Homogeneous Catalysts for C-H Activation and Other Approaches to Shale Gas Utilization

(1)

Homogeneous Catalysis for C-H Activation and

Other Approaches to Shale Gas Utilization

!

Shannon S. Stahl

!

University of Wisconsin–Madison

!

CH4

H2/CO

H2C CH2

R CH3OH

[O]

(existing)!

What will be the source of aromatics, C4s and propylene?!

Bruijnincx and Weckhuysen! ACIE2013, 52, 11980!


(2)

Why Homogeneous Catalysis?

!

!Homogeneous catalysts are used in numerous major industrial processes!

!- !olefin oligomerization, polymerization (ethylene) !

! ! !metallocenes and other single-site Ti/Zr/Hf!

! ! ![(P,O)Ni–H]+ (SHOP catalysts)!

! ! !Cr(EH)

3/Me2pyrrole/AlR3!

!- !hydroformylation (syngas)!

! ! !Rh/phosphine, HCo(CO)

4 ± phosphine!

!- !aerobic oxidation - Wacker and Mid-Century processes (O

2)!

!- !many others…! !

!Is Homogeneous vs. Heterogenous Catalysis an appropriate dividing line? !

!Is this an artifact of US academic science (Chemistry vs. Chem. Engr. departments and

associated language barriers)?!

!- !Molecular vs. Nanoparticle vs. Bulk Heterogeneous! !- !Liquid phase vs. gas phase chemistry!

!- !How should single-site supported catalysts (e.g., metallocene and related olefin!

! !polymerization catalysts) and MOFs be classified?!

!

!This presentatiion will emphasize "molecular" processes and/or concepts!

!- !biological transformations/oxidations reflect this perspective!

! !(enzymes are molecules)!

!- !molecular/atomistic concepts are increasingly relevant and applied to !


(3)

α

-Olefin Synthesis and Applications

!

Alpha Olefins Market Analysis By Product (1-Butene, 1-Hexene, 1-Octene), By Application (Polyethylene, Detergent Alcohol, Synthetic Lubricant) And Segment Forecasts To 2020!

Published: March 2015 | ISBN Code: 978-1-68038-356-0!

“Increasing 1-hexene usage in LLDPE

production is expected to drive the market growth over the forecast period.”!

Major Applications!

•  LLDPE! •  HDPE!

•  Detergent Alcohols! •  Synthetic Lubricants!

α-Olefin Synthesis!

•  Shell Higher Olefin Process (oligomerization/methathesis) - ethylene! •  Oligomerization (INEOS) - ethylene!

•  Fischer-Tropsch (Sasol) - syngas!

•  Butadiene telomerization (Dow) – naphtha cracking! •  Ethylene trimerization/tetramerization - ethylene

(Chevron Phillips, Sasol)!

Homogeneous Catalysts!

Selective for primarily! a single alpha olefin!

5.2M tons! 3.7M !

tons!


(4)

Discovered in 1930s (Co)

& 1960s (Rh)

– Oxo Process –

Hydroformylation: (

α

-)Olefins and Syngas

!

Linear (and branched) Aldehydes > 18 billion lbs/year

R + H2/CO R H

O H


(5)

Discovered in 1955

– Mid-Century and Related Autoxidations –

Radical Chain (Liquid Phase) Aerobic Oxidation of Hydrocarbons

!

H3C

CH3 + 3 O2

Co/Mn/Br

-HO2C

CO2H + 2 H2O

Radical-Chain (Catalytic) Aerobic Oxidation!

> 100 billion lbs/year

In2

In RH

R O2 RH R

RO2

RO2 RO4R 2 RO2

InH

RO2H

2 In

RO2R RO2

R

R

Initiation Propagation

Termination

Ri

+ +

+

+ +

+

nonradical products + O2

also…!

air

OOH

decomposition

OH O

+


(6)

H2C CH2 + 1/2 O2

H3C H O [Pd, Cu]

H2O 2 Cu2+

2 Cu+

H O

CH3

PdII

PdII

OH PdII

H+

H2O

CH2

CH2

2+

+ 2 H+

+

+ H+ Pd0

1/2 O2

CH2 CH2

Discovered in 1959

Wacker Process: Ethylene to Acetaldehyde

!

Organometallic Aerobic Oxidation Chemistry > 1 billion lbs/year


(7)

Regioselective Alkane Activation by Transition Metal Complexes

!

Activation of 1° C-H bond is favored!!! but…!

reactions generally stoichiometric and incompatible with oxidants

or other reagents needed to functionalize the metal-alkyl!

Labinger & Bercaw Nature 2002, 417, 507-514. ! Ir

Me3P

H H

Ir Me3P

H hν

– H2

+ Ir

Me3P

H 110 °C, 14h

1.5:1 +

for M = Rh, only 1° C–H activation

+ CH4 Zr NR

R(H)N R(H)N

R = SiBut 3

Zr

N(H)R R(H)N

R(H)N

CH3

Sc CH3 + 13CH

4 Sc 13CH3 + CH4

Oxidative Addition (Bergman, Graham, Jones, …)!

Sigma-Bond Metathesis (Bercaw, Watson, Marks, …)!

1,2-Addition (Wolczanski, Bergman, …)!


(8)

Selective "C–H Functionalization"

!

2000s – Applications to organic chemistry, pharmaceutical synthesis…!

DG H3C

H3C CH3 O

H3C

H3C O

O

O O OH

OH

Jiadifenolide Huw Davies

Emory University


(9)

120° C

CH3OH + PtCl42- + 2 HCl CH4 + PtCl62- + H2O

PtCl4

2-!

[O]

!

The

Oxidant

Problem

!

Organometallic Methane Oxidation

!

The Shilov System (1971)

!

PtII Cl Cl

Cl Cl

PtII

Cl Cl

CH3 Cl

PtIV Cl Cl

Cl Cl

2-CH3

Cl

2-CH3OH + H+

CH4 HCl

PtIVCl6

2-PtIICl4 2-H2O


(10)

Shilov System

!

+ 25%

conversion

80%

OH HO OH Cl OH

CH

4

vs. CH

3

OH

k1 k2

k1 ~ k2

cf. H atom abstraction: k1

k2

~ 10-6

C

2

H

6

vs. C

2

H

5

OH

H–CH2CH3 > H–CH2CH2OH > H–CH(OH)CH3

→ direct oxidation of ethane to ethylene glycol!

Propanol Oxidation


(11)

Biological Methane Oxidation

!

CH4 + O2 + NADH + H+ MMO CH3OH + H2O + NAD+ 45 °C

!

e

The

Reductant

Problem

!

Methane Monooxygenase (Fe)

!

Graphic:!


(12)

Biological Methane Oxidation

!

CH4 + O2 + NADH + H+ MMO CH3OH + H2O + NAD+ 45 °C

The

Reductant

Problem

!

Methane Monooxygenase (Fe)

!

CH4 + H2O2 CH3OH + H2O ! O2 + 2 H+ + 2 e H

2O2 !

CH4 + 2 H2O CO2 + 8 H+ + 8 e !

x 4

!

5 CH4 + 4 O2 4 CH3OH + 2 H2O + CO2 !


(13)

Biological Aerobic Oxidation

Mn+

H2O SubH2

Subox 1/2 O2

M(n+2)+

+ 2 H+ + 2 H+

S(O) S

O

Mn+

O2

H2O

+ 2 H+ + 2 e

-M(n+2)+

L

N N

N N

CO2- CO2

-Fe

O +

Fe O O Fe OGlu OGlu

NHis N

His OH2 OGlu O O Glu Cu O O Cu NHis

NHis NHis

NNHisHis

NHis

Oxidases

substrate oxidation and

!

dioxygen reduction occur

in

independent

steps

Oxygenases

substrate oxidation coupled

!

to

oxygen atom transfer

!

from dioxygen

!

H2O or!


(14)

HgX

2

& Pt(bpym)-Catalyzed Oxidation of Methane

!

A. Sen! CH3CH3 + O2 + CO 5% Pd/C CH3CO2H + CO2

H2O (0.1 M HCl)

500 psi 100 psi 100 psi 2.7% yield 1138 TOs

References:!

JACS1992, 114, 7307.! Nature1994, 368, 613.! JACS1997, 119, 6048.!

Acc. Chem. Res.1998, 31, 550.!

in situ H2O2!

production with!

heterogeneous catalyst!

Catalytic "monooxygenase" pathway for ethane oxidation:!

See also:!

R. NeumannJACS2004, 126, 10236.! Methane to Methanol/Acetaldehyde!

Alternative coupled process for methane to acetic acid ("oxidase"-type reactivity): !

Science2003, 301, 814-818.! PdSO4, 180 °C in H2SO4!


(15)

H2C CH2 + 1/2 O2

H3C H O [Pd, Cu]

H2O 2 Cu2+

2 Cu+

H O

CH3

PdII

PdII

OH PdII

H+

H2O

CH2

CH2

2+

+ 2 H+

+

+ H+ Pd0

1/2 O2

CH2 CH2

Discovered in 1959

Wacker Process: Ethylene to Acetaldehyde

!

Organometallic Aerobic Oxidation Chemistry > 1 billion lbs/year


(16)

N O N O NO2 NO

1/2 O2 H2O

e

-cathode e

-2 H+

2 2

Homogeneous "Oxidase" Reactions

O2 + 4 H+ + 4 e- H 2O!

2 H+ + 2 e- → H2!

O2 + 2 H+ + 2 e- H 2O2!

0 .0 0 ! 1 .2 3 ! 0 .6 8 !

Redox couples can facilitate oxidation reactions with O

2

!

A!

!

B

!

!

Gerken & Stahl, ACS Cent. Sci., 2015, 1, 234-243. ! 2 H2

2 H2O

cathode anode

O2 + 4 H+

e- e

-e

-e- e

-e

-H+

membrane 4 H+

(CH3OH)

(CO2)

η

= 0.3 V

!

Slow steps avoided through the use of synergistic mediators! (Also Fast)!

Fast!

Electrochemical! Kinetics!

Fast ! Aerobic! Oxidation! Slow! Aerobic! Oxidation! ! Slow! Electrochemical! Kinetics!

Electrocatalysis provide unique opportunities to address catalyst development and characterization!


(17)

Low Temperature, Direct Conversion of

Natural Gas to Alcohols Using Commercial

Wacker Plant Design

N2

Low pressure Air  (O2/N2) Natural Gas

(CH4+ C2H6+ C3H8)

ROH (Methanol + Ethanol + Ethylene glycol + Isopropanol + propylene glycol) Ox + HOP H2Ox

H2Ox + HOP ROP

H2O

Separator  (SP) Vent STY = ~50 lbs/L.hr Hydrocarbon oxidizer (HO) Ox Regenerator (OR)

~200oC

bubble‐column  reactors are among  the least expensive  reactors

No O2plant required

Inherently Safe

Modified, Commercial Wacker Process

New main group chemistry Enables, new low cost process Methanol Ethanol Ethylene Glycol Isopropanol Propylene Glycol Natural Gas Air

Courtesy of T.B. Gunnoe!

IO3- -based C-H activation reagent/oxidant:

Gunnoe, Groves et al. J. Am. Chem. Soc. 2014, 136, 83938401!

TlIII, PbIV, BiV, IIII-based C-H activation reagent/oxidant:

Periana, Ess et al. Science2014, 343, 1232-1237

T. Brent Gunnoe!


(18)

Radical Chain (Aerobic) Oxidation of Hydrocarbons

!

Bromine as a recyclable "chain carrier"!

(CH

4

, C

2

H

6

, …)

!

Lorkovic, et al. !


(19)

Radical Chain (Aerobic) Oxidation of Hydrocarbons

!

Bromine as an

O

2

-recyclable

"chain carrier"

!

McFarland, Science, 2012, 338, 340-342. ! Alkane bromination:!

Alkyl bromide conversion !

to valuable products:!


(20)

Pt(bpym)-Catalyzed Oxidation of Methane vs. Ethane

!

Periana et al.!

Science1998, 280, 560-564.! CH4 + H2SO4 + SO3 CH3OSO3H + H2O + SO2

[Pt(bpym)X2] 180° C


(21)

HgX

2

& Pt(bpym)-Catalyzed Oxidation of Methane

!

CH4 + 2 Hg(O3SCF3)2 CH3O3SCF3 + HO3SCF3 + Hg2O3SCF3)2

alternative solvents: H2SO4 and CF3CO2H

CH4 + 2 H2SO4 CH3OSO3H + 2 H2O + SO2 180 °C

100% !!

50% conversion, 85% selectivity: 43% yield

180 °C HO3SCF3

HgII

Periana/Catalytica, 1993!

50% conversion, 85% selectivity: 43% yield!

90% conversion, 81% selectivity: 70% single-pass YIELD !!! CH4 + 2 H2SO4 CH3OSO3H + 2 H2O + SO2

200 °C PtII

Periana/Catalytica, 1998!

N N

N N

PtII X

X PtII =

Periana et al. Science1993, 259, 340-343.! Periana et al. Science1998, 280, 560-564.

!

Notes!

• H2SO4 is the oxidant!

• the organic ligand remains stable in hot, fuming sulfuric acid! • the Pt(II) complex is thermodynamically stable!


(22)

HgX

2

& Pt(bpym)-Catalyzed Oxidation of Methane

!

Step 1: CH4 + 2 H2SO4

Step 2: CH3OSO3H + H2O

Step 3: SO2 + 1/2 O2 + H2O

Net Rxn: CH4 + 1/2 O2

CH3OSO3H + 2 H2O + SO2

CH3OH + H2SO4 H2SO4

In principle. . .

CH3OH

multi-stage aerobic oxidation of alkanes... !

Step 1: 2 CH4 + 5 H2SO4

Step 2: CH3CO2SO3H + H2O Step 3: 4 SO2 + 2 O2 + 4 H2O Net Rxn: 2 CH4 + 2 O2

CH3CO2SO3H + 7 H2O + 4 SO2

CH3CO2H + H2SO4

4 H2SO4

CH3CO2H + 2 H2O


(23)

Catalytica/Periana Pt(bpym) Catalyst

!

++!! +! +! +! +! +! +! +! +! ++!! +! +! +! +! +! +! +! +! +! +! +! +! +! +! +!++! ! +!+! +! +! +! +! +! +! +! +! +! +! +! +! +! +! +! ++!! +! +! +! +!++!! +! +! +! ++!! +! +! +! +! +! +! +! +! +! +! +! " " "

10! 20! 30! 40! 50! 60! 70! 100! 80! 60! 40! 20! 0!

0! 80! 90! 100!

% One-Pass RH Conversion!

% Pr o d u c t Se le c ti v ity ! " " " +! +! " "

CH3OH!

These catalysts all generate radicals

k1 << k2

+ OCM!

Methane Sulfonation!

Economic Window: k1 >> k2

   

         

 

  

courtesy of R. A. Periana!

R–H

R–OH

+ 1/2 O

2

+

n

O

2

CO

2

k

1

!

k

2

!

N N

N N

PtII X

X PtII =H

First-generation


(24)

Pt(bpym)-Catalyzed Oxidation of Methane vs. Ethane

!

Periana and coworkers!

J. Am. Chem. Soc.2014, 136, 10085−10094!

CH3–CH3 + H2SO4 + SO3 CH3 OSO3H HO3S OSO3H [Pt(bpym)X2]

CH4 + H2SO4 + SO3 CH3OSO3H + H2O + SO2

[Pt(bpym)X2] 180° C


(25)

Gunnoe, Herring, Trewyn; J. Am. Chem. Soc. 2016, 138, 116-125.!

Low Temperature Electrocatalytic

Oxidation of CH

4

OMC-4Bp-Pt-Cl2 Electrocatalysis provides a unique opportunity


(26)

Oxidative C–C Coupling

!

H

[Pd], O2

O O O O O O N O O N O O n NH2 NH2 polyimide +

Upilex

(UBE)!

#2 polyimide resin!

!

high thermal and chemical resistance, high electrical insulating properties

and high mechanical strength!

CO2Me

CO2Me

+ MeOH [Pd], O2 MeO2C CO2Me

MeO2C CO2Me

CO2H

HO2C

HO2C CO2H

- H2O

O O O O O O

- H2O

[V], O2

O O O

+ H2O

- MeOH

CH4 + CH4 CH3–CH3 CH2=CH2 Pd/O2 Pd/O2


(27)

Oxidative Dehydrogenation of Saturated C–C Bonds

!

R R' + H

2O cat. PdII

+ 1/2 O2

H H

R' R

O

2

as the hydrogen acceptor

!

R

R'

X

L

n

Pd

II

H

Hydride

Elimination

β

-L

n

Pd

II

X

2

HX

X

L

n

Pd

II

R

R'

H

H

R

R'

H

C–H

Activation

L

n

Pd

L

n

Pd

0

HX

2 HX

O

O

O

2

H

2

O

2


(28)

Oxidative Dehydrogenation

!

Pd-Catalyzed Dehydrogenation of Cyclohexanones to Phenols!

Izawa, Pun, Stahl Science, 2011,333, 209.!

catalyst!

Pd(TFA)2 /

N NMe2

O O OH

R R R

[Pd], O2 [Pd], O2

– H2O – H2O

"Interrupted" Dehydrogenation of Cyclohexanones:!

Diao, Stahl JACS 2011, 133, 14566.! catalyst!

Pd(DMSO)2(TFA)2!

O O OH

R R R

[Pd], O2 [Pd], O2

– H2O – H2O

O O

O OH

Molecular PdII!

Species! NanoparticlesSoluble Pd! ! Heterogeneous PdAggregates! !

fast! moderate! inactive!

slow! moderate! inactive!

(kinetic burst)!

(induction period)!

(steady-state! turnover)!

(steady-state! turnover)!

X

!


(29)

Non-Oxidative Hydrocarbon Conversion

!

Activation of 1° C-H bond is favored!!! but…!

reactions generally stoichiometric and incompatible with oxidants

or other reagents needed to functionalize the metal-alkyl!

Labinger & Bercaw Nature 2002, 417, 507-514. ! Ir

Me3P

H H

Ir Me3P

H hν

– H2

+ Ir

Me3P

H 110 °C, 14h

1.5:1 +

for M = Rh, only 1° C–H activation

+ CH4 Zr NR

R(H)N R(H)N

R = SiBut 3

Zr

N(H)R R(H)N

R(H)N

CH3

Sc CH3 + 13CH

4 Sc 13CH3 + CH4

Oxidative Addition (Bergman, Graham, Jones, …)!

Sigma-Bond Metathesis (Bercaw, Watson, Marks, …)!

1,2-Addition (Wolczanski, Bergman, …)!

Sadow & Tilley!


(30)

A NSF Center for Chemical Innova=on CHE‐1205189  Karen I. Goldberg, University of Washington, Principal Inves=gator  www.nsfcentc.org  OO O O O OH OH OH OH OH OH O H

H3CO

O OH OH O OH O O OH O H3CO

OH OH

H3CO OH

HO OCH3 O HO O OCH3 OH O OH H3CO O

OH OH OCH3 O O OH OCH3 O O OH OCH3 O OH OCH3 OCH3 HO O OH H3CO

HO lignin lignin CO + H CO cellulose hemicellulose lignin waste oil O O HO OH O OH O HO OH O OH O O O O O O R R R


(31)

CO + H

2

n

-alkanes

Stochas(c Distribu(on  Fischer ‐

Tropsch 

GAS

FUEL (Diesel)

C

n

X

(not useful

as

fuel) HIGH-MW

3 9 19

Alkane Metathesis:

Diesel from Any Carbon Source

!

Gas, Coal, Shale, Tar Sands, Biomass…

hydrocracking alkane

metathesis

n-Alkanes are ideal transportation fuel (C10-C19 diesel): !

  Burns more cleanly than oil-based fuels. Reduces CO

emissions and particulate matter!

  Diesel engines 30 - 40% more efficient than !


(32)

Alkane Methathesis via Tandem Catalysis

!

Goldman, A. S. et al, Science, 2006, 312, 257.!

U.S. Patent 7,902,417, issued March 8, 2011!

Alan Goldman Maurice Brookhart Richard Schrock

Comparable rates ! but desired ! MW-selectivity achieved with tBuPCP, !

not with tBuPOCOP. ! (tBuPOCOP)Ir!

!

e.g. for reaction: 2 C6 C10 + C2!

!

PtBu2 O O P tBu 2 Ir H H

Subtle catalyst variations are key:!

PtBu2

PtBu2 Ir

H H

(tBuPCP)Ir!

with!

Schrock!

catalyst!

! or!

CHC(CH3)2Ph Mo

N RF6O

RF6O

Ar

R 2

M MH2

dehydrogenation X Y Ir PR'2 PR2

M = Z

hydrogenation R

2

R R

H3C CH3

olefin metathesis R R Mo NAr CHR" R'O R'O Or

Re2O7/Al2O3 MoO3/CoO/Al2O3 H2C CH2


(33)

From Ethylene and Alkanes to Aromatics

!

Lyons, T. W. et al. J. Am. Chem. Soc. 2012, 134, 15707-15711.

Brookhart, et al. “Synthesis of para-xylene and toluene.” (2012) WO 2012061272 A2.

Maurice Brookhart (iPr)2P Ir P(iPr)2

Brookhart, Goldman, et al. Nature Chemistry, 2011, 3, 167-171.

(CH2)nH

O PiPr 2 PiPr

2 Ir

170 °C (CH2)nH

+ (CH2)nH

R R

Alan Goldman Maurice Brookhart

[Cr] Catalyst

Phillips Process

Dehydrogenation

2 H2

major minor

Feedstock

3

catalyst

250 °C 250 °C

Pd/C or Pt/Al2O3


(34)

Opportunities for Homogeneous Catalysis

!

1.

Oxygen management and reactivity

!

a.  Sacrificial reductant?!

b.  O

2-Recyclable co-oxidant (Br2, NOx, etc.)!

2.

Oxidative vs. Non-Oxidative Transformations

!

a.  Reactions with ethylene (selective oligomerization)!

b.  Dehydrogenative coupling, aromatization!

c.  Methane as a C1 source!

d.  Oxygenation reactions !

e.  Oxidative C–C coupling (fundamentals, practical opportunities?)!

f.  Oxidative dehydrogenation!

3.

Broader exploration of "Extreme" conditions (homogen. catal. perspective)

!

a.  Strong acid solvents!

b.  "High" temperature (200 °C)!

c.  Stable ligands to prevent catalyst decomp., oxidatively stable !

!(previous examples: pincers, bpym)!

4.

Electrocatalysis and other tools

!

a.  A (new) tool for catalyst development and understanding!

b.  Practical application opportunites? (smaller scale plants to avoid flaring)!

5.

Funding – to reinvigorate the field

!

a.  Small-team grants but programmatically interconnected – e.g., req'd participation in

annual/bi-annual workshop/symposium!

b.  Active industrial engagement (consultation, funding?)!

! !


(1)

Non-Oxidative Hydrocarbon Conversion

!

Activation of 1° C-H bond is favored!!! but…!

reactions generally stoichiometric and incompatible with oxidants or other reagents needed to functionalize the metal-alkyl!

Labinger & Bercaw Nature 2002, 417, 507-514. !

Ir Me3P

H H

Ir Me3P

H hν

– H2

+ Ir

Me3P

H 110 °C, 14h

1.5:1 +

for M = Rh, only 1° C–H activation

+ CH4 Zr NR

R(H)N R(H)N

R = SiBut 3

Zr

N(H)R R(H)N

R(H)N

CH3

Sc CH3 + 13CH

4 Sc 13CH3 + CH4

Oxidative Addition (Bergman, Graham, Jones, …)!

Sigma-Bond Metathesis (Bercaw, Watson, Marks, …)!

1,2-Addition (Wolczanski, Bergman, …)!

Sadow & Tilley!


(2)

Center for Enabling New Technologies Through Catalysis 

A NSF Center for Chemical Innova=on CHE‐1205189  Karen I. Goldberg, University of Washington, Principal Inves=gator  www.nsfcentc.org  OO O O O OH OH OH OH OH OH O H

H3CO O OH OH O OH O O OH O H3CO

OH OH

H3CO OH HO OCH3 O HO O OCH3 OH O OH H3CO O OH OH OCH3 O O OH OCH3 O O OH OCH3 O OH OCH3 OCH3 HO O OH H3CO

HO lignin lignin CO + H CO cellulose hemicellulose lignin waste oil O O HO OH O OH O HO OH O OH O O O O O O R R R


(3)

CO + H

2

n

-alkanes

Stochas(c Distribu(on  Fischer ‐

Tropsch 

GAS

FUEL (Diesel)

C

n

X

(not useful

as

fuel) HIGH-MW

3 9 19

Alkane Metathesis:

Diesel from Any Carbon Source

!

Gas, Coal, Shale, Tar Sands, Biomass…

hydrocracking alkane

metathesis

n-Alkanes are ideal transportation fuel (C10-C19 diesel): !

  Burns more cleanly than oil-based fuels. Reduces CO
 emissions and particulate matter!

  Diesel engines 30 - 40% more efficient than ! gasoline engines!


(4)

Alkane Methathesis via Tandem Catalysis

!

Goldman, A. S. et al, Science, 2006, 312, 257.!

U.S. Patent 7,902,417, issued March 8, 2011!

Alan Goldman Maurice Brookhart Richard Schrock

Comparable rates ! but desired ! MW-selectivity achieved with tBuPCP, !

not with tBuPOCOP. ! (tBuPOCOP)Ir!

!

e.g. for reaction: 2 C6 → C10 + C2!

!

PtBu2

O

O P

tBu

2

Ir H H

Subtle catalyst variations are key:!

PtBu2

PtBu2 Ir

H H

(tBuPCP)Ir!

with!

Schrock!

catalyst!

!

or!

CHC(CH3)2Ph Mo

N RF6O

RF6O

Ar

R 2

M MH2

dehydrogenation

X

Y Ir PR'2

PR2

M = Z

hydrogenation R

2

R R

H3C CH3

olefin metathesis

R R

Mo NAr

CHR" R'O

R'O

Or

Re2O7/Al2O3 MoO3/CoO/Al2O3 H2C CH2


(5)

From Ethylene and Alkanes to Aromatics

!

Lyons, T. W. et al. J. Am. Chem. Soc. 2012, 134, 15707-15711.

Brookhart, et al. “Synthesis of para-xylene and toluene.” (2012) WO 2012061272 A2.

Maurice Brookhart (iPr)2P Ir P(iPr)2

Brookhart, Goldman, et al. Nature Chemistry, 2011, 3, 167-171.

(CH2)nH

O PiPr 2

PiPr 2

Ir

170 °C (CH2)nH

+ (CH2)nH

R R

Alan Goldman Maurice Brookhart

[Cr] Catalyst Phillips Process

Dehydrogenation

2 H2

major minor

Feedstock 3

catalyst

250 °C 250 °C

Pd/C or Pt/Al2O3


(6)

Opportunities for Homogeneous Catalysis

!

1.

Oxygen management and reactivity

!

a.  Sacrificial reductant?! b.  O

2-Recyclable co-oxidant (Br2, NOx, etc.)!

2.

Oxidative vs. Non-Oxidative Transformations

!

a.  Reactions with ethylene (selective oligomerization)! b.  Dehydrogenative coupling, aromatization!

c.  Methane as a C1 source! d.  Oxygenation reactions !

e.  Oxidative C–C coupling (fundamentals, practical opportunities?)! f.  Oxidative dehydrogenation!

3.

Broader exploration of "Extreme" conditions (homogen. catal. perspective)

!

a.  Strong acid solvents!

b.  "High" temperature (200 °C)!

c.  Stable ligands to prevent catalyst decomp., oxidatively stable ! !(previous examples: pincers, bpym)!

4.

Electrocatalysis and other tools

!

a.  A (new) tool for catalyst development and understanding!

b.  Practical application opportunites? (smaller scale plants to avoid flaring)!

5.

Funding – to reinvigorate the field

!

a.  Small-team grants but programmatically interconnected – e.g., req'd participation in annual/bi-annual workshop/symposium!

b.  Active industrial engagement (consultation, funding?)! !