1 0.3 2 0.6 3 0.8 4 0.9 5 1.0 1.00 1 0.3 2 0.6 3 0.8 4 0.9 5 1.0 1.00 1 0.3 2 0.6 3 0.8 4 0.9 5 1.0 1 1 0.3 2 0.6 3 0.8 1 0.3 2 0.6 3 0.8 4 0.9 5 1.0 1 1 0.3 2 0.6 3 0.8 4 0.9 5 1.0 1 https://drive.google.com/file/d/0B z5oZTdyBW1NUkwVnJoMUVkU0k/view?pli=1

F x P X x P i all i x      The cumulative distribution function , Fx, of a discrete random variable X is: x Px Fx 0.1 0.1 1

0.2 0.3 2

0.3 0.6 3

0.2 0.8 4

0.1 0.9 5

0.1 1.0 1.00

x Px Fx 0.1 0.1 1

0.2 0.3 2

0.3 0.6 3

0.2 0.8 4

0.1 0.9 5

0.1 1.0 1.00

5 4 3 2 1 1 .0 0 .9 0 .8 0 .7 0 .6 0 .5 0 .4 0 .3 0 .2 0 .1 0 .0 x F x Cumulative Probability Distribution of the Number of Switches Cumulative Distribution Function Cumulative Distribution Function x Px Fx 0.1 0.1 1

0.2 0.3 2

0.3 0.6 3

0.2 0.8 4

0.1 0.9 5

0.1 1.0 1

x Px Fx 0.1 0.1 1

0.2 0.3 2

0.3 0.6 3

0.2 0.8

4 0.1 0.9 5 0.1 1.0 1 The probability that at most three switches will occur: Cumulative Distribution Function Cumulative Distribution Function Note: Note: PX 3 = F3 = 0.8 = P0 + P1 + P2 + P3 x Px Fx 0.1 0.1 1

0.2 0.3 2

0.3 0.6 3

0.2 0.8 4

0.1 0.9 5

0.1 1.0 1

The probability that more than one switch will occur: Distributions Figure 3-8 Distributions Figure 3-8 Note: Note: PX 1 = PX 2 = 1 – PX 1 = 1 – F1 = 1 – 0.3 = 0.7 x Px Fx 0.1 0.1 1

0.2 0.3 2

0.3 0.6 3

0.2 0.8 4

0.1 0.9 5

0.1 1.0 1

The probability that anywhere from one to three switches will occur: Distributions Figure 3-9 Distributions Figure 3-9 Note: Note: P1 X 3 = PX 3 – PX 0 = F3 – F0 = 0.8 – 0.1 = 0.7 Rata-rata dari suatu dist. Peluang adalah ukuran pemusatan atau lokasi sebagai rata-rata dari suatu dist.frek. Besarannya merupakan rata- rata dibobot , dengan nilai dari variabel acak diboboti oleh peluangnya. Rata-rata selalu diketahui sebagai expected value or expectation dari suatu variabel acak . Nilai Ekspektasi dari variabel acak X adalah sama dengan jumlah dari variabel dikalikan dengan peluangnya .     E X xP x all x x Px xPx 0.1

0.0 1

0.2 0.2 2 0.3