Synchronous Protocols Asynchronous Protocols
3.1 Link Protocol Types
Data link protocols are divided into two basic categories: synchronous and asynchronous. These are described below. It is important not to confuse synchronization at the data link layer with synchronization at the physical layer. These two are distinct and essential in their own right: physical layer synchronization ensures that the transmitter and the receiver share a common clock signal so that bit boundaries can be detected; data link layer synchronization ensures that user data is not confused with control data.3.1.1. Synchronous Protocols
Synchronous protocols operate by delimiting user data with unique bit patterns which the receiver uses to detect where the user data begins and where it ends. Synchronous protocols may be character-oriented or bit-oriented. In a character-oriented protocol, user data consists of a sequence of characters and is delimited by two unique control characters SYN and EOT. The biggest disadvantage of character-oriented protocols is that they are based on specific character sets e.g., ASCII or EBSDIC and are therefore character-set dependent. In a bit-oriented protocol, no specific character set is assumed. The unit of transmission is a frame, which consists of user data an arbitrary bit sequence, control data, address data, error checksum, and two delimiting bit patterns at either end of the frame. Figure 3.28 illustrates the frame structure for HDLC protocols discussed later in this chapter. Figure 3.28 HDLC frame structure. Field Description 01111110 Start flag: marks the beginning of the frame. Address Address of the host for which the frame is intended. Control Record frame type, frame sequence, flow control, etc. Data Contains the actual user data and is a bit sequence of arbitrary length. Checksum A checksum field for error detection. 01111110 End flag: marks the end of the frame. The delimiting bit pattern used is 01111110 and is called a flag. To avoid this bit pattern occurring in user data, the transmitter inserts a 0 bit after every five 38 Communication Networks Copyright © 2005 PragSoft consecutive 1 bits it finds. This is called bit stuffing; its effect is canceled by the receiver, which removes every 0 bit that occurs after every five consecutive 1 bits. Bit-oriented protocols are by comparison more recent than other protocols and have dominated the market. To acknowledge their importance, most of this chapter is devoted to the description of this class of protocols.3.1.2. Asynchronous Protocols
Asynchronous protocols are character-oriented and operate by having the transmitter surround each character with a start and a stop bit. These two bits indicate to the receiver where the character starts and where it ends. The receiver extracts the user data by removing the start and stop bits.3.1.3. Master-Slave Protocols
Parts
» | Komputasi | Suatu Permulaan
» Introduction 1 The Physical Layer 18 The Data Link Layer 36 The Network Layer 52
» Integrated Services Digital Network 140 Broadband ISDN and ATM 161
» Network Components Network Types
» The Physical Layer The Data Link Layer
» The Network Layer The Transport Layer
» The Session Layer The Presentation Layer
» Service Primitives Sequence Diagrams
» Signal Types Modulation Transmission
» Space Division Multiplexing SDM Frequency Division Multiplexing FDM Time Division Multiplexing TDM
» RS-232 Physical Layer Standards
» Further Reading Summary Exercises
» Synchronous Protocols Asynchronous Protocols
» Acknowledgments Timers Link Protocol Functions
» Error Checking Link Protocol Functions
» Retransmission Flow Control Link Protocol Functions
» Sliding Window Protocol The Data Link Layer
» BSC Data Link Layer Standards
» HDLC Data Link Layer Standards
» Further Reading Summary The Data Link Layer
» Exercises The Data Link Layer
» Network Services The Network Layer
» Circuit Switching Switching Methods
» Packet Switching Switching Methods
» Packet Structure Routing Packet Handling
» Congestion Control Error Handling
» CCITT X.25 Network Layer Standards
» CCITT X.75 IP Network Layer Standards
» ISO 8473 Network Layer Standards
» Further Reading Summary The Network Layer
» supports three types of packets: data packets, control packets, and interrupt
» Network Types Transport Services
» Classes of Protocol Transport Protocol
» Splitting and Recombining Transport Protocol
» Flow Control Transport Protocol
» Error Checking Transport Protocol
» TCP Transport Layer Standards
» Further Reading The Transport Layer
» Session Layer Role Session Services
» Functional Units Session Services
» Activities and Dialogue Units
» Error Reporting and Resynchronization
» Session Layer Standards The Session Layer
» Further Reading The Session Layer
» Service Primitives Presentation Services
» Definitions in ASN.1 Abstract Syntax Notation One
» Basic Encoding Rules Abstract Syntax Notation One
» Presentation Protocol The Presentation Layer
» Presentation Standards The Presentation Layer
» Further Reading The Presentation Layer
» Application Entity Application Services
» Association Control Common Application Service Elements
» Reliable Transfer Common Application Service Elements
» Virtual Terminal Specific Application Service Elements
» Message Handling Systems Specific Application Service Elements
» File Transfer, Access, and Management
» Other Standards The Application Layer
» Further Reading The Application Layer
» Topologies and Access Protocols
» Logical Link Control IEEE 802 Standards
» Token Ring Protocol ANSI FDDI Standard
» Further Reading Local Area Networks
» A Simple Network Basic Concepts
» Networks Topologies Basic Concepts
» Switching Systems Basic Concepts
» Common Channel Signaling Signaling
» Signaling Data Link Signaling Link Control
» Signaling Network Functions Signaling System Number 7
» Signaling Connection Control Part
» User Parts Signaling System Number 7
» PBX Networks Private Telephone Networks
» Corporate Networks Private Telephone Networks
» Intelligent Networks Private Telephone Networks
» Further Reading Telephone Networks
» ISDN Channels Basic Concepts
» Functional Groupings and Reference Points
» ISDN Services Basic Concepts
» The Physical Layer Protocol Architecture
» The Network Layer Protocol Architecture
» Internetworking Integrated Services Digital Network
» ISDN Standards Integrated Services Digital Network
» Further Reading Integrated Services Digital Network
» B-ISDN Services Broadband ISDN
» B-ISDN User-Network Interface Broadband ISDN
» B-ISDN Protocol Architecture Broadband ISDN
» Channels and Paths Asynchronous Transfer Mode
» ATM Cells Asynchronous Transfer Mode
» SDH-Based Interface Physical Layer
» Cell-Based Interface Physical Layer
» Cell Delineation Physical Layer
» HEC Generation and Verification
» Cell Rate Decoupling Physical Layer
» Virtual Channel Identifier ATM Layer
Show more