order to obtain the optimum
ratio of composite against dielectric strength performance. Furthermore, this
optimum ratio of the proposed composite is subjected to tracking and erosion tests
under standard and non-standard tests by Incline Plane Tracking (IPT) test. The nonstandard IPT test is conducted to simulate Leakage Current (LC) on initial and
continuous tracking voltage as well as surface condition events for composite. A new
method of surface condition classification is introduced using Spectrogram TimeFrequency Representation (TFR) technique. From the X-Ray diffraction result, it
shows that A W resembles natural wollastonite is able to be produced from waste
material. Next, a RSM statistical technique and analysis of variants show the best
compound formulation is 80% PP and 20% A W - 1OOpph ATH.

By Spectrogram

analysing technique with new LC signal parameters, the limitation of non-stationary
signal analysis by Fast Fourier Transforms (FFT) can be overcome and surface
condition and its classification can be determined simultaneously.

Vl

ABSTRAK

Semenjak komposit polimer diterima baik di dalam penebatan voltan tinggi,
banyak kajian penting dan aktiviti penyelidikan untuk penambahbaikan terhadap
prestasi penebat ini telah dilakukan. Ia melibatkan pembangunan komposit polimer
yang baru, ketahanan kemerosotan, pendimensian, reka bentuk dan proses
pembuatan, pembangunan ujian yang praktikal serta kaedah pemantauan dan
kebolehpercayaan serta kaedah pengukuran yang lebih baik. Dalam kajian ini,
penebat komposit polimer tennoplastik dibangunkan berasaskan bahan buangan.
Bahan-bahan yang telah digunakan untuk komposit polimer ini adalah Po(vpropylene
(PP) sebagai matriks dan Wollastonite Buatan (A W) sebagai pengisi bersama dengan
Alumina Trihydrate (A TH). Pengisi A W adalah produk dari kaca buangan dan kulit
kerang terbiar. Ujian pembelauan X-Ray (X-RD) dijalankan untuk mengkaji
komposisi kimia AW. Kemudian, teknik statistik Kaedah Pennukaan Sambutan
(RSM) digunakan bagi mendapatkan nisbah optimum komposit terhadap kekuatan
dielektrik. Selanjutnya, nisbah optimum komposit yang dibangunkan ini diuji dengan
ujian aliran dan hakisan secara piawai dan bukan piawai melalui ujian Incline Plane
Tracking (IPT). Ujian bukan piawai IPT ini dijalankan untuk mensimulasikan sifat
Arus Bocor (LC) di atas permukaan komposit polimer ini. Satu kaedah baru
pengkelasan keadaan permukaan diperkenalkan menggunakan teknik Spectrogram
(TFR). Dari basil pembelauan X-Ray, ianya menunjukkan A W yang mempunyai
komposisi kimia menyerupai wollastonite semulajadi dapat dihasilkan. Seterusnya
statistik RSM dan analisis pengukuran varian menunjukkan formulasi sebatian yang
terbaik adalah 80% PP dan 20% A W -1 OOpph A TH. Dengan menggunakan teknik
analisa Spectrogram beserta dengan parameter-parameter LC yang baru, kelemahan
analisis isyarat bergerak menggunakan Fast Fourier Transform (FFT) dapat diatasi,
serta keadaan permukaan dan klasifikasinya boleh ditentukan secara serentak.

vii

TABLE OF CONTENTS

CHAPTER

1

2

TITLE

PAGE

DECLARATION

11

DEDICATION

111

ACKNOWLEDGEMENTS

IV

ABSTRACT

v

ABSTRAK

VI

TABLE OF CONTENTS

Vll

LIST OF TABLES

xu

LIST OF FIGURES

XIV

LIST OF SYMBOLS

XVlll

LIST OF ABBREVIATIONS

XX

LIST OF APPENDICES

XXIV

INTRODUCTION

1

1.1

Introduction

1

1.2

Problem Statement

5

1.3

Objectives of the research

7

1.4

Scope of work

8

1.5

Significance of the research

8

1.6

Thesis outline

9

LITERATURE REVIEW

12

2.1

Introduction

12

2.2

Development of polymeric insulation

12

vm
2.2.1 Composite

14

2.2.1.1 Polymeric composite

15

2.2.2 Polypropylene matrix

17

2.2.3 Filler and reinforcement

19

2.2.3.1 Contents ofwollastonite filler

22

2.2.3.2 Alumina trihydrate {ATH) filler

25

2.2.4 Effect of filler into polymeric composite
compound
2.3

27

Polymeric composite insulations: Their advantages
and challenges

28

2.3 .1 Factor influencing polymeric composite long

2.4

term performance

31

2.3.2 Accelerated ageing test

31

2.3.3 Methods to analyze ageing affect

33

Previous studies on leakage current and surface
tracking properties

34

2.4.1 Development ofleakage current and flashover
mechanism

35

2.4.2 Leakage current measurement

37

2.4.3 Leakage current patterns

38

2.4.4 Leakage current frequency component
study

41

2.4.5 Factors that affect the leakage current
behaviour
2.5

44

Time-Frequency Distribution analysis technique

44

2.5.1 Harmonic and Fourier Transform

47

2.5.2 Short Time Fourier Transform

49

2.5.3 Spectrogram- Time-frequency representation

50

2.5.4 Leakage current signal parameters

51

2.5.4.1 Instantaneous leakage current RMS,
lrms

(t}

52

lX

2.5.4.2 Instantaneous fundamental leakage
current RMS, firms (t)

52

2.5.4.3 Instantaneous leakage current total
harmonic distortion, I THD(t)

53

2.5.4.4 Instantaneous leakage current total
non-harmonic distortion, lrnHD (t)

53

2.5.4.5 Instantaneous leakage current total
waveform distortion, lrwD (t)
2.6

3

Response Surface Methodology (RSM)

54
55

RESEARCH METHODOLOGY

60

3.1

Introduction

60

3.2

Optimization of dielectric strength using Response
Surface Methodology (RSM)

63

3 .2.1 Design of Experiment (DoE)

64

3.2.1.1 Screening factors

64

3.2.1.2 Optimization factors and analysis of
variance (ANOV A)
3.3

67

Development of Polypropylene/Artificial
Wollastonite (PP/AW) polymeric composite

67

3.3.1 Development of artificial wollastonite (A W)

68

3.3.1.1 Curing, crushing and a making powder
of raw material

69

3.3 .1.2 Particle sizing and compounding
ratio of raw material

70

3.3.1.3 Synthesis and calcination process
of material compound

72

3.3.1.4 X-Ray diffraction study of raw
material and artificial wollastonite

73

3.3.2.1 Preparation process ofPP/AW
polymeric composite
3.3 .2.2 PP I AW composite without and with

74

X

ATH filler
3.3 .3 .1 Composite fabrication
3.4

75
77

Electrical properties testing

79

3.4.1 Dielectric strength testing procedure

80

3.4.2 Tracking and erosion test

82

3.4.2.1 Incline Plane Tracking test set-up

84

3.4.2.2 Leakage current measurement
and acquisition system

88

3.4.2.3 Measuring and protection circuit

88

3.4.2.4 Data acquisition program

89

3.4.3 Tracking and erosion test procedurestandard test and non-standard test method
3.5

Classification of polymeric condition surface
condition

4

91

93

RESULTS AND DISCUSSION

97

4.1

Introduction

97

4.2

Development of artificial wollastonite (AW)

98

4.2.1 Chemical composition of materials

98

4.3

Dielectric strength optimization ofPP/AW
composite with and without A TH using
Response Surface Methodology (RSM) method

103

4.3.1 Screening factor

104

4.3.2 Optimization factor

106

4.4

Dielectric strength performance of PP I A W composite

110

4.5

Tracking and erosion performance of
PP/AWATHioo80/20 composite per standard test

4.6

113

Verification of LC measurement and its
parameters
4.6.1 Verification results of leakage current

115

Xl

measurement and acquisition system

115

4.6.2 Verification results ofleakage current parameters
4.7

4.8
5

119

Surface condition monitoring using TFR
technique

122

4.7.1 Capacitance

123

4.7.2 Resistive

125

4.7.3 Lower distortion state- symmetrical state

127

4.7.4 Highly distortion state- unsymmetrical state

129

Surface condition classification

132

CONCLUSION AND RECOMMENDATION

134

5.1

Conclusion

134

5.2

Recommendation for future works

138

REFERENCES

140

Appendices A-D

153-166

Xll

LIST OF TABLES

TITLE

TABLE NO

2.1

PAGE

Strength and limitation of homo-polypropylene
Polymer [38]

19

2.2

The effects of filler into polymer composite [3 3]

21

2.3

Comparison between ceramic and polymeric
insulation [41]

30

2.4

Testing methods for polymeric insulation material [85]

38

3.1

2 2 factorial designs for screening factor

66

3.2

Level of variable for screening factor

66

3.3

Important properties and minimum requirement of
polymeric insulation material

3.4

79

Test condition of specimen under dielectric strength
test

81

4.1

Average dielectric strength of the compound

105

4.2

Effect list of all model terms for screening test

106

4.3

Regression coefficient and P value as calculated from

4.4

the model

107

Analysis of ANOVA

108

Xl11

4.5

Actual value dielectric and predicted dielectric
strength

4.6

4.7

109

LC parameters verification: Manual and Matlab
calculation

121

Rules based on surface condition classification

133

XIV

LIST OF FIGURES

TITLE

FIGURE NO.

PAGE

2.1

Bivalves type of seashell

24

2.2

Waste glass in granulate and powder form

25

2.3

Summary of diagnostic tests to measure ageing

32

2.4

Capacitive LC signal

40

2.5

Resistive LC signal

40

2.6

Symmetrical LC signal

40

2.7

Unsymmetrical LC signal

41

2.8

a) Transient signal and b) its time frequency
representation

46

2.9

Stationary signal

48

2.10

Non-stationary signal

49

3.1

The summary of research work

62

3.2

Waste glass and seashell in granulate and powder
form

69

3.3

Planetary Mill machine

70

3.4

Shaker Machine

71

3.5

Mastersizer 2000 particle distribution machine

71

XV

3.6

Ball milling machine

72

3.7

Carbolite furnace

73

3.8

PanAnalytical X-RD machine

74

3.9

Preparation processes of artificial wollastonite.

74

3.10

Haake Rheomix internal mixer

76

3.11

Composite ofPP/AW_ATH-Joo80/20wt%
(approximate 50 g)

76

3.12

Hot press machine

77

3.13

Sample specimen for dielectric strength test

78

3.14

Specimen for tracking and erosion test

78

3.15

Testing electrode set-up complying BS EN 60243-1

81

3.16

High voltage control and measurement equipments

82

3.17

Schematic diagram of incline plane tracking test

84

3.18

Tracking and erosion test setup complying with
BS EN 60587:2007 a) IPT setup b) DAQ card
c) Monitoring devices

3.19

86

Connection of sample under tracking and erosion
test

87

3.20

Measuring and protection circuit

89

3.21

LC signal variation of PP I AW

92

3.22

Process flow of LC parameters analyzing

94

4.1

Characterizing of chemical composition of seashell
CaC0 3

99

XVI

4.2

Characterizing of chemical composition of waste
glass - amorphous

4.3

100

Characterizing chemical composition of calcium
Silicate CaSi03

101

4.4

Half normal plot for screening factor

106

4.5

PP I A W ATHJOO 80/20wt% SEM at magnification of
500x

4.6

PP/AWATHJoo 65/35wt% SEM at magnification of
500x

4.7

112

PP/AWATHJoo 50/50wt% SEM at magnification of
500x

4.8

112

113

Specimen PP/AWATHJOo80/20 wt% going through
IPT test for 6 hours

114

4.9

Voltage measurement using oscilloscope

116

4.10

Frequency measurement using oscilloscope

117

4.11

Voltage measurement using developed Lab-View
program

4.12

LC measurement by dividing with shunt resistor
1400 value

4.13

117

118

Non-stationary signal verification results
a) Instantaneous LC signal b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%

4.14

120

Capacitive LC parameters
a) Instantaneous capacitive LC b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%

4.15

Resistive LC parameters

124

XVll

a) Instantaneous resistive LC b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%
4.16

126

Lower distorted symmetrical LC parameters
a) Instantaneous symmetrical LC b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%

4.17

128

Highly distorted unsymmetrical LC parameters
a) Instantaneous unsymmetrical LC b )TFR
c)RMS p.u d)THD% e) TnHD% f)TWD%

130

LIST OF ABBREVIATIONS

LC

Leakage current

AW

Artificial Wollastonite

PP

Polypropylene

ATH

Alumina trihydrate

SIR

Silicone rubber

EPM

Ethylene propylene monomer

EPDM

Ethylene propylene diene monomer

EVA

Ethylene vinyl acetate

PVC

Polyvinyl chloride

UPR

Unsaturated polyester resin

CE

Cyloaliphatic epoxy

DoE

Design of experements

RSM

Response surface methodology

ANOVA

Analysis ofvariant

CaC03

Calcium carbonate

NazC03

Sodium carbonate

SiOz

Silica

CaSi03

Calsium silicate

NazC03

Sodium carbonate

CaO

Calcium oxide

MgO

Magnesium oxide

XXl

SEM

Scanning electron microscope

Si02

Silica

CaSi03

Calsium silicate

Na2C03

Sodium carbonate

CaO

Calcium oxide

MgO

Magnesium oxide

SEM

Scanning electron microscope

STRI

Swedish Transmission Research Institute

XPS

X-Ray Photoelectron Spectroscopy

ATR

Attenuated Total Reflection

FTIR

Fourier transfrom infra red

ESDD

Equivalent salt deposit density

LMW

Lower molecular weight

I2Rt

Energy dissipation heating

EAP

Early ageing period

TP

Transition period

LAP

Late ageing period

ACF

Autocorrelation function

ANN

Artificial neural network

CT

Carbon track

X-RD

X-ray diffraction

TSDD

Total salt deposit density

CMC

Ceramic matrix composites

MMC

Metal matrix composite

PMC

Polymer matrix composite

uv

Ultra violet

DAQ

Data acquisition card

NSDD

Non salt deposit density

TERT

Tracking erosion resistance test

IPT

Incline plane tracking

TFD

Time-frequency distribution

TFR

Time-frequency representation

DSP

Digital signal processing

FFT

Fast Fourier Transform

FT

Fourier Transform

DFT

Discrete Fourier Transform

STFT

Short time Fourier Transform

THD

Total harmonic distortion

TnHD

Total non-harmonic distortion

TWD

Total waveform distortion
Leakage current RMS
Leakage current fundamental RMS

ITHD

Leakage current harmonic distortion

frnHD

Leakage current inter-harmonic distortion

ITWD

Leakage current total waveform distortion

Irms
firms

(t)

Instantaneous leakage current RMS

(t)

Instantaneous leakage current fundamental RMS

JTHD (t)
frnHD

(t)

Instantaneous leakage current harmonic distortion
Instantaneous leakage current inter-harmonic distortion

hwD(t)

Instantaneous leakage current total waveform distortion

RMS

Root mean square

RMSp.u

Root mean square per unit

XXlll

wt%

Weight in percent

GUI

Graphic user interface

R2

Coefficient of the determination

2
R ajd

Coefficient of the determination adjacent

s

2

Variants

F

Value of a test

p

Probability

ss

Sum of square

MS

Mean square