State-space Description of Zeta Converter Zeta Converter Steady-state

8 Fig. 3. Equivalent zeta converter circuit when Q turns off Fig. 4. i L1 left and i L2 right waveform in CCM [3]

2.2.1 State-space Description of Zeta Converter

ON-state Q turns on                                                                                                                   Z S C C C C C L L C C C C C C L L C C L L i v R r C R R r L R r L L v v i i R r C R r C R C R r L R L R r R r r r L L r dt dv dt dv dt di dt di 2 2 2 2 2 2 1 2 1 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 1 1 2 1 2 1 1 1 1 1 1 1 9 OFF-state Q turns off Output voltage equation for both states: The weighted average matrices for ON-state and OFF-state are:                                                    R r C R r C R C D C D R r L R L D R r L R r Dr r R r L D L r D r A C C C C C C L C L C 2 2 2 2 1 1 2 2 2 2 2 2 1 2 2 1 1 1 1 1 1 1 1                             R r C R R r L R r L D L D B C C C 2 2 2 2 2 2 1          R r R R r R r C C C C 2 2 2          R r R r E C C 2 2                                                                                                                     Z S C C C C C L L C C C C C L L C C C L L i v R r C R R r L R r L L v v i i R r C R r C R C R r L R R r R r r L L r r L dt dv dt dv dt di dt di 2 2 2 2 2 2 1 2 1 2 1 2 2 2 2 1 2 2 2 2 2 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1                                     Z S C C C C L L C C C O i v R r R r v v i i R r R R r R r v 2 2 2 1 2 1 2 2 2 10

2.2.2 Zeta Converter Steady-state

U is consisted of two input variables which are V S and I Z . However, for the steady-state output equation, the goal is to find the relationship between output and input voltage. Thus only variable V S is used for the derivation. However for I Z multiplication, matrices B and E are included. For this reason, B and E matrices need to be separated into two matrices; B S , E S for input variable V S and B Z , E Z for input variable I Z which are presented as follow: To get an equation that relates the output and input voltage, the above equation 7 needs to be modified by replacing U=V S , B=B S and E=E S =0: or in circuit parameters form [1]:                                R r C R R r L R r L D L D B B B C C C Z S 2 2 2 2 2 2 1             R r R r E E E C C Z S 2 2 S S O V B CA V 1                                         2 1 1 2 1 1 1 1 1 D D R r D D R r R r D D V V L C L S O 11

2.2.3 Zeta Converter Small-signal