Volume 48
–
No.2, June 2012
48
7. REFERENCES
[1] J. Han Kamber, M. 2006. Data Mining: Concepts and Techniques, 2nd ed. San Francisco: Morgan Kaufman.
[2] U. Fayyad, G.Piatetsky- Shapiro, and P.Smyth, “From Data
Mining to Knowledge Discovery in Databases”, AI Magazine, Vol.17, pp.37-54, 1996.
[3] Introduction to Data Mining and Knowledge Discovery, Third Edition ISBN: 1-892095-02-5, Two Crows
Corporation 10500 Falls Road, Potomac, MD 20854 U.S.A.,1999.
[4] L.A.Rose, D.T., “Discovering Knowledge in Data: An
Introduction to Data Mining”, ISBN O-471-66657-2, ohn Wiley Sons, Inc, 2005.
[5] World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia:
Available: http:www.who. int diabetesen [6] World Health Organization. Available: http:
www.who.inttopics diabetes mellitusen [7] International Diabetes Federation IDF, Available:
http:www.idf .org about-diabetes
[8] American Diabetes Association Available: http:
www.diabetes.org [9] NJ Morrish, Wang , Stevens , Fuller JH, Keen H.
“Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes”.
Diabetologia 2001; 44 Suppl 2:s14 – s21 Available:
http: citeulike.org usermpgrayerarticle3496572 [10] R.Emslie
– AM Smith Gardner ID, Morris AD. “Vascular Complications of Diabetes”. British Medical
Journal 2000;
320:1062 –
6 Available:http:bmj.comBMJ 2000; 320 doi:
10.1136bmj.320.7241.1062 [11] S.M. Haffner Lehto S, Ronnemaa T, Pyoyala K, Laakso
M. “Mortality from Coronary heart disease in subjects with Type 2 Diabetes and Nondiabetic Subjects with and
without prior Myocardial Infarction”. The New England Journal of Medicine 1998; 339:229
– 34 Available: http:
biomedcentral.comBMC Health
Services Research
2011, 11:180 doi: 10.11861472-6963-11-180 [12] Diabetes with cardiovascular disease- Available: www.
idf.orgfact-sheetsdiabetes-cvd [13] Y. Huang, P. McCullagh, N. Black, and R. Harper,
Feature selection and classification model construction on type 2 diabetic patient’s data, in Lecture Notes in
Artificial intelligence, vol. 3275, ICDM 2004, P. Perner, Ed. Berlin: Springer-Verlag, 2004, pp. 153-162.
[14] R. Bellazzi, C. Larizza, P. Magni, S. Montani, and M. Stefanelli, Intelligent analysis of clinical time series: an
application in the diabetes mellitus domain, Artificial Intelligence
in Medicine,
vol. 20
pp. 37-57,
2000.Available: http:dx.doi.org10.1016S0933- 36570000052-X
[15] R. Bellazzi, Telemedicine and Diabetes Management: Current Challenges and Future Research Directions,
Journal of Diabetes Science and Technology, vol. 2, no. 1, pp. 98-104, 2008.
[16] R. Goel, A. Misra, D. Kondal, R. M. Pandey, N. K. Vikram, J. S. Wasir, V. Dhingra, and K. Luthra,
Identification of insulin resistance in Asian Indian adolescents:classification and regression tree CART
and logisticregression based classification rules, Clinical Endocrinology, vol. 70 pp. 717-724, 2009.
[17] K. E. Heikes, B. Arondekar, D. M. Eddy, and L. Schlessinger, Diabetes Risk Calculator,A simple tool
for detecting undiagnosed diabetes and pre-diabetes, Diabetes Care, vol. 31, no. 5, pp. 1040-1045, 2008
[18] N. Lavrac, E. Keravnou, and B. Zupan, Intelligent Data Analysis in Medicine, in Encyclopedia of Computer
Science and Technology, vol. 42, K. e. al., Ed. New York: Dekker, 2000, pp. 113-157.
[19] W. Kong, L. Tham, K. Y. Wong, and P.Tan, Support vector machine approach for cancer detection using
amplified fragment length polymorphism AFLP method, Proc. the 2nd Asia-Pacific Bioinformatics
Conference APBC2004, Dunedin, New Zealand, 2004.
[20] A. Karaolis
,
Joseph A. Moutiris, Demetra Hadjipanayi, and Constantinos S. Pa
ttichis. “Assessment of the Risk Factors of Coronary Heart Events Based on Data Mining
With Decision Trees”. IEEE Transaction on Information Technology in Biomedicine, Vol. 14, No. 3,
May2010.Available: http:ieeexplore.ieee.orgxplsabs_all.jsp?arnumber=53
78501DigitalObject Identifier: 10.1109TITB.2009.2038906
[21] K. Srinivas, Dr. G. Raghavendra Rao, and Dr. A. Govardhan. “Analysis of Coronary Heart Disease and
Prediction of Heart Attack in Coal Mining Regions Using Data Mining Techniques”. The 5th International
Conference on Computer Science Education Hefei, China. August 24
–27, 2010. [22] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin.
“A Practical Guide to Support Vector Classification”. Available: http: www.csie .ntu.edu.tw~cjlin.
[23] Introduction to Support Vector Machine Available: http:en. wikipedia. orgwikiSupport_vector_machine
[24] Colin Campbell and Yiming Ying, Learning with Support
Vector Machines, 2011, Morgan and Claypool. Available: http:www.
morganclaypool.comdoiabs10.2200S00324ED1V01Y201102 AIM010?journalCode=aim
[25] H.Barakat, Andrew P.Bradley and Mohammed Nabil H.Barakat 2009 “Intelligible Support Vector Machines
for Diagnosis of Diabetes Mellitus”, IEEE Transactions on Information Technology in Bio Medicine, Volume 14,
Issue 4, pp 1-7, 2009. Available: http:ieeexplore. ieee.org xpls abs_ all.jsp?arnumber=5378519 Digital
Object Identifier: 10.1109 TITB. 2009.2039485
[26] N. Barakat and A.P.Bradley, “Rule Extraction from
Support Vector Machines: A Sequential Covering Approach “ IEEE Transactions on Knowledge and Data
Engineering, Volume 19,no.6,pp 729-741, 2007. Available:
http:ieeexplore.ieee.orgstampstamp.jsp?arnumber=04 161896
Digital Object
Identifier no.
10.1109TKDE.2007.1023. [27] S.Balakrishnan, R.Narayanaswamy, N.Savarimuthu,
R.Samikannu “SVM Ranking with Backward Search for Feature Selection in
Type II Diabetes Databases” 2008