Pertemuan Ke-2 Molekuler Mekanik

  

Mekanika

Molekuler

  Pertemuan ke-2

Pendahuluan

  • Mekanika molekuler (Molecular Mechanics) adalah pendekatan modeling berdasarkan mekanika klasik
  • Terminologi yang sama dengan pendekatan ini adalah Force

  Field Method

  • Satuan penyusun (building blocks) dalam metode mekanika molekuler adalah atom, elektron tidak dianggap sebagai partikel individual
  • Konsekuensinya ikatan antar atom tidak dilihat sebagai hasil penyelesaian persamaan Schrödinger untuk elektron
  • Informasi tentang ikatan dinyatakan secara eksplisit yang berarti diillustrasikan secara fisik bukan sebagai hasil interaksi elektron valensi
  • Mekanika molekuler telah terbukti bermanfaat untuk menjelaskan sistem dengan molekul besar atau padatan

Menguraikan Sistem

  • Deskripsi sistem: apa unit dasar (partikel) yang dipilih, ada berapa banyak?
  • Kondisi awal: Dimana posisi partikel

    dan bagaimana kecepatannya
  • Interaksi: Apa bentuk persamaan matematika untuk gaya yang bekerja antar partikel tersebut
  • Persamaan dinamik: Apa bentuk

Hierarki Satuan Penyusun untuk Mengurai Sistem Kimia

  Elektron Atoms Molekul

  Nuklei Protons

  Makromolekul Neutrons

Pemilihan Satuan Penyusun (Building

  Blocks)

  • Jika memilih inti atom dan elektron sebagai partikel penyusun, kita bisa mengurai atom dan

  molekul namun tidak bisa mengurai struktur

  internal inti atom

  • Jika memilih atom sebagai partikel penyusun, kita bisa mengurai struktur molekul namun tidak bisa mengurai distribusi elektron
  • Jika memilih molekul (asam amino) sebagai partikel penyusun, kita bisa mengurai struktur

  overall makromolekul (protein) namun tidak

  bisa mengurai pergerakan atom-atom dalam molekul.

Pemilihan Kondisi Awal

  • Posisi ruang yang lengkap (complete phase space) dari suatu sistem adalah sesuatu yang sangat besar:

    Mencakup semua nilai yang mungkin dari posisi dan

    kecepatan satu partikel
  • Kita hanya bisa mengurai sebagian kecil saja dari kondisi ini
  • Misalnya suatu isomer (struktural atau konformasional) dan reaksi kimia ingin coba diuraikan
  • Senyawa C
  • 6 H 6 memiliki banyak kemungkinan struktur dan konformasi, namun jika kita spesifik

    pada senyawa benzene, maka kondisi awal sistem

    Interaksi Partikel dan Persamaan Dinamik

    • Pada level atomik, interaksi dasar yang bekerja hanya interaksi elektromagnetik
    • Pada pendekatan Mekanika Molekuler, interaksi antar partikel disusun dalam bentuk parameter yaitu interaksi stretching, bending, torsional, van der Waals dll.
    • • Persamaan dinamik menjelaskan bagaimana

      suatu sistem berubah dengan perubahan waktu, Misal: dengan menggunakan GLBB

      kita bisa menjelaskan posisi sistem setelah

    • 1 2

        =� � � � �   waktu tertentu

        

      Interaksi Fundamental

      Name Particles Rang e (m) Relative Strengt h

        Strong Interaction

        Quarks  10 - 15

        100 Weak Interaction

        Quarks, leptons  10 - 15 0.001

        Electromagneti c Charged particles

        

        1 Gravitational Mass 

        10 -40

      Keterangan

      • Strong interaction adalah gaya yang menahan inti atom

        agar tetap utuh walaupun ada tolak menolak antar proton

        didalam
      • Weak interaction gaya yang bertanggung jawab pada

        peluruhan inti atom dengan mengkoversi neutron menjadi

        proton (-decay)
      • • Keduanya adalah gaya yang bekerja short range dan hanya

        signifikan within the atomic nucleus
      • Interaksi elektromagnetik dan gravitasional berbanding terbalik dengan jarak partikel
      • Interaksi elektromagnetik terjadi antara partikel bermuatan
      • Interaksi gravitasional terjadi antara partikel yang

      Pendekatan didalam

        Force Field a.k.a

      Mekanika Molekuler

      • Force field menggunakan pendekatan mekanika klasik seperti persamaan Newton untuk mendeskripsikan sistem
      • Aspek kuantum dan energi elektron ditiadakan/tidak diperhitungkan
      • Dengan pendekatan klasik, permasalahan direduksi menjadi menentukan energi sistem pada struktur geometri tertentu
      • Seringkali juga digunakan untuk menentukan geometri

        untuk molekul yang paling stabil atau konformasi terbaik

        yang melibatkan interkonversi antar konformasi
      • Untuk keperluan ini perhitungkan diarahkan pada

        penentuan energi minima pada potential energy surface

        

      Potential Energy

      (Flash info) Surface

        

      (Flash info)

      Definisi

      • Atom-atom dalam molekul disatukan bersama oleh ikatan kimia
      • • Saat atom terdistorsi, ikatan akan meregang atau menekuk/

        mengkerut yang menyebabkan energi potensial sistem meningkat
      • • Setelah susunan geometri atom-atom yang baru terbentuk,

        molekul berada dalam kondisi stasioner. Pada posisi ini energi sistem tidak dipengaruhi oleh energi kinetik tetapi oleh posisi atom-atom (potensial)
      • Energi dari molekul merupakan fungsi dari posisi inti, saat inti bergerak, elektron secara cepat akan menyesuaikan 
      • • Hubungan antara energi molekuler dan geometri molekuler

        dapat dipetakan menjadi sebuah potential energy surface

      Terminologi dalam Mekanika Molekuler

      • Molekul dalam MM diilustrasikan sebagai ball and

        

      spring dimana atom digambarkan memiliki ukuran

      dan kelembutan tertentu sedangkan ikatan digambarkan memiliki panjang dan kekakuan tertentu

      • Dasar dari pendekatan FF/MM ini adalah bahwa molekul tersusun atas unit dengan struktur yang serupa hanya berada dalam molekul yang berbeda
      • • Misalnya semua ikatan ini sama pada molekul apa pun

        CH memiliki panjang 1,06 sd 1,10 Å Vibrasi regang CH 2900 sd 3300 cm -1 CH dapat dikembangkan lagi menjadi CH yang terikat pada ikatan tunggal, ganda atau rangkap 3

      Tipe Atom dalam MM

      • Penggambaran molekul yang tersusun atas unit struktural (gugus fungsi) serupa dengan bentuk molekul yang berbeda pada Kimia Organik • Kimiawan organik biasanya menggunakan ball n stick atau huruf nama atom dan garis ikatan untuk menggambarkan molekul
      • • FF method mirip dengan pendekatan ini

        dengan penambahan atom dan ikatan

        tidak memiliki satu ukuran dan panjang

        yang fixed
      • Unit struktural yang serupa pada molekul yang berbeda ini diimplementasikan dalam FF dengan istilah tipe atom
      • Tipe atom tergantung pada nomor atom

        dan jenis ikatan kimia yang terlibat

      Energi dalam Force

        Field Method

      • • Energi dalam Force Field ditulis sebagai jumlah dari

        semua suku
      • Masing-masing suku menguraikan energi yang

        dibutuhkan untuk mendistorsi molekul dalam arah

        tertentu

        

      E FF = E str + E bend + E tors + E vdw + E el + E cross

      • Dimana E str adalah energi stretching ikatan antara 2 atom, E bend energi yang dibutuhkan untuk membengkokkan sudut ikatan, E tors energi untuk

        proses rotasi memutar disekitar ikatan, E vdw dan E el

        menguraikan interaksi atom-atom non-ikatan dan

        Energi dalam Force Field

      The Stretch Energy

      • E str

        adalah fungsi energi untuk meregangkan ikatan antara 2 tipe atom A dan B

      • Dalam bentuknya yang paling sederhana, E str dituliskan sebagai deret Taylor disekitar Panjang ikatan “natural” atau “kesetimbangan” R .
      • Parameter R bukan Panjang ikatan kesetimbangan sembarang molekul,
      • Ia adalah parameter yang saat digunakan untuk menghitung struktur energi minimum suatu molekul akan menghasilkan geometri dengan Panjang ikatan kesetimbangan berdasarkan eksperiment
      • 2 2

          1 �� � �

            �� �� �� �� �� ��

        The Bending Energy

        • E adalan energi yang dibutuhkan untuk bend membengkokan sudut yang dibentuk oleh 3 atom ABC, dimana ada ikatan yang terbentuk antara A dan B dan antara B dan C • Bentuk persamaannya juga merupakan deret

          Taylor disekitar sudut ikatan “natural” yang berakhir pada orde kedua dan memberikan pendekatan harmonik ��� ��� ��� ��� ��� 2

            = � − � = � � − � ����

        ( ) ( )

          The Out-of-Plane Bending Energy 2

        • If the central B atom in the angle ABC is sp -hybridized, there is a significant energy penalty associated with making the centre pyramidal, since the four atoms prefer to be located in a plane. If the four atoms are exactly in a plane, the sum of the three angles with B as the central atom should be exactly 360°, however, a quite large pyramidalization may be achieved without seriously distorting any of these three angles.
        • Taking the bond distances to 1.5Å, and moving the central atom 0.2 Å out of the plane, only reduces the angle sum to  (i.e. only a 1.7° decrease per angle).

          354.8 • The corresponding out-of-plane angle, , is 7.7  for this case.

        • Very large force constants must be used if the ABC, ABD and

          CBD angle distortions are to reflect the energy cost associated with the pyramidalization.

        • This would have the consequence that the in-plane angle deformations for a planar structure would become unrealistically stiff.
        • Thus a special out-of-plane energy bend term (E oop

          ) is usually added, while the in-plane angles (ABC, ABD and CBD) are treated as in the general case above

        • E oop

          may be written as a harmonic term in the angle  (the equilibrium angle for a planar structure is zero) or as a quadratic function in the distance d, as given in equation below

           

          atau

          The Out-of-Plane Bending Energy

        The Torsional Energy

        • E describes part of tors the energy change associated with rotation around a B—C bond in a four-atom sequence A—B—C—D, where A—B, B—C and C—D are bonded
        • Looking down the B— C bond, the torsional angle is defined as the angle formed by the A —B and C—D bonds as shown in Figure.

        • The torsional energy is fundamentally different from E str and E in three aspects: bend

          1. A rotational barrier has contributions from both the non- bonded (van der Waals and electrostatic) terms, as well as the torsional energy, and the torsional parameters are therefore intimately coupled to the non-bonded parameters.

          2. The torsional energy function must be periodic in the angle 

          : if the bond is rotated 360° the energy should return to the same value.

          3. The cost in energy for distorting a molecule by rotation around a bond is often low, i.e. large deviations from the minimum energy structure may occur, and a Taylor expansion in  is therefore not a good idea.

        • To encompass the periodicity, E tors is written as a Fourier series.

            

          ( ) = ( ) � � ��� �

          ���� �

        • The n = 1 term describes a rotation that is periodic by 360°, the n = 2 term is periodic by 180°, the n = 3 term is

          periodic by 120°, and so on. The V constants determine

          n

          the size of the barrier for rotation around the B—C bond.

        • Depending on the situation, some of these V constants n may be zero. In ethane, for example, the most stable

          conformation is one where the hydrogens are staggered

          relative to each other, while the eclipsed conformation represents an energy maximum.
        • As the three hydrogens at each end are identical, it is clear that there are three energetically equivalent

          staggered, and three equivalent eclipsed, conformations.

        • The rotational energy profile must therefore have three minima and three maxima.

          Energi Torsional Etana

        The Van der Waals Energy

        • E vdw

          is the van der Waals energy describing the repulsion or attraction between atoms that are not directly bonded.

          , it describes the non-bonded energy.

        • Together with the electrostatic term E el
        • E vdw

          may be interpreted as the non-polar part of the interaction not related to electrostatic energy due to (atomic) charges.

        • This may for example be the interaction between two methane molecules, or two methyl groups at different ends of the same molecule.

        • E is zero at large interatomic distances and vdw becomes very repulsive for short distances.
        • • In quantum mechanical terms, the latter is due to the

          overlap of the electron clouds of the two atoms, as the negatively charged electrons repel each other.
        • At intermediate distances, however, there is a slight attraction between two such electron clouds from

          induced dipole–dipole interactions, physically due to

          electron correlation
        • Even if the molecule (or part of a molecule) has no permanent dipole moment, the motion of the

          electrons will create a slightly uneven distribution at

        • This dipole moment will induce a charge polarization in the neighbor molecule (or another part of the same molecule), creating an attraction, and it can be derived theoretically that this attraction varies as the inverse sixth power of the distance between the two fragments.
        • E vdw is very positive at small distances, has a minimum that is slightly negative at a distance corresponding to the two atoms just “touching” each other, and approaches zero as the distance becomes large.
        • A general functional form that fits these conditions is given in eq. (2.11). ��
        • �� ��

              ( ) = ( )

            � � � � −

          ��� ���������

          �� 6 ( )

          The Electrostatic Energy: Charges and Dipoles

          • • The other part of the non-bonded interaction is due to

            internal (re)distribution of the electrons, creating positive and negative parts of the molecule.
          • A carbonyl group, for example, has a negatively charged oxygen and a positively charged carbon.
          • At the lowest approximation, this can be modelled by assigning (partial) charges to each atom.
          • • Alternatively, the bond may be assigned a bond dipole

            moment. These two descriptions give similar (but not

            identical) results.
          • Only in the long distance limit of interaction between

            such molecules do the two descriptions give identical

            results.

          • The interaction between point charges is given by the Coulomb potential, with  being a dielectric constant.
          • The atomic charges can be assigned by empirical rules, but are more commonly assigned by fitting to the electrostatic potential � � calculated by electronic structure methods
          • �� � �

                ( )

              � � �� = ��

              

               � � ��    

              ( ) = cos  3 � �

              ��� � ��� � �� �� 3 ( � � )

              

              ( )

            Cross Terms

            • The first five terms in the general energy expression, eq. (2.1), are common to all force fields. The last term, E , covers cross coupling between these fundamental, or diagonal, terms. Consider for example a molecule such as H 2 O.
            • It has an equilibrium angle of 104.5° and an O—H distance of

              0.958 Å. If the angle is compressed to say 90 , and the optimal

              bond length is determined by electronic structure calculations, the equilibrium distance becomes 0.968Å, i.e. slightly longer.
            • Similarly, if the angle is widened, the lowest energy bond length becomes shorter than 0.958Å. This may qualitatively be

              understood by noting that the hydrogens come closer together if

              the angle is reduced.
            • This leads to an increased repulsion between the hydrogens, which can be partly alleviated by making the bonds longer. If only the first five terms in the force field energy are included, this

            • It may be taken into account by including a term that depends on both bond length and angle.

              E may in general include a whole series of cross

              terms that couple two (or more) of the bonded terms.

            • The components in E are usually written as cross products of first-order Taylor expansions in the individual coordinates.
            • The most important of these is the stretch/bend term, which for an A—B—C sequence may be ��� ��� ��� �� �� �� �� written as in eq. (2.31)

               = � � − � � − � − � − �   ( ) ( ) ( ) ��� /���� [

              ]

            Aplikasi MM: Padatan Ionik

            • Aplikasi mekanika molekuler pada padatan ionik serupa dengan kalkulasi energi kisi
            • Bahkan metode MM memang bisa digunakan untuk menghitung energi kisi, juga efek adanya cacat pada senyawa ionik dan sifat kristal
            • Pertanyaan awal untuk mengurai energi kisi:
            • Apa gaya yang menahan ion-ion berkumpul membentuk kristal pada lattice site –nya
            • Jawabannya adalah gaya tarik elektrostatik

            Aspek Energi dalam Ikatan Ionik: Energi Kisi

            • Misalkan ada suatu reaksi antara unsur logam yang reaktif (Li) dan mudah melepas elektron dengan gas halogen (F) yang cenderung menarik elektron:

              Li(g)  Li (g) + e

              IE = 520 kJ

              1

              F(g) + e  F (g) EA = -328 kJ

            • Reaksi total:

              

            Li(g) + F(g)  Li (g) + F (g) IE + EA = 192

              1 kJ

            • • Energi total yang dibutuhkan reaksi ini bahkan

              lebih besar karena kita harus mengkonversi Li

              dan F kedalam bentuk gas
            • • Akan tetapi eksperimen menunjukkan enthalpi

              pembentukan padatan LiF (∆H

              f ) = -617 kJ

            • Jika kedua unsur dalam bentuk gas:
            • Li
              • (g) + F
                • (g)  LiF(g) ∆H = -755 kJ

            • Energi kisi adalah perubahan enthalpi yang menyertai ion-ion gas yang bergabung membentuk padatan ionik:
            • Li
              • (g) + F
                • (g)  LiF(s) ∆H

              kisi LiF = energi kisi = -1050 kJ

              Daur Born-Haber

              

            Nilai Energi Born-Haber

            • H Li = 161 kJ

              oatom

            • BE F = 159 kJ

              2

            • IE 1 (Li) = 520 kJ
            • EA (F) = -328 kJ
            • H (LiF) = -1050 kJ

              oLattice

            • H LiF = -617 kJ

              of

            • Total Energi :

               H LiF = H Li + ½ BE F + IE (Li) + EA (F) + of oatom 2 1

            Pendekatan Mekanika Molekuler

            • • Ion-ion diasumsikan berada pada situs kisi masing-masing

              sesuai dengan muatan formalnya, sehingga NaCl misalnya - + membentuk array of Na and Cl ions.
            • The net interaction can be obtained by summing the interactions over all the pairs of ions, including not only - +

              the attraction between Na and Cl but also the repulsion

              between ions of the same sign.
            • The net interaction decreases with distance but slowly so that it is difficult to obtain an accurate value.
            • To calculate lattice energies, this summation be achieved

              for simple lattice structures by introducing the Madelung

              constant.
            • However, for layer structures with low symmetry this

            Madelung Constants

            • There are many factors to be considered such as covalent character and electron-electron interactions in ionic solids.
            • But for simplicity, let us consider the ionic solids as a

              collection of positive and negative ions. In this simple

              view, appropriate number of cations and anions come

              together to form a solid.
            • The positive ions experience both attraction and

              repulsion from ions of opposite charge and ions of the

              same charge.
            • The Madelung constant is a property of the crystal structure and depends on the lattice parameters, anion- cation distances, and molecular volume of the crystal
            • Before considering a three-dimensional crystal lattice, we shall discuss the calculation of the energetics of a linear chain of ions of alternate signs
            • • Let us select the positive sodium ion in the middle

              (at x = 0) as a reference and let r be the shortest

              distance between adjacent ions (the sum of ionic

              radii).
            • The Coulomb energy of the other ions in this 1D lattice on this sodium atom can be decomposed

            • Nearest Neighbors (first shell): This reference sodium ion has two negative chloride ions as its neighbors on either side at r so the Coulombic energy of these interactions is

                =

            • Next Nearest Neighbors (second shell): Similarly the repulsive energy due to the next two positive sodium ions at a distance of 2r is  

              =

            • Next Next Nearest Neighbors (third

              

            shell): The attractive Coulomb energy

            due to the next two chloride ions neighbors at a distance 3r is

                =

            • • and so on. Thus the total energy due to

              all the ions in the linear array is
              •  

              2  

              1

              1

              1

              2 1− − … + + =

              4

              2

              3

              4 � � � ( )

              [ ]

            • We can use the following Maclaurin expan>&n
            • to simplify the sum in the parenthesis of

              Equation before as to obtain

            • The first factor of Equation is the Coulomb energy for a single pair of sodium and chloride ions, while (2 ln2) the factor is the Madelung constant (M1.38 ) per molecule.
            • The Madelung constant is named after Erwin Medelung and is a geometrical factor that depends on the arrangement of ions in the solid. If the lattice were different (when

            MM Approach …

            • Since the computer programs in use are set up to be of

              general application, they employ methods that give a good

              approximation to the sum over an infinite lattice for any unit cell.
            • However, electrostatic interaction is not that has to be considered. We know, for example, that ions are not just

              point charges but have a size; the shell of electrons around

              each nucleus prevents too close an approach by other ions.

            • We therefore include a term to allow for the interaction

              between shells on the different ions. It would be possible to

              give each ion a fixed size and insist that the ions cannot be

              closer than their combined radii.
            • However, most programs use a different approach by including terms representing intermolecular forces.
            • The intermolecular forces act between cations, and between cations and anions, as well as between anions.
            • • For oxides in particular, however, the cation-

              cation term is often ignored.
            • Salts such as magnesium oxide can be

              thought of as close-packed arrays of anions

              with cations occupying the octahedral holes.
            • Because the cations are held apart by the anions, the cation-cation interaction is un-

              Octahedral Hole

            • The final thing we need to take into account is the polarizability of the ions. This is a measure of how easily the ions are deformed from their normal spherical shape.
            • In a perfect crystal, the ions are in very symmetrical environments and can be thought of as spherical. If one ion moves to an interstitial site, leaving its original position vacant, then the environment may not be so symmetrical and it may be deformed by the surrounding ions.
            • A very simple way to model this is to divide the ionic charge between a core that stays fixed at the position of the ion and a surrounding shell
            • The shell behaves as though it were attached to the core by springs. Take a chloride ion, for example. If the surrounding ions move so that there is a greater positive charge in one direction, then the shell will move so that the total charge on the ion is distributed over two centers producing a dipole.
            • Opposing this will be the pull of the springs that attach it to the core.

            • For ionic solids, the most important term for lattice energies is the electrostatic term; for sodium chloride, for example, the total lattice
            • 1
              • -

                energy in a typical calculation is -762.073 kJ mol

                -1 , of which -861.135 kJ mol is due to the

                electrostatic interaction while the intermolecular

                -1 force and shell terms contribute +99.062 kJ mol .
              • >

                • Thus the contributions of the intermolecular force

                and shell terms are about 10% of the electrostatic interactions.
              • • These other terms may have a greater relevance

                in the study of defects.

              Crystal Defects in Silver Chloride

              • Silver halides are used in photography to capture light and form an image.
              • The action of light on the halide produces silver which forms the black areas of the negative (Figure 2.2).
              • The formation of silver depends on the presence of Frenkel defects in the crystal
              • Two most common point defects in crystals are Frenkel defects and Schottky defects. What are these?
              • In Schottky defects, equal numbers of cations and anions are missing (for 1 : 1 structures such as AgCl).
              • In Frenkel defects, an ion is displaced from its lattice site to an interstitial site; for example, a small cation in a crystal with the NaCl structure can move to a tetrahedral hole from the octahedral hole normally occupied.
              • We can use molecular mechanics to estimate the energies of these defects in silver halides.
              • The dominant defect in silver halides is a Frenkel defect, in which a silver ion moves to an interstitial site. To calculate the energy required to form this defect we simply remove a silver ion from one position, put it in its new position and compare
              • In a Frenkel defect, there is a vacancy where an ion should

                be and an ion in a more crowded interstitial position. Would

                you expect the ions in the vicinity of the defect to stay on their lattice positions?
              • • It would be reasonable to suppose that the ions would adjust

                their positions to allow the interstitial atom more room, and

                to take up the space left by the vacancy.
              • When calculating the energy of formation of the defect the

                nearest atoms are allowed to adjust their position to obtain

                the lowest energy for the crystal including the defect.
              • • Figure 2.3 (overleaf) shows how the chloride ions move when

                a Frenkel defect forms in AgCl; in the perfect crystal (Figure

                2.3a) there is just one Ag-Cl bond length, whereas in the defect crystal (Figure 2.3b) the Ag-C1 bond lengths are

                

              (a) Perfect AgCl. (b) A Frenkel defect in

              AgCl

              (a

                (b

              • • For an estimate of the actual numbers of defects we need

                ) ) to know the Gibbs energy of formation, but the major contribution comes from the internal energy.

              • Calculated values for the energy of formation of cation

              Zeolite

              • Zeolites* have frameworks of silicon, aluminium and oxygen atoms which form channels and cages, e.g. Figure 2.4.
              • They form a wide variety of structures but all are based on silicon tetrahedrally bound to oxygen.
              • Differing numbers of silicon atoms are replaced by aluminium. Other cations, notably those of Groups I, II and the lanthanides, are present in the structures to balance the charge.
              • Surprisingly such structures can be very successfully modelled by considering them as a collection of ions and using

                4+

              • Silicon is not normally thought of as forming Si

                ions; indeed silica, SO , and silicates do contain

              • 2 silicon covalently bonded to o>We do have to make some allowance for the covalency of the Si-0 bonds.
              • • The most successful way of doing this is to add a

                term that represents the resistance of OSiO and OAlO bond angles to deviation from the tetrahedral angle.
              • • The covalency of zeolites and related compounds

                is also reflected in the relative size of the

              • For one form of silica, SO , for example, a calculated
              • 2 -1 lattice energy of -12416.977 kJ mol had contributions of
                • -1
                • 16029.976 kJ mol from electrostatic interactions, -1
                  • +3553.796 kJ mol from intermolecular force terms and

                    -1

                    the core-shell spring term, and 1.913 kJ mol from those

                    OSiO bond angles that were not tetrahedral.

                  >Here the intermolecular force terms are about 20% of the electrostatic interaction.
                • The energy due to the term keeping the angles tetrahedral is small, but without this term the zeolite structure is lost.
                • With this addition, the structures of a wide variety of

                  zeolites, both naturally occurring minerals and synthetic

                  zeolites tailored to act as catalysts, can be modelled and then used to answer questions such as which position

                  will the non-framework ions and molecules occupy and

                  how do ions travel through the structure?

                Modelling Organic Molecules

                • The power of this method for organic molecules lies in the

                  adoption of a relatively small set of parameters that can be

                  transferred to any molecule you want.
                • But what sort of parameters might be needed? Can we

                  simply use electrostatic and intermolecular forces? How do

                  we allow for bonds and different conformations • Let us start by looking at a very simple molecule - ethane.

                  Ethane is H 3 C-CH 3 .

                • As for solids, we do need to include an electrostatic interaction, but what charge are we going to give carbon and hydrogen atoms?
                • • Obviously +4 or -4 on C and +I or -1 on H are unrealistic and

                  would not even give a neutral molecule.
                • Think for a moment about the process of bond formation

                • When two atoms form a covalent bond, they share electrons. If the atoms are unalike then one atom has a larger share than the other, resulting in a

                  positive charge on one atom and a negative charge

                  on the other.
                • But the charge transferred is less than one electron.

                  For diatomic molecules, the charge on each atom can be obtained experimentally.

                • • In the molecule HCI, for example, the hydrogen atom

                  has a charge of +O. 18 and the chlorine atom a charge of -0.18.
                • The fractional charges are known as partial

                • A convenient way of setting up a set of transferable partial charges is to give each atom a contribution to the

                  partial charge from each type of bond that it is involved

                  in.
                • For example, in chloroethane, CH
                • 3 CH Cl, we need to 2

                  consider contributions for the carbon atoms for carbon

                  bound to carbon, carbon bound to hydrogen and carbon

                  bound to chlo>Carbon bound to carbon is given a value of zero.
                • For elements such as oxygen, which can be singly or doubly bonded (C-O or C=O), we need different partial charge contributions for each type of bond
                • In one available computer program carbon bonded to hydrogen gives a contribution of +0.053
                • As well as the electrostatic interaction arising from the partial charges, we also need intermolecular forces.
                • • These can be important for large atoms such as bromine

                  Cocaine analogue - Ecgonine

                • List all the bond terms you would need to describe the compound on the left