New leakage current parameters for newly developed polymeric composite optimized by response surface methodology.
PSZ 19:16 (Pind. 1/07)
UNIVERSITI TEKNOLOGI MALAYSIA
DECLARATION OF THESIS I UNDERGRADUATE PROJECT PAPER AND COPYRIGHT
Author's full name :
AMINUDIN BIN AMAN
Date of birth
29 SEPTEMBER 1973
Title
NEW LEAKAGE CURRENT PARAMETERS FOR NEWLY DEVELOPED POLYMERIC
COMPOSITE OPTIMIZED BY RESPONSE SURFACE METHODOLOGY
Academic Session:
2013/2014-1
1declare that this thesis is classified as :
D
CONFIDENTIAL
(Contains confidential information under the Official Secret
Act 1972)*
D
RESTRICTED
(Contains restricted information as specified by the
organization where research was done)*
[]]
OPEN ACCESS
I agree that my thesis to be published as online open access
(full text)
I acknowledged that Universiti Teknologi Malaysia reserves the right as follows :
1. The thesis is the property of Universiti Teknologi Malaysia.
2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose
of research only.
3. The Library has the right to make copies of the thesis for academic exchange.
Certified by :
SIC NATURE
730929-04-5203
4: セ@
NOTES
NAME OF SUPERVISOR
Date:
*
SUPERVISOR
Assoc. Prof. Dr. Mohd Muhridza Bin Yaacob
(NEW IC NO. /PASSPORT NO.)
Date
j
セgna|イョof@
:J..../
10 / !l-0 13
If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from
the organization with period and reasons for confidentiality or restriction.
"I hereby declare that I have read this thesis and in my
opinion this thesis is sufficient in terms of scope and quality for the
award of the degree of Doctor of Philosophy (Electrical Engineering)"
\
Signature
-
: ·········••'" .....................e;-;-•...................................
..
Name of Supervisor : セZNrヲpmᆬyAゥ\Y@
Date
セO@
\0( セPG@
セ@
BAHAGIAN A- Pengesahan Kerjasama*
Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui kerjasama
antara _ _ _ _ _ _ _ _ _ _ dengan _ _ _ _ _ _ _ _ _ __
Disahkan oleh:
Tarikh:
Tandatangan
Nama
Jawatan
(Cop rasmi)
* Jika penyediaan tesis/projek melibatkan kerjasama.
BAHAGIAN B- Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah
Tesis ini telah diperiksa dan diakui oleh:
Nama dan Alamat Pemeriksa Luar
Prof. Madya Dr. Ngah Ramzi bin Hamzah
Fakulti Kejuruteraan Elektrik,
Universiti Teknologi MARA (UiTM),
Kampus Bertam,
Pesiaran Pendidikan Bertam Perdana,
13200 Kepala Batas, Penang.
Nama dan Alamat Pemeriksa Dalam
Prof. Madya Dr. Zolkafle bin Buntat
Fakulti Kejuruteraan Elektrik,
UTM Johor Bahru
Disahkan oleh Timbalan Pendaftar di Sekolah Pengajian Siswazah:
Tarikh:
Tandatangan :
Nama
ZAINUL RASHID BIN ABU BAKAR
NEW LEAKAGE CURRENT PARAMETERS FOR NEWLY DEVELOPED
POLYMERIC COMPOSITE OPTIMIZED BY RESPONSE SURF ACE
METHODOLOGY
AMINUDIN BIN AMAN
A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Electrical Engineering)
Faculty of Electrical Engineering
Universiti Teknologi Malaysia
OCTOBER 2013
11
I declare that this thesis entitled "New Leakage Current Parameters for Newly
Developed Composite Optimized by Response Surface Methodology" is the result of
my own research except as cited in the references. The thesis has not been accepted
for any degree and is not concurrently submitted in candidature of any other degree .
Signature
Name
Date
. . . . Q. . . . . . . . . . . .
Aminudin Bin Aman
.......... ᆬNGセO_Zᄋ@
111
To my beloved wife and sons
Rosmalaili Rahmat
Muhammad Aiman
Muhammad Akmal
Muhammad Azim
"Thank you for your patience and support"
lV
ACKNOWLEDGEMENT
Alhamdulillah. I am greatly indebted to Allah on His mercy and blessing for
making this research successful.
Secondly, I wish to express my sincere appreciation to my supervisor;
Associate Professor Dr. Mohd Muhridza Bin Yaacob for his encouragement,
guidance and valuable advices, without his continued support and interest, this thesis
would not have been the same as presented here.
Next, I would like to express my thankful to Universiti Teknikal Malaysia
Melaka (UTeM) for its financial support and to my colleagues especially in FKE and
FKP for their valuable encouragement during the time of this research.
My sincere appreciation also extends to all my lectures and entire staffs in
IV AT for their assistance at various occasions. Their views, comments and tips are
very helpful in completing this research.
Finally, I am also very grateful to all my family, friends and relative for their
patience, prayers and understanding over the entire period of my studies. Thank you
very much.
v
ABSTRACT
Since polymeric composite insulations are well accepted in high voltage
application, a large number of important studies and research activities for
improvement on their perfonnance had been attained. It involves the development of
newly polymeric composite, the understanding of deterioration, the proper
dimensioning, design and manufacturing process, and the development of practical
testing, monitoring and reliable methods of measuring. In this work, a new polymeric
composite insulation is developed based on thermoplastic polymer and waste
material. The proposed composite materials are Polypropylene (PP) as a matrix and
Artificial Wollastonite (AW) as filler with alongside of Alumina Trihydrate (ATH).
An A W is a product of waste glass and seashell. X-ray diffraction (X-RD) technique
is applied to reveal the chemical composition of an A W. Then Response Surface
Methodology (RSM) statistical technique is employed in order to obtain the optimum
ratio of composite against dielectric strength performance. Furthermore, this
optimum ratio of the proposed composite is subjected to tracking and erosion tests
under standard and non-standard tests by Incline Plane Tracking (IPT) test. The nonstandard IPT test is conducted to simulate Leakage Current (LC) on initial and
continuous tracking voltage as well as surface condition events for composite. A new
method of surface condition classification is introduced using Spectrogram TimeFrequency Representation (TFR) technique. From the X-Ray diffraction result, it
shows that A W resembles natural wollastonite is able to be produced from waste
material. Next, a RSM statistical technique and analysis of variants show the best
compound formulation is 80% PP and 20% A W - 1OOpph ATH.
By Spectrogram
analysing technique with new LC signal parameters, the limitation of non-stationary
signal analysis by Fast Fourier Transforms (FFT) can be overcome and surface
condition and its classification can be determined simultaneously.
Vl
ABSTRAK
Semenjak komposit polimer diterima baik di dalam penebatan voltan tinggi,
banyak kajian penting dan aktiviti penyelidikan untuk penambahbaikan terhadap
prestasi penebat ini telah dilakukan. Ia melibatkan pembangunan komposit polimer
yang baru, ketahanan kemerosotan, pendimensian, reka bentuk dan proses
pembuatan, pembangunan ujian yang praktikal serta kaedah pemantauan dan
kebolehpercayaan serta kaedah pengukuran yang lebih baik. Dalam kajian ini,
penebat komposit polimer tennoplastik dibangunkan berasaskan bahan buangan.
Bahan-bahan yang telah digunakan untuk komposit polimer ini adalah Po(vpropylene
(PP) sebagai matriks dan Wollastonite Buatan (A W) sebagai pengisi bersama dengan
Alumina Trihydrate (A TH). Pengisi A W adalah produk dari kaca buangan dan kulit
kerang terbiar. Ujian pembelauan X-Ray (X-RD) dijalankan untuk mengkaji
komposisi kimia AW. Kemudian, teknik statistik Kaedah Pennukaan Sambutan
(RSM) digunakan bagi mendapatkan nisbah optimum komposit terhadap kekuatan
dielektrik. Selanjutnya, nisbah optimum komposit yang dibangunkan ini diuji dengan
ujian aliran dan hakisan secara piawai dan bukan piawai melalui ujian Incline Plane
Tracking (IPT). Ujian bukan piawai IPT ini dijalankan untuk mensimulasikan sifat
Arus Bocor (LC) di atas permukaan komposit polimer ini. Satu kaedah baru
pengkelasan keadaan permukaan diperkenalkan menggunakan teknik Spectrogram
(TFR). Dari basil pembelauan X-Ray, ianya menunjukkan A W yang mempunyai
komposisi kimia menyerupai wollastonite semulajadi dapat dihasilkan. Seterusnya
statistik RSM dan analisis pengukuran varian menunjukkan formulasi sebatian yang
terbaik adalah 80% PP dan 20% A W -1 OOpph A TH. Dengan menggunakan teknik
analisa Spectrogram beserta dengan parameter-parameter LC yang baru, kelemahan
analisis isyarat bergerak menggunakan Fast Fourier Transform (FFT) dapat diatasi,
serta keadaan permukaan dan klasifikasinya boleh ditentukan secara serentak.
vii
TABLE OF CONTENTS
CHAPTER
1
2
TITLE
PAGE
DECLARATION
11
DEDICATION
111
ACKNOWLEDGEMENTS
IV
ABSTRACT
v
ABSTRAK
VI
TABLE OF CONTENTS
Vll
LIST OF TABLES
xu
LIST OF FIGURES
XIV
LIST OF SYMBOLS
XVlll
LIST OF ABBREVIATIONS
XX
LIST OF APPENDICES
XXIV
INTRODUCTION
1
1.1
Introduction
1
1.2
Problem Statement
5
1.3
Objectives of the research
7
1.4
Scope of work
8
1.5
Significance of the research
8
1.6
Thesis outline
9
LITERATURE REVIEW
12
2.1
Introduction
12
2.2
Development of polymeric insulation
12
vm
2.2.1 Composite
14
2.2.1.1 Polymeric composite
15
2.2.2 Polypropylene matrix
17
2.2.3 Filler and reinforcement
19
2.2.3.1 Contents ofwollastonite filler
22
2.2.3.2 Alumina trihydrate {ATH) filler
25
2.2.4 Effect of filler into polymeric composite
compound
2.3
27
Polymeric composite insulations: Their advantages
and challenges
28
2.3 .1 Factor influencing polymeric composite long
2.4
term performance
31
2.3.2 Accelerated ageing test
31
2.3.3 Methods to analyze ageing affect
33
Previous studies on leakage current and surface
tracking properties
34
2.4.1 Development ofleakage current and flashover
mechanism
35
2.4.2 Leakage current measurement
37
2.4.3 Leakage current patterns
38
2.4.4 Leakage current frequency component
study
41
2.4.5 Factors that affect the leakage current
behaviour
2.5
44
Time-Frequency Distribution analysis technique
44
2.5.1 Harmonic and Fourier Transform
47
2.5.2 Short Time Fourier Transform
49
2.5.3 Spectrogram- Time-frequency representation
50
2.5.4 Leakage current signal parameters
51
2.5.4.1 Instantaneous leakage current RMS,
lrms
(t}
52
lX
2.5.4.2 Instantaneous fundamental leakage
current RMS, firms (t)
52
2.5.4.3 Instantaneous leakage current total
harmonic distortion, I THD(t)
53
2.5.4.4 Instantaneous leakage current total
non-harmonic distortion, lrnHD (t)
53
2.5.4.5 Instantaneous leakage current total
waveform distortion, lrwD (t)
2.6
3
Response Surface Methodology (RSM)
54
55
RESEARCH METHODOLOGY
60
3.1
Introduction
60
3.2
Optimization of dielectric strength using Response
Surface Methodology (RSM)
63
3 .2.1 Design of Experiment (DoE)
64
3.2.1.1 Screening factors
64
3.2.1.2 Optimization factors and analysis of
variance (ANOV A)
3.3
67
Development of Polypropylene/Artificial
Wollastonite (PP/AW) polymeric composite
67
3.3.1 Development of artificial wollastonite (A W)
68
3.3.1.1 Curing, crushing and a making powder
of raw material
69
3.3 .1.2 Particle sizing and compounding
ratio of raw material
70
3.3.1.3 Synthesis and calcination process
of material compound
72
3.3.1.4 X-Ray diffraction study of raw
material and artificial wollastonite
73
3.3.2.1 Preparation process ofPP/AW
polymeric composite
3.3 .2.2 PP I AW composite without and with
74
X
ATH filler
3.3 .3 .1 Composite fabrication
3.4
75
77
Electrical properties testing
79
3.4.1 Dielectric strength testing procedure
80
3.4.2 Tracking and erosion test
82
3.4.2.1 Incline Plane Tracking test set-up
84
3.4.2.2 Leakage current measurement
and acquisition system
88
3.4.2.3 Measuring and protection circuit
88
3.4.2.4 Data acquisition program
89
3.4.3 Tracking and erosion test procedurestandard test and non-standard test method
3.5
Classification of polymeric condition surface
condition
4
91
93
RESULTS AND DISCUSSION
97
4.1
Introduction
97
4.2
Development of artificial wollastonite (AW)
98
4.2.1 Chemical composition of materials
98
4.3
Dielectric strength optimization ofPP/AW
composite with and without A TH using
Response Surface Methodology (RSM) method
103
4.3.1 Screening factor
104
4.3.2 Optimization factor
106
4.4
Dielectric strength performance of PP I A W composite
110
4.5
Tracking and erosion performance of
PP/AWATHioo80/20 composite per standard test
4.6
113
Verification of LC measurement and its
parameters
4.6.1 Verification results of leakage current
115
Xl
measurement and acquisition system
115
4.6.2 Verification results ofleakage current parameters
4.7
4.8
5
119
Surface condition monitoring using TFR
technique
122
4.7.1 Capacitance
123
4.7.2 Resistive
125
4.7.3 Lower distortion state- symmetrical state
127
4.7.4 Highly distortion state- unsymmetrical state
129
Surface condition classification
132
CONCLUSION AND RECOMMENDATION
134
5.1
Conclusion
134
5.2
Recommendation for future works
138
REFERENCES
140
Appendices A-D
153-166
Xll
LIST OF TABLES
TITLE
TABLE NO
2.1
PAGE
Strength and limitation of homo-polypropylene
Polymer [38]
19
2.2
The effects of filler into polymer composite [3 3]
21
2.3
Comparison between ceramic and polymeric
insulation [41]
30
2.4
Testing methods for polymeric insulation material [85]
38
3.1
2 2 factorial designs for screening factor
66
3.2
Level of variable for screening factor
66
3.3
Important properties and minimum requirement of
polymeric insulation material
3.4
79
Test condition of specimen under dielectric strength
test
81
4.1
Average dielectric strength of the compound
105
4.2
Effect list of all model terms for screening test
106
4.3
Regression coefficient and P value as calculated from
4.4
the model
107
Analysis of ANOVA
108
Xl11
4.5
Actual value dielectric and predicted dielectric
strength
4.6
4.7
109
LC parameters verification: Manual and Matlab
calculation
121
Rules based on surface condition classification
133
XIV
LIST OF FIGURES
TITLE
FIGURE NO.
PAGE
2.1
Bivalves type of seashell
24
2.2
Waste glass in granulate and powder form
25
2.3
Summary of diagnostic tests to measure ageing
32
2.4
Capacitive LC signal
40
2.5
Resistive LC signal
40
2.6
Symmetrical LC signal
40
2.7
Unsymmetrical LC signal
41
2.8
a) Transient signal and b) its time frequency
representation
46
2.9
Stationary signal
48
2.10
Non-stationary signal
49
3.1
The summary of research work
62
3.2
Waste glass and seashell in granulate and powder
form
69
3.3
Planetary Mill machine
70
3.4
Shaker Machine
71
3.5
Mastersizer 2000 particle distribution machine
71
XV
3.6
Ball milling machine
72
3.7
Carbolite furnace
73
3.8
PanAnalytical X-RD machine
74
3.9
Preparation processes of artificial wollastonite.
74
3.10
Haake Rheomix internal mixer
76
3.11
Composite ofPP/AW_ATH-Joo80/20wt%
(approximate 50 g)
76
3.12
Hot press machine
77
3.13
Sample specimen for dielectric strength test
78
3.14
Specimen for tracking and erosion test
78
3.15
Testing electrode set-up complying BS EN 60243-1
81
3.16
High voltage control and measurement equipments
82
3.17
Schematic diagram of incline plane tracking test
84
3.18
Tracking and erosion test setup complying with
BS EN 60587:2007 a) IPT setup b) DAQ card
c) Monitoring devices
3.19
86
Connection of sample under tracking and erosion
test
87
3.20
Measuring and protection circuit
89
3.21
LC signal variation of PP I AW
92
3.22
Process flow of LC parameters analyzing
94
4.1
Characterizing of chemical composition of seashell
CaC0 3
99
XVI
4.2
Characterizing of chemical composition of waste
glass - amorphous
4.3
100
Characterizing chemical composition of calcium
Silicate CaSi03
101
4.4
Half normal plot for screening factor
106
4.5
PP I A W ATHJOO 80/20wt% SEM at magnification of
500x
4.6
PP/AWATHJoo 65/35wt% SEM at magnification of
500x
4.7
112
PP/AWATHJoo 50/50wt% SEM at magnification of
500x
4.8
112
113
Specimen PP/AWATHJOo80/20 wt% going through
IPT test for 6 hours
114
4.9
Voltage measurement using oscilloscope
116
4.10
Frequency measurement using oscilloscope
117
4.11
Voltage measurement using developed Lab-View
program
4.12
LC measurement by dividing with shunt resistor
1400 value
4.13
117
118
Non-stationary signal verification results
a) Instantaneous LC signal b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%
4.14
120
Capacitive LC parameters
a) Instantaneous capacitive LC b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%
4.15
Resistive LC parameters
124
XVll
a) Instantaneous resistive LC b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%
4.16
126
Lower distorted symmetrical LC parameters
a) Instantaneous symmetrical LC b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%
4.17
128
Highly distorted unsymmetrical LC parameters
a) Instantaneous unsymmetrical LC b )TFR
c)RMS p.u d)THD% e) TnHD% f)TWD%
130
LIST OF ABBREVIATIONS
LC
Leakage current
AW
Artificial Wollastonite
PP
Polypropylene
ATH
Alumina trihydrate
SIR
Silicone rubber
EPM
Ethylene propylene monomer
EPDM
Ethylene propylene diene monomer
EVA
Ethylene vinyl acetate
PVC
Polyvinyl chloride
UPR
Unsaturated polyester resin
CE
Cyloaliphatic epoxy
DoE
Design of experements
RSM
Response surface methodology
ANOVA
Analysis ofvariant
CaC03
Calcium carbonate
NazC03
Sodium carbonate
SiOz
Silica
CaSi03
Calsium silicate
NazC03
Sodium carbonate
CaO
Calcium oxide
MgO
Magnesium oxide
XXl
SEM
Scanning electron microscope
Si02
Silica
CaSi03
Calsium silicate
Na2C03
Sodium carbonate
CaO
Calcium oxide
MgO
Magnesium oxide
SEM
Scanning electron microscope
STRI
Swedish Transmission Research Institute
XPS
X-Ray Photoelectron Spectroscopy
ATR
Attenuated Total Reflection
FTIR
Fourier transfrom infra red
ESDD
Equivalent salt deposit density
LMW
Lower molecular weight
I2Rt
Energy dissipation heating
EAP
Early ageing period
TP
Transition period
LAP
Late ageing period
ACF
Autocorrelation function
ANN
Artificial neural network
CT
Carbon track
X-RD
X-ray diffraction
TSDD
Total salt deposit density
CMC
Ceramic matrix composites
MMC
Metal matrix composite
PMC
Polymer matrix composite
uv
Ultra violet
DAQ
Data acquisition card
NSDD
Non salt deposit density
TERT
Tracking erosion resistance test
IPT
Incline plane tracking
TFD
Time-frequency distribution
TFR
Time-frequency representation
DSP
Digital signal processing
FFT
Fast Fourier Transform
FT
Fourier Transform
DFT
Discrete Fourier Transform
STFT
Short time Fourier Transform
THD
Total harmonic distortion
TnHD
Total non-harmonic distortion
TWD
Total waveform distortion
Leakage current RMS
Leakage current fundamental RMS
ITHD
Leakage current harmonic distortion
frnHD
Leakage current inter-harmonic distortion
ITWD
Leakage current total waveform distortion
Irms
firms
(t)
Instantaneous leakage current RMS
(t)
Instantaneous leakage current fundamental RMS
JTHD (t)
frnHD
(t)
Instantaneous leakage current harmonic distortion
Instantaneous leakage current inter-harmonic distortion
hwD(t)
Instantaneous leakage current total waveform distortion
RMS
Root mean square
RMSp.u
Root mean square per unit
XXlll
wt%
Weight in percent
GUI
Graphic user interface
R2
Coefficient of the determination
2
R ajd
Coefficient of the determination adjacent
s
2
Variants
F
Value of a test
p
Probability
ss
Sum of square
MS
Mean square
UNIVERSITI TEKNOLOGI MALAYSIA
DECLARATION OF THESIS I UNDERGRADUATE PROJECT PAPER AND COPYRIGHT
Author's full name :
AMINUDIN BIN AMAN
Date of birth
29 SEPTEMBER 1973
Title
NEW LEAKAGE CURRENT PARAMETERS FOR NEWLY DEVELOPED POLYMERIC
COMPOSITE OPTIMIZED BY RESPONSE SURFACE METHODOLOGY
Academic Session:
2013/2014-1
1declare that this thesis is classified as :
D
CONFIDENTIAL
(Contains confidential information under the Official Secret
Act 1972)*
D
RESTRICTED
(Contains restricted information as specified by the
organization where research was done)*
[]]
OPEN ACCESS
I agree that my thesis to be published as online open access
(full text)
I acknowledged that Universiti Teknologi Malaysia reserves the right as follows :
1. The thesis is the property of Universiti Teknologi Malaysia.
2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose
of research only.
3. The Library has the right to make copies of the thesis for academic exchange.
Certified by :
SIC NATURE
730929-04-5203
4: セ@
NOTES
NAME OF SUPERVISOR
Date:
*
SUPERVISOR
Assoc. Prof. Dr. Mohd Muhridza Bin Yaacob
(NEW IC NO. /PASSPORT NO.)
Date
j
セgna|イョof@
:J..../
10 / !l-0 13
If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from
the organization with period and reasons for confidentiality or restriction.
"I hereby declare that I have read this thesis and in my
opinion this thesis is sufficient in terms of scope and quality for the
award of the degree of Doctor of Philosophy (Electrical Engineering)"
\
Signature
-
: ·········••'" .....................e;-;-•...................................
..
Name of Supervisor : セZNrヲpmᆬyAゥ\Y@
Date
セO@
\0( セPG@
セ@
BAHAGIAN A- Pengesahan Kerjasama*
Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui kerjasama
antara _ _ _ _ _ _ _ _ _ _ dengan _ _ _ _ _ _ _ _ _ __
Disahkan oleh:
Tarikh:
Tandatangan
Nama
Jawatan
(Cop rasmi)
* Jika penyediaan tesis/projek melibatkan kerjasama.
BAHAGIAN B- Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah
Tesis ini telah diperiksa dan diakui oleh:
Nama dan Alamat Pemeriksa Luar
Prof. Madya Dr. Ngah Ramzi bin Hamzah
Fakulti Kejuruteraan Elektrik,
Universiti Teknologi MARA (UiTM),
Kampus Bertam,
Pesiaran Pendidikan Bertam Perdana,
13200 Kepala Batas, Penang.
Nama dan Alamat Pemeriksa Dalam
Prof. Madya Dr. Zolkafle bin Buntat
Fakulti Kejuruteraan Elektrik,
UTM Johor Bahru
Disahkan oleh Timbalan Pendaftar di Sekolah Pengajian Siswazah:
Tarikh:
Tandatangan :
Nama
ZAINUL RASHID BIN ABU BAKAR
NEW LEAKAGE CURRENT PARAMETERS FOR NEWLY DEVELOPED
POLYMERIC COMPOSITE OPTIMIZED BY RESPONSE SURF ACE
METHODOLOGY
AMINUDIN BIN AMAN
A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Electrical Engineering)
Faculty of Electrical Engineering
Universiti Teknologi Malaysia
OCTOBER 2013
11
I declare that this thesis entitled "New Leakage Current Parameters for Newly
Developed Composite Optimized by Response Surface Methodology" is the result of
my own research except as cited in the references. The thesis has not been accepted
for any degree and is not concurrently submitted in candidature of any other degree .
Signature
Name
Date
. . . . Q. . . . . . . . . . . .
Aminudin Bin Aman
.......... ᆬNGセO_Zᄋ@
111
To my beloved wife and sons
Rosmalaili Rahmat
Muhammad Aiman
Muhammad Akmal
Muhammad Azim
"Thank you for your patience and support"
lV
ACKNOWLEDGEMENT
Alhamdulillah. I am greatly indebted to Allah on His mercy and blessing for
making this research successful.
Secondly, I wish to express my sincere appreciation to my supervisor;
Associate Professor Dr. Mohd Muhridza Bin Yaacob for his encouragement,
guidance and valuable advices, without his continued support and interest, this thesis
would not have been the same as presented here.
Next, I would like to express my thankful to Universiti Teknikal Malaysia
Melaka (UTeM) for its financial support and to my colleagues especially in FKE and
FKP for their valuable encouragement during the time of this research.
My sincere appreciation also extends to all my lectures and entire staffs in
IV AT for their assistance at various occasions. Their views, comments and tips are
very helpful in completing this research.
Finally, I am also very grateful to all my family, friends and relative for their
patience, prayers and understanding over the entire period of my studies. Thank you
very much.
v
ABSTRACT
Since polymeric composite insulations are well accepted in high voltage
application, a large number of important studies and research activities for
improvement on their perfonnance had been attained. It involves the development of
newly polymeric composite, the understanding of deterioration, the proper
dimensioning, design and manufacturing process, and the development of practical
testing, monitoring and reliable methods of measuring. In this work, a new polymeric
composite insulation is developed based on thermoplastic polymer and waste
material. The proposed composite materials are Polypropylene (PP) as a matrix and
Artificial Wollastonite (AW) as filler with alongside of Alumina Trihydrate (ATH).
An A W is a product of waste glass and seashell. X-ray diffraction (X-RD) technique
is applied to reveal the chemical composition of an A W. Then Response Surface
Methodology (RSM) statistical technique is employed in order to obtain the optimum
ratio of composite against dielectric strength performance. Furthermore, this
optimum ratio of the proposed composite is subjected to tracking and erosion tests
under standard and non-standard tests by Incline Plane Tracking (IPT) test. The nonstandard IPT test is conducted to simulate Leakage Current (LC) on initial and
continuous tracking voltage as well as surface condition events for composite. A new
method of surface condition classification is introduced using Spectrogram TimeFrequency Representation (TFR) technique. From the X-Ray diffraction result, it
shows that A W resembles natural wollastonite is able to be produced from waste
material. Next, a RSM statistical technique and analysis of variants show the best
compound formulation is 80% PP and 20% A W - 1OOpph ATH.
By Spectrogram
analysing technique with new LC signal parameters, the limitation of non-stationary
signal analysis by Fast Fourier Transforms (FFT) can be overcome and surface
condition and its classification can be determined simultaneously.
Vl
ABSTRAK
Semenjak komposit polimer diterima baik di dalam penebatan voltan tinggi,
banyak kajian penting dan aktiviti penyelidikan untuk penambahbaikan terhadap
prestasi penebat ini telah dilakukan. Ia melibatkan pembangunan komposit polimer
yang baru, ketahanan kemerosotan, pendimensian, reka bentuk dan proses
pembuatan, pembangunan ujian yang praktikal serta kaedah pemantauan dan
kebolehpercayaan serta kaedah pengukuran yang lebih baik. Dalam kajian ini,
penebat komposit polimer tennoplastik dibangunkan berasaskan bahan buangan.
Bahan-bahan yang telah digunakan untuk komposit polimer ini adalah Po(vpropylene
(PP) sebagai matriks dan Wollastonite Buatan (A W) sebagai pengisi bersama dengan
Alumina Trihydrate (A TH). Pengisi A W adalah produk dari kaca buangan dan kulit
kerang terbiar. Ujian pembelauan X-Ray (X-RD) dijalankan untuk mengkaji
komposisi kimia AW. Kemudian, teknik statistik Kaedah Pennukaan Sambutan
(RSM) digunakan bagi mendapatkan nisbah optimum komposit terhadap kekuatan
dielektrik. Selanjutnya, nisbah optimum komposit yang dibangunkan ini diuji dengan
ujian aliran dan hakisan secara piawai dan bukan piawai melalui ujian Incline Plane
Tracking (IPT). Ujian bukan piawai IPT ini dijalankan untuk mensimulasikan sifat
Arus Bocor (LC) di atas permukaan komposit polimer ini. Satu kaedah baru
pengkelasan keadaan permukaan diperkenalkan menggunakan teknik Spectrogram
(TFR). Dari basil pembelauan X-Ray, ianya menunjukkan A W yang mempunyai
komposisi kimia menyerupai wollastonite semulajadi dapat dihasilkan. Seterusnya
statistik RSM dan analisis pengukuran varian menunjukkan formulasi sebatian yang
terbaik adalah 80% PP dan 20% A W -1 OOpph A TH. Dengan menggunakan teknik
analisa Spectrogram beserta dengan parameter-parameter LC yang baru, kelemahan
analisis isyarat bergerak menggunakan Fast Fourier Transform (FFT) dapat diatasi,
serta keadaan permukaan dan klasifikasinya boleh ditentukan secara serentak.
vii
TABLE OF CONTENTS
CHAPTER
1
2
TITLE
PAGE
DECLARATION
11
DEDICATION
111
ACKNOWLEDGEMENTS
IV
ABSTRACT
v
ABSTRAK
VI
TABLE OF CONTENTS
Vll
LIST OF TABLES
xu
LIST OF FIGURES
XIV
LIST OF SYMBOLS
XVlll
LIST OF ABBREVIATIONS
XX
LIST OF APPENDICES
XXIV
INTRODUCTION
1
1.1
Introduction
1
1.2
Problem Statement
5
1.3
Objectives of the research
7
1.4
Scope of work
8
1.5
Significance of the research
8
1.6
Thesis outline
9
LITERATURE REVIEW
12
2.1
Introduction
12
2.2
Development of polymeric insulation
12
vm
2.2.1 Composite
14
2.2.1.1 Polymeric composite
15
2.2.2 Polypropylene matrix
17
2.2.3 Filler and reinforcement
19
2.2.3.1 Contents ofwollastonite filler
22
2.2.3.2 Alumina trihydrate {ATH) filler
25
2.2.4 Effect of filler into polymeric composite
compound
2.3
27
Polymeric composite insulations: Their advantages
and challenges
28
2.3 .1 Factor influencing polymeric composite long
2.4
term performance
31
2.3.2 Accelerated ageing test
31
2.3.3 Methods to analyze ageing affect
33
Previous studies on leakage current and surface
tracking properties
34
2.4.1 Development ofleakage current and flashover
mechanism
35
2.4.2 Leakage current measurement
37
2.4.3 Leakage current patterns
38
2.4.4 Leakage current frequency component
study
41
2.4.5 Factors that affect the leakage current
behaviour
2.5
44
Time-Frequency Distribution analysis technique
44
2.5.1 Harmonic and Fourier Transform
47
2.5.2 Short Time Fourier Transform
49
2.5.3 Spectrogram- Time-frequency representation
50
2.5.4 Leakage current signal parameters
51
2.5.4.1 Instantaneous leakage current RMS,
lrms
(t}
52
lX
2.5.4.2 Instantaneous fundamental leakage
current RMS, firms (t)
52
2.5.4.3 Instantaneous leakage current total
harmonic distortion, I THD(t)
53
2.5.4.4 Instantaneous leakage current total
non-harmonic distortion, lrnHD (t)
53
2.5.4.5 Instantaneous leakage current total
waveform distortion, lrwD (t)
2.6
3
Response Surface Methodology (RSM)
54
55
RESEARCH METHODOLOGY
60
3.1
Introduction
60
3.2
Optimization of dielectric strength using Response
Surface Methodology (RSM)
63
3 .2.1 Design of Experiment (DoE)
64
3.2.1.1 Screening factors
64
3.2.1.2 Optimization factors and analysis of
variance (ANOV A)
3.3
67
Development of Polypropylene/Artificial
Wollastonite (PP/AW) polymeric composite
67
3.3.1 Development of artificial wollastonite (A W)
68
3.3.1.1 Curing, crushing and a making powder
of raw material
69
3.3 .1.2 Particle sizing and compounding
ratio of raw material
70
3.3.1.3 Synthesis and calcination process
of material compound
72
3.3.1.4 X-Ray diffraction study of raw
material and artificial wollastonite
73
3.3.2.1 Preparation process ofPP/AW
polymeric composite
3.3 .2.2 PP I AW composite without and with
74
X
ATH filler
3.3 .3 .1 Composite fabrication
3.4
75
77
Electrical properties testing
79
3.4.1 Dielectric strength testing procedure
80
3.4.2 Tracking and erosion test
82
3.4.2.1 Incline Plane Tracking test set-up
84
3.4.2.2 Leakage current measurement
and acquisition system
88
3.4.2.3 Measuring and protection circuit
88
3.4.2.4 Data acquisition program
89
3.4.3 Tracking and erosion test procedurestandard test and non-standard test method
3.5
Classification of polymeric condition surface
condition
4
91
93
RESULTS AND DISCUSSION
97
4.1
Introduction
97
4.2
Development of artificial wollastonite (AW)
98
4.2.1 Chemical composition of materials
98
4.3
Dielectric strength optimization ofPP/AW
composite with and without A TH using
Response Surface Methodology (RSM) method
103
4.3.1 Screening factor
104
4.3.2 Optimization factor
106
4.4
Dielectric strength performance of PP I A W composite
110
4.5
Tracking and erosion performance of
PP/AWATHioo80/20 composite per standard test
4.6
113
Verification of LC measurement and its
parameters
4.6.1 Verification results of leakage current
115
Xl
measurement and acquisition system
115
4.6.2 Verification results ofleakage current parameters
4.7
4.8
5
119
Surface condition monitoring using TFR
technique
122
4.7.1 Capacitance
123
4.7.2 Resistive
125
4.7.3 Lower distortion state- symmetrical state
127
4.7.4 Highly distortion state- unsymmetrical state
129
Surface condition classification
132
CONCLUSION AND RECOMMENDATION
134
5.1
Conclusion
134
5.2
Recommendation for future works
138
REFERENCES
140
Appendices A-D
153-166
Xll
LIST OF TABLES
TITLE
TABLE NO
2.1
PAGE
Strength and limitation of homo-polypropylene
Polymer [38]
19
2.2
The effects of filler into polymer composite [3 3]
21
2.3
Comparison between ceramic and polymeric
insulation [41]
30
2.4
Testing methods for polymeric insulation material [85]
38
3.1
2 2 factorial designs for screening factor
66
3.2
Level of variable for screening factor
66
3.3
Important properties and minimum requirement of
polymeric insulation material
3.4
79
Test condition of specimen under dielectric strength
test
81
4.1
Average dielectric strength of the compound
105
4.2
Effect list of all model terms for screening test
106
4.3
Regression coefficient and P value as calculated from
4.4
the model
107
Analysis of ANOVA
108
Xl11
4.5
Actual value dielectric and predicted dielectric
strength
4.6
4.7
109
LC parameters verification: Manual and Matlab
calculation
121
Rules based on surface condition classification
133
XIV
LIST OF FIGURES
TITLE
FIGURE NO.
PAGE
2.1
Bivalves type of seashell
24
2.2
Waste glass in granulate and powder form
25
2.3
Summary of diagnostic tests to measure ageing
32
2.4
Capacitive LC signal
40
2.5
Resistive LC signal
40
2.6
Symmetrical LC signal
40
2.7
Unsymmetrical LC signal
41
2.8
a) Transient signal and b) its time frequency
representation
46
2.9
Stationary signal
48
2.10
Non-stationary signal
49
3.1
The summary of research work
62
3.2
Waste glass and seashell in granulate and powder
form
69
3.3
Planetary Mill machine
70
3.4
Shaker Machine
71
3.5
Mastersizer 2000 particle distribution machine
71
XV
3.6
Ball milling machine
72
3.7
Carbolite furnace
73
3.8
PanAnalytical X-RD machine
74
3.9
Preparation processes of artificial wollastonite.
74
3.10
Haake Rheomix internal mixer
76
3.11
Composite ofPP/AW_ATH-Joo80/20wt%
(approximate 50 g)
76
3.12
Hot press machine
77
3.13
Sample specimen for dielectric strength test
78
3.14
Specimen for tracking and erosion test
78
3.15
Testing electrode set-up complying BS EN 60243-1
81
3.16
High voltage control and measurement equipments
82
3.17
Schematic diagram of incline plane tracking test
84
3.18
Tracking and erosion test setup complying with
BS EN 60587:2007 a) IPT setup b) DAQ card
c) Monitoring devices
3.19
86
Connection of sample under tracking and erosion
test
87
3.20
Measuring and protection circuit
89
3.21
LC signal variation of PP I AW
92
3.22
Process flow of LC parameters analyzing
94
4.1
Characterizing of chemical composition of seashell
CaC0 3
99
XVI
4.2
Characterizing of chemical composition of waste
glass - amorphous
4.3
100
Characterizing chemical composition of calcium
Silicate CaSi03
101
4.4
Half normal plot for screening factor
106
4.5
PP I A W ATHJOO 80/20wt% SEM at magnification of
500x
4.6
PP/AWATHJoo 65/35wt% SEM at magnification of
500x
4.7
112
PP/AWATHJoo 50/50wt% SEM at magnification of
500x
4.8
112
113
Specimen PP/AWATHJOo80/20 wt% going through
IPT test for 6 hours
114
4.9
Voltage measurement using oscilloscope
116
4.10
Frequency measurement using oscilloscope
117
4.11
Voltage measurement using developed Lab-View
program
4.12
LC measurement by dividing with shunt resistor
1400 value
4.13
117
118
Non-stationary signal verification results
a) Instantaneous LC signal b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%
4.14
120
Capacitive LC parameters
a) Instantaneous capacitive LC b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%
4.15
Resistive LC parameters
124
XVll
a) Instantaneous resistive LC b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%
4.16
126
Lower distorted symmetrical LC parameters
a) Instantaneous symmetrical LC b)TFR c)RMS p.u
d)THD% e) TnHD% f)TWD%
4.17
128
Highly distorted unsymmetrical LC parameters
a) Instantaneous unsymmetrical LC b )TFR
c)RMS p.u d)THD% e) TnHD% f)TWD%
130
LIST OF ABBREVIATIONS
LC
Leakage current
AW
Artificial Wollastonite
PP
Polypropylene
ATH
Alumina trihydrate
SIR
Silicone rubber
EPM
Ethylene propylene monomer
EPDM
Ethylene propylene diene monomer
EVA
Ethylene vinyl acetate
PVC
Polyvinyl chloride
UPR
Unsaturated polyester resin
CE
Cyloaliphatic epoxy
DoE
Design of experements
RSM
Response surface methodology
ANOVA
Analysis ofvariant
CaC03
Calcium carbonate
NazC03
Sodium carbonate
SiOz
Silica
CaSi03
Calsium silicate
NazC03
Sodium carbonate
CaO
Calcium oxide
MgO
Magnesium oxide
XXl
SEM
Scanning electron microscope
Si02
Silica
CaSi03
Calsium silicate
Na2C03
Sodium carbonate
CaO
Calcium oxide
MgO
Magnesium oxide
SEM
Scanning electron microscope
STRI
Swedish Transmission Research Institute
XPS
X-Ray Photoelectron Spectroscopy
ATR
Attenuated Total Reflection
FTIR
Fourier transfrom infra red
ESDD
Equivalent salt deposit density
LMW
Lower molecular weight
I2Rt
Energy dissipation heating
EAP
Early ageing period
TP
Transition period
LAP
Late ageing period
ACF
Autocorrelation function
ANN
Artificial neural network
CT
Carbon track
X-RD
X-ray diffraction
TSDD
Total salt deposit density
CMC
Ceramic matrix composites
MMC
Metal matrix composite
PMC
Polymer matrix composite
uv
Ultra violet
DAQ
Data acquisition card
NSDD
Non salt deposit density
TERT
Tracking erosion resistance test
IPT
Incline plane tracking
TFD
Time-frequency distribution
TFR
Time-frequency representation
DSP
Digital signal processing
FFT
Fast Fourier Transform
FT
Fourier Transform
DFT
Discrete Fourier Transform
STFT
Short time Fourier Transform
THD
Total harmonic distortion
TnHD
Total non-harmonic distortion
TWD
Total waveform distortion
Leakage current RMS
Leakage current fundamental RMS
ITHD
Leakage current harmonic distortion
frnHD
Leakage current inter-harmonic distortion
ITWD
Leakage current total waveform distortion
Irms
firms
(t)
Instantaneous leakage current RMS
(t)
Instantaneous leakage current fundamental RMS
JTHD (t)
frnHD
(t)
Instantaneous leakage current harmonic distortion
Instantaneous leakage current inter-harmonic distortion
hwD(t)
Instantaneous leakage current total waveform distortion
RMS
Root mean square
RMSp.u
Root mean square per unit
XXlll
wt%
Weight in percent
GUI
Graphic user interface
R2
Coefficient of the determination
2
R ajd
Coefficient of the determination adjacent
s
2
Variants
F
Value of a test
p
Probability
ss
Sum of square
MS
Mean square