Day 2 session 1 Network Management

8/11/2016

Network Management :
QOS , Physical Connection
Wireless Technology and standard,
Calculating bandwidth
Periyadi, M.T.

CommTech
Training Center

Preface
• Networking is largely about connecting together devices so that information
can be shared between them.
• A very important characteristic of any network is its speed: how fast can data
be transmitted and received?
• Need reliable delivery of data
how important is performance to you?
Before you answer this question, recall the old auto racing adage:
speed costs money—ho fast do ou a t to go?


2

Preface
Co pa ies a e o sta tl

o i g out ith the latest a d g eatest high-performance
networking technologies

• Remember that designing a network is usually not an i e e si le , permanent
decision.
• Networks can be upgraded and expanded. While it is prudent to build some sla k
into any network to allow for growth, it is not wise to spend too much on planning
for the future when changes can be made later.
• This is especially true given that network hardware prices drop over time. Again here,
this is a matter of drawing an appropriate balance between future performance
planning and budget.

3

1


8/11/2016

Balancing Network Performance with Key NonPerformance Characteristics
• Design and Implementation Cost
• Quality
• Standardization.
• Reliability.
• Expandability and Upgradability.
• Ease of Administration and Maintenance.
• Premises and Utility Issues.

4

Performance Measurement Terms
• Speed : it refers to the rated or nominal speed of a particular networking
technology
• Bandwidth : Bandwidth is a widely-used term that usually refers to the datacarrying capacity of a network or data transmission medium, the maximum
amount of data that can pass from one point to another in a unit of time
• Throughput : Throughput is a measure of how much actual data can be sent

per unit of time across a network, channel or interface
• Latency : Refers to the timing of data transfers on a communications channel
or network. One important aspect of latency is how long it takes from the time
a request for data is made until it starts to arrive. Low latency is considered
better than high latency.
5

Understanding Performance Measurement Units :
Bits and Bytes
• the apitalized B is supposed to e used fo
te , a d the lo e - ase
for bit
• A byte is normally eight bits; sometimes the term octet is used instead
• with people mistaking bits for bytes and accidentally thinking that networks
are running eight times faster or slower than they really are.
• Ex :

• The
k i a
k ode

ea s ,000 its, ot ,000 tes, of theo eti al t a sfe
speed, actualy speed was 56,000/8 equal 7000 bytes or 7 KB
• Fast Ethernet operates at 100 megabits per second, not megabytes, and a 1.544 Mbps T1 link sends a theoretical maximum of 1,544,000 bits each second. This, at least, is
usually pretty consistent.

6

2

8/11/2016

Throughput Measurement Units and the Kilo,
Mega and Giga Multipliers
• The sta da d u it fo it th oughput is the it pe se o d , o
o l
a e iated it/s , ps o
/s . The te u it is
te pe se o d ,
a e iated
tes/s , Bps o B/s

• This means that the maximum theoretical throughput of 100BASE-TX (100
Mbps) Ethernet is about 12 MB/s

7

Major Categories of Real-World Performance
Impact Factors
• Normal Network Overhead Every network has some degree of normal network
overhead, which guarantees that you will never be able to use all of the bandwidth
of any connection for data.
• External Performance Limiters important to remember that there are many
technologies that simply do not always operate at a constant fixed speed; they may
change speeds based on physical network characteristics. A good example is an
analog modem, which can vary greatly in performance depending on the quality of
the line over which it operates
• Network Configuration Problems This refers to network slowdowns that occur
because hardware or software have not been set up correctly. Poor cabling,
misconfigured interface cards, or bad drivers can seriously reduce the performance
of a network—by 90% or even more.
8


Simplex, Full-Duplex and Half-Duplex Operation
whenever we connect together device A and device B, there must be some way
for A to send to B and B to send to A
• Simplex Operation In simplex operation, a network cable or communications channel
a o l se d i fo atio i o e di e tio ; it's a o e- a st eet .
• Half-Duplex Operation Technologies that employ half-duplex operation are capable
of sending information in both directions between two nodes, but only one direction
or the other can be utilized at a time.
• Full-Duplex Operation a connection between two devices is capable of sending data
in both directions simultaneously. Full-duplex channels can be constructed either as a
pair of simplex links (as described above) or using one channel designed to permit
bidirectional simultaneous transmissions. A full-duplex link can only connect two
devices, so many such links are required if multiple devices are to be connected
together.

9

3


8/11/2016

QOS
• Bandwidth Reservation: The ability to reserve a portion of bandwidth in a network or interface for a
period of time, so that two devices can count on having that bandwidth for a particular operation.
This is used for multimedia applications where data must be streamed in real-time and packet
rerouting and retransmission would result in problems. This is also called resource reservation.
• Latency Management: A feature that limits the latency in any data transfer between two devices to
a known value.
• Traffic Prioritization: I o e tio al et o ks, all pa kets a e eated e ual . A useful QoS feature
is the ability to handle packets so that more important connections receive priority over less
important one.
• Traffic Shaping: This refers to the use of buffers and limits that restrict traffic across a connection to
be within a pre-determined maximum.
• Network Congestion Avoidance: This QoS feature refers to monitoring particular connections in a
network, and rerouting data when a particular part of the network is becoming congested.

10

Throughput


throughput

=

Jumlah data yang dikirim
Waktu pengiriman data

Throughput = 2769572: 81.59
= 0.272 MBit/sec

11

Packet Loss

Paket Yang diterima = (Paket yang dikirim – Paket
Yang Hilang)
= 3103 – 45 = 3058
Packet Loss = ( 3103-3058 / 3013 ) x 100 %
= 1.45 %


12

4

8/11/2016

Delay
• Rata Rata Delay=Total Delay /
Total Paket Yang DiTerima
• Rata Rata Delay = 62.03 / 3103
= 0.019990 Detik

13

Physical Connection
Periyadi, M.T.

CommTech
Training Center


Media Transmisi




Wire
• Twisted Pair seperti Kabel telepon
• Coaxial
• Serat Optik ( fibre optic)
Wireless
• Gelombang Mikro
• System Satelit
• Infra Merah  10 mbps Jarak rec-trans 100 kaki
• Sinar Laser
• Blue tooth  2.4 GHz
• Wi Max

15


5

8/11/2016

Media Transmisi
• Hal-hal yang harus diperhatikan dalam menentukan media transmisi mana
yang akan digunakan:






Biaya
Instalasi
Kapasitas Bandwith
Redaman (Attenuation)
Kekebalan terhadap interferensi elektromagnet

16

Wire – coaxial Cable

17

Wire – twisted Pair

Kabel

Kelebihan

Kekurangan

UTP cable
murah dan mudah diinstalasi.
(unshielded)

rentan terhadap interferensi
gelombang elektromagnetik, dan
jarak jangkauannya hanya 100m

STP cable
lebih tahan terhadap interferensi
(shielded
gelombang elektromagnetik baik dari
twister pair) dari dalam maupun dari luar.

mahal, susah pada saat instalasi
(terutama masalah grounding), dan
jarak jangkauannya hanya 100m .

18

6

8/11/2016

Pemasangan urutan kabel UTP : EIA/TIA 568A dan
EIA/TIA 568B

19

Wire – serat optik

20

Wireless

21

7

8/11/2016

Wireless - IEEE 802.11 (wifi)

22

Wireless Wi Max
• WiMAX (wireless Microwave Access )
• teknologi nirkabel yang mengoptimalkan
Pelayanan IP centric untuk daerah yang luas
• WiMAX sertifikasi untuk perangkat sesuai IEEE
802.16
• WiMAX adalah sebuah Platform untuk
membangun alternative dan pelengkap dari
jaringan Broadband

23

How to Estimate Bandwidth
Needs for Your Customers
Periyadi, M.T.

CommTech
Training Center

8

8/11/2016

Preface
• When it works, you never hear a peep about it. But when bandwidth problems
sta t to plague a eside tial o usi ess usto e , ou’ e p o a l the e t
person being called right beside the ISP themselves
• What does a typical home or office WAN connection need in terms of
bandwidth anyway?
• Streaming music and video, constant social media, and Web 2.0 (er, now Web
3.0 perhaps) have transformed the web from a text driven experience to a full
blown multimedia haven

25

Residential Customers: A Fairly Easy Crowd to
Satisfy
• Regular internet browsing
• Social media
• Email & instant messaging
• Streaming video, music
• Online gaming (i.e. Xbox Live)
• Smartphone connectivity over Wi-Fi

26

Today ???
• How much streaming video is being accessed on a daily basis?
• How many people are downloading music or streaming Pandora?
• How many simultaneous users will be on at peak hours?
• Are there multiple online gamers in the home?
• Is VOIP in the form of Vonage or similar being used?

27

9

8/11/2016

Business Customers: Bandwidth Hungry and Tough
to Predict
• Email (and lots of it)
• Cloud services (hosted email, hosted accounting, hosted CRM, etc)
• Online banking
• Online research
• VOIP in place of PBX phone systems
• Downloading/uploading large files
• Online backup

28

Now
• Is VOIP in use at the office, and how many users are on it?
• How much email is being sent & received per day per user?
• Is cloud email like Google Apps being used?
• Are other cloud services like Salesforce or Quickbooks Online used?
• What is the office culture on streaming media usage like?
• Is content filtering an option, or off the table?
• Are any public facing web servers hosted internally?
• Are social media outlets open for usage or banned?
• Does online backup (i.e. CrashPlan) play a role in core backup needs?
29

Formulas

N x T = BN
Numbers of users (x) Traffic estimate based
on usage weight = Bandwidth Needed

30

10

8/11/2016

User Categorized

Light user: 50Kbps
Medium user: 80Kbps
Heavy user: 120 Kbps
31

Example
This hypothetical company is comprised of 20 users. 5 heavy users
who are the big whigs, 5 medium users who are the admin assistants
and related positions. The remaining 10 users are light office workers
who only use email. We would setup our estimate calculation in the
following manner:
5 (heavy users) x 120 (Kbps usage weight) = 600Kbps
5 (medium users) x 80 (Kbps usage weight) = 400Kbps
10 (light users) x 50 (Kbps usage weight) = 500Kbps
Bandwidth Needed = 1500Kbps or 1.5Mbps
32

Calculate time download
• Bandwith=512Kbps
KecDwonload=62,5 KBps
File = 80 MB
• 80 x 1024 = 81920 KB
=81920KB : 62,5KBps
=1310,72 s equals to 1310 s
=1310 :60
=21m 50s
33

11

8/11/2016

Ada pertanyaan

Paket tracer

VLSM
Berikut ini merupakan table CIDR beserta netmask nya.
NetMaskDesimal

NetMaskBiner

Format CIDR

Jumlah Host

255.255.255.0

11111111.11111111.11111111.00000000

/24

254

255.255.255.128

11111111.11111111.11111111.10000000

/25

126

255.255.255.192

11111111.11111111.11111111.11000000

/26

62

255.255.255.224

11111111.11111111.11111111.11100000

/27

30

255.255.255.240

11111111.11111111.11111111.11110000

/28

14

255.255.255.248

11111111.11111111.11111111.11111000

/29

6

255.255.255.252

11111111.11111111.11111111.11111100

/30

2

36

12

8/11/2016

alamat 192.168.1.0/24 yang
akan di bagi berdasarkan
kebutuhan host topologi di atas.
Berdasarkan topologi di atas
kebutuhan host adalah sebagai
berikut :
Pada network PC = 10 HOST
Pada server = 4 host
Untuk kedua router = 2 host
37

10 HOST
Berdasarkan table CIDR yang ada di atas maka prefik yang cocok untuk kebutuhan 10 host adalah /28 dengan
usable address sebanyak 14 address dengan subnet mask 255.255.255.240. Untuk alamat yang dapat terbentuk
serta perhitungannya adalah sebagai berikut:
Network = 192.168.1.0/28
Usable add = 192.168.1.1/28 – 192.168.1.14/28 (range 14)
Broadcast address = 192.168.1.15/28
Network = 192.168.1.16/28
Usable add = 192.168.1.17/28 – 192.168.1.30/28 (range 14)
Broadcast address = 192.168.1.31/28
Dsb.
Untuk kebutuhan 10 HOST pada network PC kita akan menggunakan alamat ip dengan netwok 192.168.1.0
dengan subnet mask 255.255.255.240
38

4 HOST
Pada perhitungan alamat VLSM 4 host tentunya dengan prefik /28 banyak
alamat yang tidak terpakai maka dari itu berdasarkan table cidr di atas prefik
yang cocok untuk kebutuhan 4 host adalah /29 (subnet mask 255.255.255.248)
dengan usable address sebanyak 6 address.
Untuk perhitungannya adalah sebagai berikut:
Network = 192.168.1.16/29
Usable add = 192.168.1.17/29 – 192.168.1.22/29 (range 6)
Broadcast address = 192.168.1.23/29
39

13

8/11/2016

2 HOST
Pada perhitungan 2 host seperti penjelasan di atas karena alamat ip dengan netwok
192.168.1.0 dan 192.168.1.16 sudah digunakan maka kita akan menggunakan lama tip
yang ketiga dengan netwok 192.168.1.24. tentunya dengan memilih prefik yang cocok
untuk kebutuhan host sebanyak 2 host. Berdasarkan table CIDR di atas prefik yang
cocol adalah /30 (subnet mask 255.255.255.252) dengan usable address sebanyak 2
address
Untuk perhitungannya adalah sebagai berikut:
Network = 192.168.1.24/30
Usable add = 192.168.1.25/30 – 192.168.1.26/30 (range 2)
Broadcast address = 192.168.1.27/30

40

OSPF using IPV4

41

RIP IPV4

42

14

8/11/2016

OSPF IPV6

43

RIP IPV6

44

15