Textbook INF206 Text Book Table of Integrals Advanced

Table of Integrals∗
Basic Forms
Z

Integrals with Logarithms

1
x dx =
xn+1
n+1
Z
1
dx = ln |x|
x
Z
Z
udv = uv − vdu

Z

n


(1)
(2)

Z p

(3)

1
1
dx = ln |ax + b|
ax + b
a

(4)
Z p

Integrals of Rational Functions
Z
Z

Z

1
1
dx = −
(x + a)2
x+a

(x + a)n dx =

x(x + a)n dx =
Z
Z
Z

Z

Z

(5)


(x + a)n+1
, n 6= −1
n+1

(6)

(x + a)n+1 ((n + 1)x − a)
(n + 1)(n + 2)

Z p

(8)

1
1
x
dx = tan−1
a2 + x 2
a

a

(9)

(11)

x3
1
1
dx = x2 − a2 ln |a2 + x2 |
2
a + x2
2
2

(12)

(13)

Z


(14)

1
1
a+x
dx =
ln
, a 6= b
(x + a)(x + b)
b−a
b+x
Z
x
a
dx =
+ ln |a + x|
(x + a)2
a+x




Z
Z
Z

1
dx = −2 a − x
a−x

(19)





a2 − x2 dx =

ax + bdx =




2x
2b
+
3a
3

Z

(ax + b)3/2 dx =

Z








ax + b

(21)

2
(ax + b)5/2
5a

(22)


x
2
dx = (x ∓ 2a) x ± a
3
x±a

(23)

x

dx =
a+x

p

x(a + x) − a ln

√

p

x+

x(a − x)
x−a



x+a


x



Z

p

x
1 p 2
1
x a − x2 + a2 tan−1 √
2
2
a2 − x2
(30)

3/2
1 2
x2 ± a2 dx =

x ± a2
3

1
x2 ± a






p


dx = ln x + x2 ± a2
2

1
x
dx = sin−1
a
a2 − x2



(24)

(25)

Z

(32)

(44)

p
x
dx = − a2 − x2
2
−x

(35)

Z

1
bx
− x2
2a
4


1
b2
+
x2 − 2 ln(ax + b)
2
a

Z
Z



Z

(37)

Z

eax dx =

1 ax
e
a

(50)


√ 
1 √ ax
i π
xe + 3/2 erf i ax ,
a
2a
Z x
2
2
e−t dt
where erf(x) = √
π 0

Z

xex dx = (x − 1)ex

xeax dx =



1
x
− 2
a
a



(52)
eax

(53)


x2 ex dx = x2 − 2x + 2 ex


(51)

x2
2x
2
− 2 + 3
a
a
a



(54)

Z

x2 eax dx =

eax

(55)

Z


x3 ex dx = x3 − 3x2 + 6x − 6 ex

(56)

xn eax dx =
Z

xn eax
n

a
a

Z

xn−1 eax dx

(−1)n
Γ[1 + n, −ax],
an+1
Z ∞
where Γ(a, x) =
ta−1 e−t dt

(57)

xn eax dx =

(58)

x


√ 
2
i π
eax dx = − √ erf ix a
2 a

Z
√ 
2
π
e−ax dx = √ erf x a
2 a
Z
2
2
1
xe−ax dx = − e−ax
2a

Z



(40)

(41)

(49)

xeax dx =

Z



p
1
1



dx = √ ln 2ax + b + 2 a(ax2 + bx + c)
a
ax2 + bx + c
(39)

x
dx
= √
(a2 + x2 )3/2
a2 a2 + x2

(48)

Integrals with Exponentials

1  √ p 2
x ax2 + bx + c =
2 a ax + bx + c
48a5/2

× −3b2 + 2abx + 8a(c + ax2 )


√ p


+3(b3 − 4abc) ln b + 2ax + 2 a ax2 + bx + c (38)

Z

x+a
− 2x (46)
x−a


1
x ln a2 − b2 x2 dx = − x2 +
2



a2
1
x2 − 2 ln a2 − b2 x2
2
b

p

1p 2
x
dx =
ax + bx + c
a
ax2 + bx + c


p
b


− 3/2 ln 2ax + b + 2 a(ax2 + bx + c)
2a

x
− 2x (45)
a

x ln(ax + b)dx =

(33)

(34)

a2

Z



p
x2
1
1 p



dx = x x2 ± a2 ∓ a2 ln x + x2 ± a2
2
2
2
2
x ±a
(36)

Z

ln(ax + b) − x, a 6= 0

(31)

p
x
dx = x2 ± a2
2
±a

x2

b + 2ax p 2
ax2 + bx + cdx =
ax + bx + c
4a


2
p
4ac − b

2 + bx+ c)
+
b
+
2
ln
+
a(ax
2ax

8a3/2

(20)




2ax + b
1p
4ac − b2 tan−1 √
ln ax2 + bx + c dx =
a
4ac − b2



b
− 2x +
+ x ln ax2 + bx + c
(47)
2a

±

Z

Z

b
x+
a

Z

Z p

(18)

p
x
dx = − x(a − x) − a tan−1
a−x

Z r








p
1 p
1


= x x2 ± a2 ± a2 ln x + x2 ± a2
2
2
(29)

a2 dx

Z

(17)

(43)

ln(x2 − a2 ) dx = x ln(x2 − a2 ) + a ln

(16)

1
dx = 2 x ± a
x±a




2
(x − a)3/2
3


2
2
x x − adx = a(x − a)3/2 + (x − a)5/2
3
5
Z

Z r

x − adx =

1
ln ax
dx = (ln ax)2
x
2

Z

Z

Integrals with Roots

Z

ln(ax + b)dx =

(15)

1
x
dx =
ln |ax2 + bx + c|
ax2 + bx + c
2a
2ax + b
b
tan−1 √
− √
a 4ac − b2
4ac − b2

(42)

ln(x2 + a2 ) dx = x ln(x2 + a2 ) + 2a tan−1

Z

Z

ln axdx = x ln ax − x

Z

2

x
x
dx = x − a tan−1
a2 + x 2
a

Z

Z


b
b2
x p 3
x3 (ax + b)dx =
x (ax + b)
− 2 +
12a
8a x
3


p
b3


+ 5/2 ln a x + a(ax + b) (28)
8a

(10)

2ax + b
2
1
tan−1 √
dx = √
2
ax2 + bx + c
4ac − b
4ac − b2

Z

p
1
x(ax + b)dx = 3/2 (2ax + b) ax(ax + b)
4a
i

p


(27)
−b2 ln a x + a(ax + b)


x2

Z p


2
(−2b2 + abx + 3a2 x2 ) ax + b (26)
15a2

h

(7)

1
dx = tan−1 x
1 + x2

1
x
dx = ln |a2 + x2 |
a2 + x2
2

Z
Z


x ax + bdx =

Z

Z

2 −ax2

x e

1
dx =
4

r


x −ax2
π
erf(x a) −
e
a3
2a

(59)
(60)
(61)

(62)

« 2014. From http://integral-table.com, last revised June 14, 2014. This material is provided as is without warranty or representation about the accuracy, correctness or
suitability of the material for any purpose, and is licensed under the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Integrals with Trigonometric Functions
Z
Z
Z

1
sin axdx = − cos ax
a

sin2 axdx =

Z

Z

1 1−n 3
,
, , cos2 ax
2
2
2



3 cos ax
cos 3ax
+
4a
12a

cos axdx =

1
sin ax
a

sin 2ax
x
cos2 axdx = +
2
4a

cos3 axdx =

cos ax sin bxdx =

sin 3ax
3 sin ax
+
4a
12a

Z
Z

Z

sin2 x cos xdx =

1
sin3 x
3

cos[(2a − b)x]
cos bx

cos ax sin bxdx =
4(2a − b)
2b
cos[(2a + b)x]

4(2a + b)

(66)

cos2 ax sin axdx = −

1
cos3 ax
3a

Z

(68)

Z
Z
Z

Z

sin 4ax
x

8
32a

1
tan axdx = − ln cos ax
a

tan2 axdx = −x +

1
tan ax
a

tann+1 ax
tann axdx =
×
a(1 + n)


n+1
n+3
, 1,
, − tan2 ax
2 F1
2
2

tan3 axdx =

1
1
ln cos ax +
sec2 ax
a
2a


x
sec xdx = ln | sec x + tan x| = 2 tanh−1 tan
2
Z

sec2 axdx =

1
tan ax
a

1
csc axdx = − cot ax
a
2

1
1
csc3 xdx = − cot x csc x + ln | csc x − cot x|
2
2
Z

1
csc x cot xdx = − cscn x, n 6= 0
n
Z
sec x csc xdx = ln | tan x|
n

(69)

(84)
Z

(85)
(86)

Z
Z
Z

(72)
Z

(73)

x cos xdx = cos x + x sin x
x
1
cos ax + sin ax
a2
a

x cos axdx =


x2 cos xdx = 2x cos x + x2 − 2 sin x

2x cos ax
a2 x 2 − 2
x cos axdx =
+
sin ax
2
a
a3
2

Z

1
xn cosxdx = − (i)n+1 [Γ(n + 1, −ix)
2
+(−1)n Γ(n + 1, ix)]

(75)

(88)

1
ebx (a sin ax + b cos ax)
a2 + b2

(107)

Z

xex sin xdx =

1 x
e (cos x − x cos x + x sin x)
2

(108)

Z

xex cos xdx =

1 x
e (x cos x − sin x + x sin x)
2

(109)

Integrals of Hyperbolic Functions
(89)
Z

(90)
Z

(91)

Z

(93)
(94)
(95)

(96)

(97)

Z

Z

Z
(80)

x sin xdx = −x cos x + sin x

x sin axdx = −

sin ax
x cos ax
+
a
a2

(100)

(83)


x2 sin xdx = 2 − x2 cos x + 2x sin x

eax tanh bxdx =
 (a+2b)x
h
i

a
a
e


, 1, 2 + , −e2bx
2 F1 1 +


2b
2b
 (a + 2b)
i
ha
1 ax

e
,
1,
1E,
−e2bx
F
2
1

a −1 ax 2b

 eax − 2 tan

[e ]


a
Z
1
tanh ax dx = ln cosh ax
a

x2 sin axdx =

Z
Z

a 6= b

(111)

(112)

(113)

a=b

a 6= b (114)
a=b
(115)

Z

Z

Z

2 2

2−a x
2x sin ax
cos ax +
a3
a2

ex sin xdx =

ebx sin axdx =

1 x
e (sin x − cos x)
2

1
ebx (b sin ax − a cos ax)
a2 + b2

1
[a sin ax cosh bx
a2 + b2
+b cos ax sinh bx]
(116)

cos ax cosh bxdx =

1
[b cos ax cosh bx+
a2 + b2
a sin ax sinh bx]
(117)

cos ax sinh bxdx =

(101)

(102)

Products of Trigonometric Functions and
Exponentials

(82)

(110)

(99)

1
xn sin xdx = − (i)n [Γ(n + 1, −ix) − (−1)n Γ(n + 1, −ix)]
2
(103)

(81)

1
sinh ax
a

eax sinh bxdx =
 ax
e

 2
[−b cosh bx + a sinh bx]
a − b2
2ax
x

e

4a
2

(77)

(79)

cosh axdx =

eax cosh bxdx =
 ax
e

 2
[a cosh bx − b sinh bx] a 6= b
a − b2
2ax
x

e
+
a=b
4a
2
Z
1
sinh axdx = cosh ax
a

(92)

1
(ia)1−n [(−1)n Γ(n + 1, −iax)
2
−Γ(n + 1, ixa)]
(98)

Z

Z

(106)

xn cosaxdx =

Z

(78)

1 x
e (sin x + cos x)
2

(87)

(74)
Z

ex cos xdx =

ebx cos axdx =

Products of Trigonometric Functions and
Monomials

(70)

sin[2(a − b)x]
x
sin 2ax


4
8a
16(a − b)
sin[2(a + b)x]
sin 2bx

(76)
+
8b
16(a + b)

sin2 ax cos2 axdx =

1
sec x tan xdx = secn x, n 6= 0
n

(67)

sin2 ax cos2 bxdx =

Z

1
sec2 x
2

n

Z

2

Z

sec2 x tan xdx =



x

csc xdx = ln tan = ln | csc x − cot x| + C
2

cos[(a − b)x]
cos[(a + b)x]

, a 6= b
2(a − b)
2(a + b)
(71)

sin[(2a − b)x]
sin ax cos bxdx = −
4(2a − b)
sin[(2a + b)x]
sin bx

+
2b
4(2a + b)

sec x tan xdx = sec x

Z

(65)

2

Z

Z

(64)

1
cosp axdx = −
cos1+p ax×
a(1 + p)


1+p 1 3+p
2
F
,
,
,
cos
ax
2 1
2
2
2
Z

Z

2 F1



sin3 axdx = −
Z

Z

x
sin 2ax

2
4a

1
1
sec x tan x + ln | sec x + tan x|
2
2
Z

sin axdx =

Z

Z

(63)

sec3 x dx =

n

1
− cos ax
a

Z

Z

Z

Z

1
[−a cos ax cosh bx+
a2 + b2
b sin ax sinh bx]
(118)

sin ax cosh bxdx =

1
[b cosh bx sin ax−
a2 + b2
a cos ax sinh bx]
(119)

sin ax sinh bxdx =

sinh ax cosh axdx =

1
[−2ax + sinh 2ax]
4a

(120)

(104)
Z
(105)

1
[b cosh bx sinh ax
b2 − a2
−a cosh ax sinh bx]
(121)

sinh ax cosh bxdx =