Using Exceptions Without the Stack Trace Overhead Conditional Error Checking
6.1.3 Using Exceptions Without the Stack Trace Overhead
You may decide that you definitely require an exception to be thrown, despite the disadvantages. If the exception is thrown explicitly i.e., using a throw statement rather than a VM-generated exception such as the ClassCastException or ArrayIndexOutOfBoundsException , you can reduce the cost by reusing an exception object rather than creating a new one. Most of the cost of throwing an exception is incurred in actually creating the new exception, which is when the stack trace is filled in. Reusing an existing exception object without resetting the stack trace avoids the exception-creation overhead. Throwing and catching an existing exception object is two orders of magnitude faster than doing the same with a newly created exception object: public static Exception REUSABLE_EXCEPTION = new Exception ; ... Much faster reusing an existing exception try {throw REUSABLE_EXCEPTION;} catch Exception e {...} This next try-catch is 50 to 100 times slower than the last try {throw new Exception ;} catch Exception e {...} The sole disadvantage of reusing an exception instance is that the instance does not have the correct stack trace, i.e., the stack trace held by the exception object is the one generated when the exception object was created. [2] However, this disadvantage can be important for some situations when the trace is important, so be careful. This technique can easily lead to maintenance problems. [2] To get the exception object to hold the stack trace that is current when it is thrown, rather than created, you must use the fillInStackTrace method. Of course, this is what causes the large overhead that you are trying to avoid.6.1.4 Conditional Error Checking
During development, you typically write a lot of code that checks the arguments passed into various methods for validity. This kind of checking is invaluable during development and testing, but it can lead to a lot of overhead in the finished application. Therefore, you need a technique for implementing error checks that can optionally be removed during compilation. The most common way to do this is to use an if block: public class GLOBAL_CONSTANTS { public static final boolean ERROR_CHECKING_ON = true; ... } and code in methods of other classes includes an if block like if GLOBAL_CONSTANTS.ERROR_CHECKING_ON - 139 - { error check code of some sort ... This technique allows you to turn off error checking by recompiling the application with the ERROR_CHECKING_ON variable set to false . Doing this recompilation actually eliminates all if blocks completely, due to a feature of the compiler see Section 3.5.1.4 . Setting the value to false without recompilation also works, but avoids only the block, not the block entry test. In this case, the if statement is still executed, but the block is not entered. This still causes some performance impact: an extra test for almost every method call is significant, so it is better to recompile. [3] [3] However, this technique cannot eliminate all types of code blocks. For example, you cannot use this technique to eliminate try-catch blocks from the code they surround. You can achieve that level of control only by using a preprocessor . My thanks to Ethan Henry for pointing this out.6.2 Casts
Parts
» OReilly.Java.performance tuning
» The Tuning Game System Limitations and What to Tune
» A Tuning Strategy Introduction
» Threading to Appear Quicker Streaming to Appear Quicker
» User Agreements Starting to Tune
» Setting Benchmarks Starting to Tune
» The Benchmark Harness Starting to Tune
» Taking Measurements Starting to Tune
» What to Measure Introduction
» Dont Tune What You Dont Need to Tune
» Measurements and Timings Profiling Tools
» Garbage Collection Profiling Tools
» Profiling Methodology Method Calls
» Java 2 cpu=samples Profile Output
» HotSpot and 1.3 -Xprof Profile Output
» JDK 1.1.x -prof and Java 2 cpu=old Profile Output
» Object-Creation Profiling Profiling Tools
» Monitoring Gross Memory Usage
» Replacing Sockets ClientServer Communications
» Performance Checklist Profiling Tools
» Garbage Collection Underlying JDK Improvements
» Replacing JDK Classes Underlying JDK Improvements
» VM Speed Variations VMs with JIT Compilers
» Other VM Optimizations Faster VMs
» Inline calls Remove dynamic type checks Unroll loops Code motion
» Literal constants are folded String concatenation is sometimes folded Constant fields are inlined
» Optimizations Performed When Using the -O Option
» Performance Effects From Runtime Options
» Compile to Native Machine Code
» Native Method Calls Underlying JDK Improvements
» Uncompressed ZIPJAR Files Underlying JDK Improvements
» Performance Checklist Underlying JDK Improvements
» Object-Creation Statistics Object Creation
» Pool Management Object Reuse
» Reusable Parameters Object Reuse
» String canonicalization Changeable objects
» Weak references Canonicalizing Objects
» Avoiding Garbage Collection Object Creation
» Preallocating Objects Lazy Initialization
» Performance Checklist Object Creation
» The Performance Effects of Strings
» Compile-Time Versus Runtime Resolution of Strings
» Converting bytes, shorts, chars, and booleans to Strings Converting floats to Strings
» Converting doubles to Strings
» Converting Objects to Strings
» Word-Counting Example Strings Versus char Arrays
» Line Filter Example HotSpot 1.0
» String Comparisons and Searches
» Sorting Internationalized Strings Strings
» The Cost of try-catch Blocks Without an Exception
» The Cost of try-catch Blocks with an Exception
» Using Exceptions Without the Stack Trace Overhead Conditional Error Checking
» no JIT 1.3 Variables Strings
» Method Parameters Performance Checklist
» Exception-Terminated Loops Loops and Switches
» no JIT 1.3 Loops and Switches
» Recursion Loops and Switches
» no HotSpot 1.0 2nd Loops and Switches
» Recursion and Stacks Loops and Switches
» Performance Checklist Loops and Switches
» Replacing System.out IO, Logging, and Console Output
» Logging From Raw IO to Smokin IO
» no JIT HotSpot 1.0 no JIT HotSpot 1.0 Serialization
» no IO, Logging, and Console Output
» Clustering Objects and Counting IO Operations
» Compression IO, Logging, and Console Output
» Performance Checklist IO, Logging, and Console Output
» Avoiding Unnecessary Sorting Overhead
» An Efficient Sorting Framework
» no HotSpot Better Than Onlogn Sorting
» User-Interface Thread and Other Threads
» Desynchronization and Synchronized Wrappers
» Avoiding Serialized Execution HotSpot 1.0
» no JIT no JIT HotSpot 1.0 Timing Multithreaded Tests
» Atomic Access and Assignment
» Free Load Balancing from TCPIP
» Load-Balancing Classes Load Balancing
» A Load-Balancing Example Load Balancing
» Threaded Problem-Solving Strategies Threading
» Collections Appropriate Data Structures and Algorithms
» Java 2 Collections Appropriate Data Structures and Algorithms
» Hashtables and HashMaps Appropriate Data Structures and Algorithms
» Cached Access Appropriate Data Structures and Algorithms
» Caching Example I Appropriate Data Structures and Algorithms
» Caching Example II Appropriate Data Structures and Algorithms
» Finding the Index for Partially Matched Strings
» Search Trees Appropriate Data Structures and Algorithms
» Comparing Communication Layers Distributed Computing
» Batching I Application Partitioning
» Compression Caching Low-Level Communication Optimizations
» Transfer Batching Low-Level Communication Optimizations
» Batching II Distributed Garbage Collection
» Performance Checklist Distributed Computing
» When Not to Optimize Tuning Class Libraries and Beans
» Scaling Design and Architecture
» Distributed Applications Design and Architecture
» Object Design Design and Architecture
» Use simulations and benchmarks Consider the total work done and the design overhead
» Tuning After Deployment When to Optimize
» User Interface Usability Training Server Downtime
» Performance Checklist When to Optimize
» Clustering Files Cached Filesystems RAM Disks, tmpfs, cachefs
» Disk Fragmentation Disk Sweet Spots
» RAM Underlying Operating System and Network Improvements
» Network Bottlenecks Network IO
» Performance Checklist Underlying Operating System and Network Improvements
Show more