Individual Events I1 Given

  • 107 See the remark
  • 14 See the remark

  30

  bc a

   c = 3600

  c

  1 2 

  30

  3600 (2) + (3) – (1):

   a = 121

  a

  11 2 

  30

  3600 (1) + (3) – (2):

   b = 361

  b

  19 2 

  (1) + (2) – (3):

  2

  3

  3

  5

  1

  1

  1

  2

  1

  1       c a b c a b

  1

  1

  1

  2

  1

  1

  =

  3600 361

            

   

  2

  2

  2 2014 2011 2014 2015 2014 2015 2014 2013 2014 2013 2011 2014

  2

  1            x x x x x x

  =  

  2

  =      

  2

  2

  2

  2

  4

  2

   

   a b b c c a    

  121 3600  = 121

  2

  19 I2 Given that a = 2014x + 2011, b = 2014x + 2013 and c = 2014x + 2015.

  Find the value of a

  2

  2

  2 – abbcca.

  a

  2

  1

  2

   

  2

  2

  2

  2

     

       

  1    = 12 As shown in Figure 1, a point T lies in an equilateral

  9

  13-14 Group

  49

  5

  4

  2

  4 15 –

  144 65 

  3

  23

  2

  5

  1

  15

  10

  8

  4

  4

  1

  121

  19

  2

  12

  3 120 

  193

  8

  5

  90

  13-14 Individual

  6

  7

  ±1

  6

  29

  

   

  . Find the value of

  bc a

  .

           

   

   

  5

  2

  1

  3

  1

  2

  1

  ca a c bc c b ab b a

  a c ca c b bc b a ab

  3

  (=7.25) 7 –1 8 1584

  2

  9

  

3

  

16

  3

  

  10

  5 3 

  5

  Individual Events

  I1 Given that a , b, c > 0 and

           

   

   

   

  • b
  • c
  • b
  • c
    • abbcca =      

  I3

  triangle PQR such that TP = 3, TQ =

  3 3 and TR = 6. Find PTR. Rotate PTR anticlockwise by 60 to QSR. Then PTR  QSR, SR = 6 and SRT = 60 Consider

  TRS,

  SR = 6 = TR  TRS is isosceles.

  SRT = 60  RTS = RST = 60 (s sum of isos. )

  

P

   TRS is an equilateral triangle

  TS = 6

  

3

Consider TQS,

  2

  2

  2

  2

  2

  2 T QS + QT = 3 + (

  3 3 ) = 9 + 27 = 36 = 6 = TS  TQS = 90 (converse, Pythagoras’ theorem)

  3

  3

  6

  tan TSQ = = 3

  3 3

  3 TSQ = 60 60

  

  QSR = TSQ + RST = 60 + 60 = 120

  R Q

  PTR = QSR = 120 (corr. s, PTR  QSR)

  3

  6 S Reference: http://www2.hkedcity.net/citizen_files/aa/gi/fh7878/public_html/Geometry/construction/others/345.pdf

  2 I4 Let  and  be the roots of the quadratic equation x – 14x + 1 = 0. 2 2   Find the value of  . 2 2

    1  

  1 2 ; 2 ;

   + 1 = 14   + 1 = 14   +  = 14 and  = 1

  2

  2

  2

    = (  + ) – 2  = 196 – 2 = 194 + 2 2 2 2 2 2 2

   

  14  

  1 14   1 196  

  14   196   14  196    

  14

   

  = = = = 193 2   2  

  1  

  1

  14  14  196  196 As shown in Figure 2, ABCD is a cyclic quadrilateral,

  I5 where AD = 5, DC = 14, BC = 10 and AB = 11.

  Find the area of quadrilateral ABCD.

  Reference: 2002 HI6

  2

  2

  2 AC = 10 + 11 – 2 1110 cos B ...............(1)

  2

  2

2 AC = 5 + 14 – 2

  514 cos D ...................(2) (1) = (2): 221 – 220 cos B = 221 – 140 cosD (3) B + D = 180 (opp. s, cyclic quad.) cos D = –cos B (3): (220 + 140) cos B = 0  B = 90 = D Area of the cyclic quadrilateral = area of ABC + area of ACD

  1

  1 =  11  10   5  14 = 90

  2

  2

  2014

  

2

I6 Let be a positive integer and n < 1000. If (n – 1) is divisible by (n – 1) , n find the maximum value of n.

  Let p = 2014. p p 1 p 2 p 1 p 2

      n

  1 n 1 n n n 1 n n n

  1            

      2 = = 2 n

  1

  n

  1 n

  1

      p 1 p 2   n

  1 n 1 n 1 p         

      

  = p 1 p 2

  n

  1

    n

  1 n 1 p  

  =    1 

   n

  1 n  1 n

  1

  p –1 p –2 Clearly n – 1 are factors of n – 1, n – 1,  , n – 1. p 1 p 2   n

  1 n

  1 1 is an integer.    

   n

  1 n

  1

  p 2014

  2  19 

  53 = = is an integer

  

  n

  1 n  1 n

1 The largest value of n – 1 is 2 53 = 106.

  i.e. The maximum value of n = 107.

  2014 Remark: The original question is Let n be a positive number and n < 1000. If (n – 1) is

  2

  divisible by (n – 1) , find the maximum value of n. 設 n 為正數,且 n < 1000。  Note that n must be an integer for divisibility question.

  3

2 I7 If x + x + x + 1 = 0,

  • –2014 –2013 –2012 –1 2 2013 2014 + find the value of x + x + x  + x + + 1 + x + x  + x + x .

  Reference: 1997 FG4.2

  2 The given equation can be factorised as (1 + x)(1 + x ) = 0  x = –1 or ±i

  • –2014 –2013 –2012 –1 2 2013 2014
    • x + x + 1 + x + x + x +

  x  + x  + x

  • –2014

  2 3 –6

  2 3 –2 –1

  2

  3

  2

  3

  = x (1 + x + x + x ) +  + x (1 + x + x + x ) + x + x + 1 + x + x + x (1 + x + x + x )

  2011

  2

  3

   + x (1 + x + x + x ) +

  • –2 –1 2 –2

  2

  3

  2

  2

  = x + x + 1 + x + x = x (1 + x + x + x ) + x = x

  2

2 When x = –1, x = 1; when x = ±i, x = –1

  I8 Let xy = 10x + y. If xy + yx is a square number, how many numbers of this kind exist? xy + yx = 10x + y + 10y + x = 10(x + y) + x + y = 11(x + y) Clearly x and y are integers ranging from 1 to 9.

   2  x + y  18. In order that xy + yx = 11(x + y) is a square number, x + y = 11 (x, y) = (2, 9), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3) or (9, 2).

  There are 8 possible numbers.

  I9 Given that x , y and z are positive real numbers such that xyz = 64.

  2

  2 If S = x + y + z, find the value of S when 4x + 2xy + y + 6z is a minimum.

  2

  2

  2

  2

  4x + 2xy + y + 6z = 4x – 4xy + y + 6xy + 6z

  2

  = (2xy) + 6(xy + z)  

  6  2 xyz = 96 (A.M.  G.M.)

  2

2 When 4x + 2xy + y + 6z is a minimum, 2x – y = 0 and xy = z

  2

   y = 2x, z = 2xxyz = 64

  2

  4

  ) = 64 = 16  x(2x)(2xx

  x = 2, y = 4, z = 8  S = 2 + 4 + 8 = 14 Remark: The original question is: Given that x, y and z are real numbers such that xyz =64  Note that the steps in inequality fails if xy < 0 and z < 0.

  I10 Given that ABC is an acute triangle, where A > B > C.

  If x  is the minimum of A – B, B – C and 90 – A, find the maximum value of x. In order to attain the maximum value of x, the values of A – B, B – C and 90 – A must be equal.

  A – B = B – C = 90 – A 2 B = A + C  (1) 2 A = 90 + B  (2) A + B + C = 180  (3) (s sum of ) Sub. (1) into (3), 3 B = 180 B = 60  (4) Sub. (4) into (2): 2 A = 90 + 60 A = 75  (5) Sub. (4) and (5) into (1): 2(60 ) = 75 + CC = 45 The maximum value of x = 75 – 60 = 15

  Method 2

  90  – Ax  90 – A + A + B + C  180 + x (s sum of )  B + C  90 + x  (1)  B – Cx  (2) ((1) + (2)) 2: B  45 + x  (3)  A – Bx  (4) (3) + (4): A  45 + 2x  (5) 90  – Ax  90 – x  A  90 – x  A  45 + 2x by (5)  90 – x  45 + 2x  45  3x  15  x  The maximum value of x is 15.

  Group Events 2 2 2 2 G1 Given that 2014  x  2004  x  2 , find the value of 2014  x  2004  x .

  Reference: 1992 FI5.4 2 2 2 2

  2014 2004 2014 2004  x   x   x   x

      2 2

  2 2 2014  x  2004  x 2 2014 2004  x   x

      2 2

  2 2014  x  2004  x 2 2 10 = 2( 2014  x  2004  x ) 2 2

  2014  x  2004  x = 5 G2 Figure 1 shows a

  ABC, AB = 32, AC = 15 and

  BC = x, where x is a positive integer. If there are

  points D and E lying on AB and AC respectively such that AD = DE = EC = y, where y is a positive integer. Find the value of x. Let BAC = , AE = 15 – y, y = 1, 2,  , 14. Apply triangle inequality on ADE, y + y > 15 – yy > 5  (1) AED =  (base s, isos. ) By drawing a perpendicular bisector of AE, 15  y cos  =

   (2) 2 y Apply cosine formula on ABC,

  2

  2

  2 x = 15 + 32 – 2(15)(32)cos 

  15  y

  2 x = 1249 – 480  by (2) y

  2 x = 1729 –

  7200  (3)

  y

   x is a positive integer

  2

   x is a positive integer 7200  is a positive integer.

  y

   y is a positive factor of 7200 and y = 6, 7, 8,  , 14 by (1) and (3)  y = 6, 8, 9, 10 or 12.

  2 When y = 6, x = 1729 – 1200 = 529  x = 23, accepted.

  2 When y = 8, x = 1729 – 900 = 829, which is not a perfect square, rejected.

  2 When y = 9, x = 1729 – 800 = 929, which is not a perfect square, rejected.

  2 When y = 10, x = 1729 – 720 = 1009, which is not a perfect square, rejected.

  2 When y = 12, x = 1729 – 600 = 1129, which is not a perfect square, rejected.

  Conclusion, x = 23

  7

  3

  5 G3 If     180 and cos  + sin  = , find the value of cos  + cos  + cos  + .

  13 Reference: 1992 HI20, 1993 HG10, 1995 HI5, 2007 HI7, 2007 FI1.4

  7 cos  + sin  =  (1)

  13

  49

  2

  (cos  + sin ) = 169

  49

  2

  2

  cos  + 2 sin  cos  + sin  = 169

  49 1 + 2 sin  cos  = 169

  120 2 sin  cos  =   (*) 169

  120

  • –2 sin  cos  =

  169 289 1 – 2 sin  cos  = 169

  289

  2

  2

  cos  – 2 sin  cos  + sin  = 169

  289

  2

  (cos  – sin ) = 169

  17

  17 cos  – sin  = or 

  13

  13 From (1), sin  cos  < 0 and 0    180  cos  < 0 and sin  > 0

  17  cos  – sin  =   (2)

  13

  10 (1) + (2): 2 cos  = 

  13

  5 cos  = 

  13

  5  cos  

  65

  3

  5

  13 cos = =  + cos  + cos  +  = 2

  25 1  cos  144 1 

  169

  G4 As shown in Figure 2, ABCD is a square. P is a point lies in A D

  ABCD such that AP = 2 cm, BP = 1 cm and APB = 105.

  2

  2

2 If CP + DP = x cm , find the value of x.

  Reference: 1999 HG10

2 cm

  Let CP = c cm, DP = d cm Rotate APB about A anticlockwise through 90 to AQD.

  105P Rotate APB about B clockwise through 90 to CRB.

  Join PQ, PR.

  

1 cm

AQ = AP = 2cm, PAQ = 90, BR = BP = 1cm, PBR = 90

  B CAPQ and BPR are right angled isosceles triangles.

  AQP = 45, BRP = 45

  Q PQ =

  2 2 cm, PR = 2 cm (Pythagoras’ theorem)

  DQP = 105 – 45 = 60, CRP = 105 – 45 = 60

  A D Apply cosine formula on DQP and CRP. 2 2

2 cm

  2 

  2 DP =

  2 2  1 

  2

  1

  2 2 cos 60 =

  9

  2 2 cm   

      2 2 2 

  2 CP =

  2

  2

  2

  2 2 cos 60 =

  6

  2 2 cm

      

     

  2 2 + 9 –

  2 2 = 15 –

  4

  2

   x = 6 –

  P

1 cm

  B C

R

  2

  2

  

2

  2 G5 If x , y are real numbers and x + 3y = 6x + 7, find the maximum value of x + y .

  1

  2

  2

  2

  2

  2 2 x + 3y = 6x + 7  (x – 3) + 3y = 16  (1) and y =  x

  6 x  7  (2)

   

  3

  2

2 Sub. (2) into x + y :

  1

  1

  1

  2

  2 2 2 2 2

  • y =

  3

  6 7 =

  2

  6 7 =

  2

  3

  7

  x xxxxxxx         

  3

  3

  3

  1 2 2 2

  1 2

  2 2

  5 = = = 2 xx

  3  1 . 5  2  1 . 5 

  7 2  x  1 . 5   2 . 5  x  1 . 5  

       

  3

  3

  3

  6

  2

2 From (1), 3y = 16 – (x – 3)

  ≥ 0  –4 ≤ x – 3 ≤ 4  –1

  ≤ x ≤ 7

  0.5 ≤ x + 1.5 ≤ 8.5

  2

  0.25 ≤ (x + 1.5) ≤ 72.25 2 2 289

  x 1 .

  5

    

  1 ≤ ≤

  6

  3

  6

  2 2

  5

  5

  2

  2

  1 x 1 .

  5 + y is 49.

      289  = 49  The maximum value of x

  ≤ ≤

  3

  6

  6

  6

  G6 As shown in Figure 3, X, Y and Z are points on BC , CA and AB of ABC respectively such that

  AZY = BZX, BXZ = CXY and CYX = AYZ. If AB = 10, BC = 6 and CA = 9, find the length of AZ.

  Let AZY = , BXZ =  and CYX = . ZXY = 180 – 2 (adj. s on st. line) XYZ = 180 – 2 (adj. s on st. line)

  C b-tc

  YZX = 180 – 2 (adj. s on st. line)

  

Y

  

  X

  ZXY + XYZ + YZX = 180 (s sum of )

  

  180  – 2 + 180 – 2 + 180 – 2 = 180

  tc

    +  +  = 180  (1) In CXY, C +  +  = 180 (s sum of )

   

  C = 180 – ( + ) =  by (1)

  A c-tb B tb Z

  Similarly, B = , A =   AYZ ~ ABC, BXZ ~ BAC, CXY ~ CAB (equiangular) Let BC = a, CA = b, AB = c.

AZ AY

    t (corr. sides, ~ ’s), where t is the proportional constant

  AC AB AZ AY

    tAZ = bt, AY = ct

  b c BZ = ABAZ = ctb; CY = ACAY = btc BX BZ

  (corr. sides, ~ ’s)

BC AB

  2 c tb BX c bct

      BX =  (1)

  a c a CX CY

  (corr. sides, ~ ’s)

BC AC

  2 b tc CX b bct

      CX =  (2)

  a b a BX + CX = BC 2 2 c bct b bct

   

  • = a by (1) and (2)

  a a

  2

  2

  2 b + c – 2bct = a 2 2 2 2 2 2 b c a

  9

  10 6 145

  29    

  AZ = tb = = = = (= 7.25)

  2 c 2 

  10

  20

  4

  Method 2 Join AX, BY, CZ.

  

C

Let AZY = , BXZ =  and CYX = .

  Y

   

  X

  ZXY = 180 – 2 (adj. s on st. line) 

  XYZ = 180 – 2 (adj. s on st. line)

  

qp

  YZX = 180 – 2 (adj. s on st. line) ZXY + XYZ + YZX = 180 (s sum of ) 

  

  A B

Z

  180  – 2 + 180 – 2 + 180 – 2 = 180   +  +  = 180  (1) In CXY, C +  +  = 180 (s sum of ) C = 180 – ( + ) =  by (1) Similarly, B = , A =   ABXY, BCYZ, CAZX are cyclic quadrilaterals (ext.  = int. opp. ) Let XZC = p, YZC = q.

  Then XBY = CBY = CZY = q (s in the same segment) XAY = XAC = XZC = p (s in the same segment) But XAY = XBY (s in the same segment)  p = q On the straight line AZB,  + q + p +  = 180 (adj. s on st. line)  AZC = BZC = 90 i.e. CZ is an altitude of ABC. 2 2 2 2 2 2

  b c a

  9

  10 6 145

  29    

  By cosine formula, cos A = = = = 2 bc 2  9  10 180

  36

  29

  29 AZ = AC cos A = 9  =

  36

  4 G7 Given that a , b, c and d are four distinct numbers, where (a +c)(a +d)= 1 and (b +c)(b +d)= 1. Find the value of (a + c)(b + c). (Reference: 2002 HI7, 2006 HG6, 2009 FI3.3)

  2

  

  aacadcd

  1  

  1

   

   

  2 bbcbdcd

  1  

  2   

  2

  2

  (1) – (2): ab + (ab)c + (ab)d = 0 (ab)(a + b + c + d) = 0  ab  0  a + b + c + d = 0  b + c = –(a + d) (a + c)(b + c) = –(a + c)(a + d) = –1

  G8 Let a 1 = 215, a 2 = 2014 and a n +2 = 3a n +1 – 2a n , where n is a positive integer.

  Find the value of a 2014 – 2a 2013 .

  a n +2 = 3a n +1 – 2a na n +2 – 2a n +1 = a n +1 – 2a n

  a 2014 – 2a 2013 = a 2013 – 2a 2012 = a 2012 – 2a 2011 = 2 – 2a

1 = 2014 – 2(215) = 1584

   = a

  

  8

  2 G9 Given that the minimum value of the function y = sin x – 4 sin x + m is .

  3

  y Find the minimum value of m .

  2

  2 y = sin x – 4 sin x + m = (sin x – 2) + m – 4

  2 m – 3  (sin x – 2) + m – 4  m + 5

  

  8

  m – 3 =

  3

  1

  m =

  3 

  8

  16  y

  3

  3

  16

  8

  8 

  3

  3

  1   y  

  3 3 =

   m     1 

  3

  3  

   

  16

  16 

  3 y  

  3

  is = 3 .  The minimum value of m

   1 

  3  

    

  90 

  G10 Given that tan tan 90 tan 1 and 1 < tan x < 3. Find the value of tan x.

    x     tan x  

    

  90

  90

  90

       

  90 tan 90 or 90 tan 270 or 90 tan

  90

  2 1 , mx   x   x    m   Z tan x tan x tan x

  1

  1

  1  tan x  1 or  tan x  3 or  tan x  2 m

  1 tan x tan x tan x

  2

  2

  2

  tan x – tan x + 1 = 0 or tan x – 3tan x + 1 = 0 or tan x – (2m + 1)tan x + 1 = 0

  

2

  3

  5 2 m  1   2 m  1  

  4 

   = –3 < 0, no solution or tan x = or

  2

  2 3  5 3 

  5  2.6,  0.4

   1 < tan x < 3 and

  2

  2 3  5 only

   tan x =

  2

  Geometrical Construction

  1. Figure 1 shows a ABC. Construct a circle with centre O inside the triangle such that the three sides of the triangle are tangents to the circle.

  The steps are as follows: (The question is the same as 2009 construction sample paper Q1) (1) Draw the bisector of BAC. B (2) Draw the bisector of ACB. 3 S

  T 4 4 O is the intersection of the two angle 1

2

bisectors.

  O 4 (3) Join BO .

  A R

  (4) Let R , S, T be the feet of perpendiculars

  C from O onto AC, BC and AB respectively. B

  AOT  AOR (A.A.S.)

  

S

T

  COS  COR (A.A.S.)

  OT = OR = OS (Corr. sides,  's) 5 O

  BOT  BOS (R.H.S.)

  A

  OBT = OBS (Corr. s,  's)

  R CBO is the angle bisector of ABC.

  The three angle bisectors are concurrent at one point. (5) Using O as centre, OR as radius to draw a circle. This circle touches ABC internally at R, S, and T. It is called the inscribed circle .

  2. Figure 2 shows a rectangle PQRS. Construct a square of area equal to that of a rectangle.

  Reference: http://www2.hkedcity.net/citizen_files/aa/gi/fh7878/public_html/Geometry/construction/others/rectangle_into_rectangle.pdf

  作圖方法如下: 假設該長方形為 PQRS,其中 PQ = aQR = b

  5 c

  (1) 以 R 為圓心,RS 為半徑作一弧,交 QR

  E P

  3 D

  延長線於 G

  

S

  1

  (2) 作 QG 的垂直平分線,O QG 的中點。

  a

  2

  (3) 以 O 為圓心,OQ 為半徑作一半圓,交 RS 的延長線於 D,連接 QDDG

  (4) 以 R 為圓心,RD 為半徑作一弧,交 QR

  4 F Q

  G b O R

  延長線於 F。 (5) 以 F 為圓心,FR 為半徑作一弧,以 D 為圓

  心,DR 為半徑作一弧,兩弧相交於 E。 (6) 連接 DEFE。 作圖完畢,證明如下: GDQ = 90 (半圓上的圓周角)

  RG = RS = a

  DRG ~ QRD (等角)

  DR RG  (相似三角形三邊成比例)

DR QR

2 DR = ab

   (1)

  RF = DR = DE = EF (半徑相等)

  DRF = 90 (直線上的鄰角)  DEFR 便是該正方形,其面積與長方形 PQRS 相等。(由(1)式得知) 證明完畢。

  3. Figure 3 shows two line segments AB and AC intersecting at the point A. Construct two

  circles of different sizes between them such that (i) They touch each other at a point; and (ii) the lines AB and AC are tangents to both circles.

  圖三所示為兩相交於 A 點的綫段 ABAC。試在它們之間構作兩個大小不同的圓使得 (i)

  該兩圓相 切 於一點;及 (ii) 綫段 AB AC 均為該圓的切綫。

  6 5 1 4 3 2 F H G E B A C P

  Steps (Assume that BAC < 180, otherwise we cannot construct the circles touching BAC.) (1) Draw the angle bisector AH of BAC. (2) Choose any point P on AH. Construct a line through P and perpendicular to AH, intersecting

  AB and AC at E and F respectively.

  (3) Draw the angle bisector EG of AEF, intersecting AH at G. (4) Draw the angle bisector EH of BEF, intersecting AH at H. (5) Use G as radius, GP as radius to draw a circle. (6) Use

  H as radius, HP as radius to draw another circle.

  The two circles in steps (5) and (6) are the required circles satisfying the conditions. Proof:

   G is the incentre of AEF and H is the excentre of AEF  The two circles in steps (5) and (6) are the incircle and the excircle satisfying the conditions.

  Remark: The question Chinese version and English version have different meaning, so I have

  changed it. The original question is: 圖三所示為兩相交於 A 點的綫段 ABAC。試在它們之間構作兩個大小不同的圓使得 (i)

  該兩圓相

  交 於一點;及

  (ii) 綫段 AB AC 均為該圓的切綫。 A suggested solution to the Chinese version is given as follows:

  作圖方法如下: (1) 作 AOB 的角平分綫 OU。 (2) 找一點 P 不在角平分綫上,連接 OP

  在角平分綫上任取一點 D。 分別作過 D 且垂直於 OA OB 之綫段,E G 分別為兩垂 (3)

  足。 (4) 以 D 為圓心,DE 為半徑作一圓,交 OP C F,其中 OC < OF

  B

  V 6 H 2 1 U H 1 S 6 4 5 Q 5 G 3 7 D 5 2 P 5 3 6 F 7 6 C A E R O T

  連接 DF,過 P 作一綫段與 DF 平行,交角平分綫於 Q。 (5)

  連接 CD,過 P 作一綫段與 CD 平行,交角平分綫於 U。 (6) 分別作過 Q 且垂直於 OA OB 之綫段,R S 分別為兩垂足。

  分別作過 U 且垂直於 OA OB 之綫段,T V 分別為兩垂足。 (7) 以 Q 為圓心,QR 為半徑作一圓 H

  1 。以 U 為圓心,UT 為半徑作另一圓 H 2 。

  作圖完畢。 證明如下: 一如上文分析,步驟 4 的圓分別切 OA OB E G

  (角平分綫) QOR = QOS

  OQ = OQ (公共邊)

  (由作圖所得) QRO = 90 = QSO  QOR  QOS (A.A.S.)

  QR = QS (全等三角形的對應邊)

  圓 H 分別切 OA OB R S。 (切綫

  1

  半徑的逆定理) (等角)

  ODG ~ OQS 及ODF ~ OQP

  OQ QP QS  及 OQ  (相似三角形的對應邊) DG OD OD DF QP

  QS

  

DG DF

   DG = DFQS = QP

  經過 P。  圓 H

  1

  利用相同的方法,可證明圓 H

  2 分別切 OA OB T V,及經過 P

  證明完畢。