The case with deterministic return on investments

G. Wang Insurance: Mathematics and Economics 28 2001 49–59 53 Similar to Proposition 2.1, we have the following proposition. Proposition 2.2. Suppose F z has continuous density function on [0, +∞, then Ψ s u is continuous on [0, +∞.

3. The case with deterministic return on investments

Let B t = σ R t exp{−rs} dW s , B t is Itˇo’s stochastic integral, its variance process is hBi t = σ 2 2r1−exp{−2rt}. Let vs = inf{t : hBi t s}, then vs = 1 2r ln σ 2 σ 2 − 2rs . 3.1 For s σ 2 2r, set W s = B vs , it is well known that W s is a local Brownian motion starting from the origin and running for an amount of time σ 2 2r. Let T u = inf{t ≥ 0 : R t 0} and defining T u = +∞ if R t ≥ 0 for all t ≥ 0. Denote by Ψ u the ruin probability of the risk process 1.4, then Ψ u = P T u +∞. For u 0 we assume E[R t ] = exp{rt}[u + 1r1 − exp{−rt}c − λµ] 0 see Lemma 2.1 in Wang and Wu 1998, i.e., we assume c − λµ 0 so that we have Ψ u 1. For the risk process 1.4 we denote by Ψ d u and Ψ s u the ruin probability caused by oscillation and the ruin probability caused by a claim, respectively. We still have Ψ u = Ψ d u + Ψ s u. 3.2 Suppose F z has continuous density function on [0, +∞, similar to 2.4 and 2.5 we have Ψ d u = P T u +∞, R T u = 0, 3.3 Ψ s u = P T u +∞, R T u 0. 3.4 From 3.3 and 3.4 we get that Ψ d u = 0, u 0, 1, u = 0, 3.5 Ψ s u = 1, u 0, 0, u = 0. 3.6 Theorem 3.1. Let u 0, suppose F z has continuous density function on [0, +∞, then the probability Ψ d u satisfies the following integral equation: Ψ d u = Z +∞ λ exp{−λs} ds Z u −u H u, v −1 s, x dx × Z exp{rs}[u+x+cr1−exp{−rs}] Ψ d exp{rs} h u + x + c r 1 − exp{−rs} − z exp{−rs} i dF z + 1 2 Z σ 2 2r h Ψ d exp{rvs} h 2u + c r 1 − exp{−rvs} i + Ψ d c r exp{rvs} − 1 i ×exp{−λvs}hu, s ds. 3.7 54 G. Wang Insurance: Mathematics and Economics 28 2001 49–59 Proof. Let τ u = inf{vs : |B vs | = u}, τ u = inf{s : |B vs | = u}, then τ u = vτ u . Put T = T 1 ∧ τ u . Similar to formula 2.9 we have Ψ d u = E[Ψ d R T ]. 3.8 Thus, Ψ d u = E[Ψ d R T ] = E[Ψ d R T 1 I T 1 ≤ τ u ] + E[Ψ d R τ u I T 1 τ u ] = I 1 1 + I 1 2 . 3.9 We now present the expressions for I 1 and I 2 . I 1 1 = E Ψ d exp{rT 1 } u + Z T 1 exp{−rs} dR s I T 1 ≤ τ u = E h Ψ d exp{rT 1 } h u + c r 1 − exp{−rT 1 } + B T 1 i − Z 1 I T 1 ≤ τ u i , and I 1 2 = E Ψ d exp{rτ u } u + Z τ u exp{−rs} dR s I T 1 τ u = E h Ψ d exp{rτ u } h u + c r 1 − exp{−rτ u } + B τ u i I T 1 τ u i . Then exactly similar to the calculations of I 1 and I 2 in Theorem 2.1 in Wang and Wu 1998, we can verify that I 1 1 and I 1 2 are equal to the first term and the second term on the right-hand side of 3.7, respectively. The proof is completed. h Similar to Theorem 2.2, we have the following theorem. Theorem 3.2. Suppose F z has continuous density function on [0, +∞, then Ψ d u is twice continuously differ- entiable in 0, +∞. Theorem 3.3. Suppose F z has continuous density function on [0, +∞, then Ψ d u satisfies the following integro-differential equation: 1 2 σ 2 Ψ ′′ d u + ru + cΨ ′ d u = λΨ d u − λ Z u Ψ d u − z dF z, u 0. 3.10 Proof. Let ε, t, M 0 such that ε u M and T ε,M t = inf{s 0 : exp{rs}[u + cr1 − exp{−rs} + B s ] ∈ ε, M} ∧ t. Note that Ψ ′ d u and Ψ ′′ d u are bounded on [ε, M] and therefore R S∧T ε,M t Ψ ′ d exp{rv}[u + cr1 − exp{−rv} + B v ]exp{rv} dB v is a martingale. Put T = T ε,M t ∧ T 1 , similar to the equality 3.8 we have Ψ d u = E[Ψ d R T ε,M t ∧T 1 ]. 3.11 G. Wang Insurance: Mathematics and Economics 28 2001 49–59 55 Therefore, by a standard use of Itˇo’s formula, we get Ψ d u = exp{−λt}E h Ψ d exp{rT ε,M t } h u + c r 1 − exp{−rT ε,M t } + B T ε,M t ii + Z t λ exp{−λs} n E h Ψ d exp{rT ε,M s } h u + c r 1 − exp{−rT ε,M s } + B T ε,M s i I T ε,M s s i + Z +∞ E h Ψ d exp{rT ε,M s } h u + c r 1 − exp{−rT ε,M s } + B T ε,M s i − z I T ε,M s = s i dF z ds = exp{−λt} Ψ d u + E Z T ε,M s Ψ ′ d exp{rs} h u + c r 1 − exp{−rs} + B s i × exp{rs} h u + c r 1 − exp{−rs} + c + r exp{rs}B s i + σ 2 2 Ψ ′′ d exp{rs} h u + c r 1 − exp{−rs} + B s i ds + Z t λexp{−λs} n E h Ψ d exp{rT ε,M s } h u + c r 1 − exp{−rT ε,M s } + B T ε,M s i I T ε,M s s i + Z +∞ E h Ψ d exp{rT ε,M s } h u + c r 1 − exp{−rT ε,M s } + B T ε,M s i − z I T ε,M s = s i dF z ds. Dividing by t gives 1 − exp{−λt} t Ψ d u = exp{−λt} E 1 t Z T ε,M s Ψ ′ d exp{rs} h u + c r 1 − exp{−rs} + B s i × exp{rs} h u + c r 1 − exp{−rs} + c + r exp{rs}B s i + σ 2 2 Ψ ′′ d exp{rs} h u + c r 1 − exp{−rs} + B s i ds + 1 t Z t λ exp{−λs} × n E h Ψ d exp{rT ε,M s } h u + c r 1 − exp{−rT ε,M s } + B T ε,M s i I T ε,M s s i + Z +∞ E h Ψ d exp{rT ε,M s } h u + c r 1 − exp{−rT ε,M s } +B T ε,M s i − z I T ε,M s = s i dF z o ds. Letting t → 0 we get that 3.10 holds in ε, M and therefore in 0, +∞. The proof is completed. h Similar to Theorems 3.2 and 3.3 and Propositions 2.1 and 2.2, we have the following theorem. Theorem 3.4. Suppose F z has continuous density function on [0, +∞, then Ψ s u is twice continuously differ- entiable in 0, +∞. Theorem 3.5. Suppose F z has continuous density function on [0, +∞, then Ψ s u satisfies the following integro-differential equation: 1 2 σ 2 Ψ ′′ s u + ru + cΨ ′ s u = λΨ s u − λ Z u Ψ s u − z dF z − λ1 − F u, u 0. 3.12 Proposition 3.1. Suppose F z has continuous density function on [0, +∞, then Ψ d u is continuous on [0, +∞. 56 G. Wang Insurance: Mathematics and Economics 28 2001 49–59 Proposition 3.2. Suppose F z has continuous density function on [0, +∞, then Ψ s u is continuous on [0, +∞.

4. Examples

Dokumen yang terkait

BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Tentang Asam Jawa (Tamarindus indica) - EFEKTIVITAS EKSTRAK DAUN ASAM JAWA (Tamarindus indica L.) TERHADAP DAYA HAMBAT Staphylococcus epidermidis SEBAGAI SUMBER BELAJAR BIOLOGI - UMM Institutional Repository

0 0 19

BAB III METODOLOGI PENELITIAN 3.1 Jenis Penelitian - EFEKTIVITAS EKSTRAK DAUN ASAM JAWA (Tamarindus indica L.) TERHADAP DAYA HAMBAT Staphylococcus epidermidis SEBAGAI SUMBER BELAJAR BIOLOGI - UMM Institutional Repository

2 8 26

Factors That Have Caused Dengue Hemorrhagic Fever (Dhf) To Become A Public Health Problem In Indonesia And Effective Dhf Control

0 0 6

ASUPAN ZAT BESI DAN SENG PADA BAYI UMUR 6 —11 BULAN DI KELURAHAN JATI CEMPAKA, KOTA BEKASI, TAHUN 2014 Iron And Zinc Intake in Infants Aged 6 —11 Months in Kelurahan Jati Cempaka, Bekasi City, 2014

0 0 8

KONSELING PSIKOLOGI DAN KECEMASAN PADA PENDERITA HIPERTIROID DI KLINIK LITBANG GAKI MAGELANG Psychological Counseling And Anxiety In Patients With Hyperthyroidism In Klinik Litbang GAKI Magelang

0 9 10

Resistensi Malathion dan Aktivitas Enzim Esterase Pada Populasi Nyamuk Aedes aegypti di Kabupaten Pekalongan Malathion Resistance And Esterase Enzyme Activity Of Aedes aegypti Population In Pekalongan Regency

0 0 10

PENDIDIKAN DAN PEKERJAAN BERDASARKAN KUALITAS fflDUP PADA REMAJA (GAMBARAN DESKRIPTIF DATA RISKESDAS 2007) The Levels Of Education And Occupation Of Adolescence Based On Their Quality Of Life (Riskesdas 2007)

0 0 9

TREN PENYAKIT PENYEBAB KEMATIAN BAYI DAN ANAK BALITA DI INDONESIA DALAM PERIODE TAHUN 1992-2007 Trend Of Causes Of Death Of Infant And Children Under-Five Year Old In Indonesia In The Year Period 1992-2007

0 0 8

Patern On Health Seeking Behavior And Risk Behavior Among Adult In Indonesia (Furher Analysis Data Riskesdas 2007)

0 0 10

PENGETAHUAN, SIKAP DAN PERILAKU IBU BALITA DALAM PEMANFAATAN SISA PRODUK VIRGIN COCONUT OIL (BLONDO VCO) PADA MAKANAN LOKAL UNTUK PENINGKATAN GIZI BALITA DI KABUPATEN BUTON (Knowledge, Attitude And Practice of Mother with Children Under Five Years on The

0 1 9