THE MEASURING INSTRUMENT OF VISCOSITY USING OPTICAL MOUSE AS MOTION SENSORS

THE MEASURING INSTRUMENT OF VISCOSITY USING OPTICAL

  Oleh : Inti Mustika NIM : 642012010 TUGAS AKHIR Diajukan Kepada Program Studi Fisika, Fakultas Sains dan Matematika guna memenuhi sebagian dari persyaratan untuk memperoleh gelar Sarjana Sains Program Studi Fisika FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2017

  

MOTTO

Jadilah air di tengah gurun, tetapi jangan menjadi pelangi seusai hujan.

  

Berbuat baiklah tanpa harus menunggu orang lain berbuat baik kepadamu.

KATA PENGANTAR

  Segala puji dan syukur penulis panjatkan kepada Allah SWT dan junjungan Nabi Agung

Muhammad SAW karena berkat rahmat dan karunia-Nya penulis dapat menyelesaikan tugas

akhir dengan judul

  “THE MEASURING INSTRUMENT OF VISCOSITY USING OPTICAL MOUSE AS MOTION SENSORS , dan telah dipublikasikan dalam International

  

Conference of Science and Science Education (IConSSE) yang diselenggarakan oleh pihak

Fakultas Sains dan Matematika, Universitas Kristen Satya Wacana pada tanggal 30- 31

Agustus 2017.

  Laporan penelitian ini disusun untuk tugas akhir dan sebagai salah satu syarat untuk menyelesaikan pendidikan di Program Sarjana Sains di bidang fisika Universitas Kristen Satya Wacana serta untuk memenuhi persyaratan memperoleh gelar Sarjana Sains.

  Dalam penulisan tugas akhir ini penulis tidak telepas dari berbagai pihak yang turut serta berkontribusi dalam bentuk ilmu, dukungan, kekatan, bimbingan, tenaga, pikiran, doa dan sebagainya sehingga penulis dapat menyelesaikan tugas akhir ini dengan lancar..

  1. Allah SWT yang telah melimpahkan ridho dan hidayah- Nya hingga selesainya Skripsi ini.

  Bapak Dr. Suryasatriya Trihandaru, M.Sc.nat selaku dosen pembimbing I sekaligus 2.

  bapak kedua yang dengan sabar membimbing, mengarahkan, meluangkan waktu di tengah kesibukan beliau kepada penulis sehingga skripsi ini dapat berjalan dengan lancar.

  Bapak Alvama Pattiserlihun, S.Si.,M.Ed selaku dosen pembimbing II sekaligus 3.

  pendamping yang juga membimbing, memberikan saran, dan mengarahkan penulis sehingga skripsi ini dapat diselesaikan dengan baik.

  Bapak, Ibu, kedua saudaraku dan keluarga yang selalu memberikan dukungan, kasih 4.

  sayang, doa, dan kebutuhan lainnya kepada penulis. Apapun itu, I LOVE YOU.

  Pacar tercinta, Arif Kresno Prasetyo,terimakasih selama ini sudah menjadi tempat terasik 5.

  untuk berbagi, mencurahkan kegalauan, membantu apapun itu yang ku butuhkan dan selalu sabar memberi pengarahan. Terimakasih untuk semua waktu, kasih sayang, cinta, perhatian dan pengertian. You are My Everything.

  6. Seluruh dosen pengajar, terimakasih telah memberikan ilmu pengetahuan kepada penulis selama studi di FSM UKSW.

  Seluruh staff TU FSM dan Laboran, Mas Tri, Mas Sigit, Pak Taufif yang rela waktunya 7.

  terganggu untuk melayani penulis.

  Teman angkatan 2012, kowe- kowe kabeh sak josse! Tanpamu aku hanya kembang tebu 8.

  sing kabur kanginan.

  Sahabat-sahabat tebaik, Veni Setyowati, Retnaningrum Fitrotul Hidayah, Yuni Kartika, 9.

  Rina Arsita Dewi, Vexilia Gratia Putri Endar Jati, Liyensi Karanggulimu, Agustin Eka Budhi Rahayu, Kukuh Setyarsih, Maria Dinavalentine. Terimakasih sudah jadi teman terasik.

  

10. Teman corat- coret, terimakasih sudah jadi penghibur disaat jenuh, disaat nganggur.

  11. Dan keluaraga besar serta pihak-pihak yang tidak dapat penulis sebutkan satu per satu, terimakasih untuk dukungan dan doanya kepada penulis.

  Penulis menyadari sepenuhnya bahwa dalam penulisan skripsi ini masih terdapat banyak kekurangan dan jauh dari kesempurnaan. Oleh karena itu, penulis sangat mengharapkan segala saran dan nasihat dari pembaca. Harapan penulis, semoga skripsi ini bermanfaat bagi semua pihak.

  Salatiga, 14 September 2017 Penulis

  Inti Mustika vii

  DAFTAR ISI

  HALAMAN JUDUL............................................................................................................... i LEMBAR PENGESAHAN................................................................................................... ii LEMBAR PERNYATAAN KEASLIAN............................................................................. iii LEMBAR PERSETUJUAN AKSES.................................................................................... iv MOTTO................................................................................................................................. v KATA PENGANTAR.......................................................................................................... vi DAFTAR ISI........................................................................................................................ viii FULL PAPER.......................................................................................................................

  1 LAMPIRAN......................................................................................................................... 10

  

The measuring instrument of viscosity using optical mouse as motion sensors

  1

  1

  2 Inti Mustika , Suryasatriya Trihandaru *, Alvama Pattiserlihun 1 2 Department of Physic

Department of Physics Education

Faculty of Science and Mathematics, Universitas Kriten Satya Wacana

Jl. Diponegoro no. 52-60, Salatiga 50711, Central Java, Indonesia

1 *

Email

Corresponding author: suryasatriya@staff.uksw.edu

  

ABSTRACT

The viscosity of each liquid, the engine oil SAE 20W-50, cooking oil and water, is measured using

optical mouse sensors as motion sensor at room temperature. A glass ball as pendulum moving in

liquid is wrapped on crane using string. When the ball falls down in the liquid, the string makes it

rotating and the rotation is detected by sensors of optical mouse as moving cursors on computer

screen. After that, the coordinates of moving cursor is translated by Matlab R2009a program as

the ball position in the liquid. The viscosity of the engine oil, cooking oil and water is 27.14 P, 0.16

P and 0.95 P respectively.

  Keywords: viscosity, optical mouse, terminal velocity 1.

   Introduction In the study of fluid mechanics, the characteristics of fluids, the application of the basic

mechanics laws of thermodynamics and other supporting experiments have been developed

  

(Nurjannah, 2012). Fluids has particular character, such as density, viscosity, compressibility, surface

tension, and capillarity (Hasim, 2014). One of them that play an important role in life is viscosity of

fluids.

  The viscosity may be regarded as friction on a flow substances (Budianto, 2008; Effendi, 2014;

Surtono, 2007 & Maulida, 2010). Due to the viscosity of a fluid, it is necessary to give on a force layer

to move above another layer (Hermawati, 2013 & Zemansky, 1991). The viscosity of a fluid has a

relatively different value with other fluid (Budianto, 2008; Ningrum, 2014 & Aryanti, 2010). The

differences in the viscosity coefficients of fluid make the use of different types of fluids are different

(Hantoro, 2014). For example, Effendi (2014) explained that lubricating oils used for machines in

high-temperature areas are different from those used in low-temperature areas. This is because the

viscosity of the lubricating oil can affect the performance of the machine (Effendi, 2014 & Singh,

2014).

  To measure the viscosity of each fluid, a viscometer is required (Budianto, 2008). Several

viscometers have been made by previous researchers, among others, by Jumianto et.al (2013),

where they constructed a viscosity measuring instrument using the falling ball method and proximity

sensors connected to PC devices. The design of the instrument has been able to show the value of

the viscosity coefficient of cooking oil, but the researchers suggest that the use of the instrument to

be more careful and thorough in placing the sensor. Furthermore, Warsito (2012) designed a

  viscosity measuring instrument using optocoupler sensors with a computer as its acquisition system. The study was conducted to measure the viscosity value of glycerin at a temperature of 20 Celcius degrees, and obtained a coefficient viscosity value that almost close to the reference value. However, most of the research that has been done required a fairly complex equipment, so it is still possible to do development for making the instruments more simple.

  Therefore, this study was conducted with the aim to establish a simple viscosity measuring instrument by developing a falling ball method with samples of SAE 20W-50 engine oil, cooking oil and water which is expected to be utilized to measure the viscosity of the other liquids with the smallest possible error.

2. Materials and Methods

2.1 Design and Equation

  Figure 1 shows the instrument arrangement of this study. The crane was a massive cylinder with mass of 8.37 grams tied on a pendulum with radius of 0.82 cm and 5.93 grams using a string with negligible mass. The mouse was placed on the crane and arranged in such a way that the sensor could read the crane rotation.

  Picture 1. Design of measuring viscosity instrument

  This instrument works basically on the recording process of the movement or rotation of the crane by the optical mouse sensor. The LED of the optical mouse will be reflected onto the crane surface and recaptured by the CMOS sensor (Suprayitno, 2007). Then, the DSP converted the light into electrical signals and forwarded to the computer in the form of a cursor position on the monitor screen (Suprayitno, 2007). When the pendulum was released without initial velocity, the crane rotated and gave a torque whose value is affected by inertia, and angular acceleration,

  I

  (Halliday, 1985). If the resultant torque is affected by the strap strains

  T and radius of the crane R ,

  then: (1)

  TR

I

1 2 If the crane is a solid cylinder with the mass M , it has an momen inertia

  I MR and the

   2

  a

  resultant torque and , where a is the acceleration, then:

    TR   R 1 2 a 1

   (2)

  TRMR TMa 2 2 R

  When the pendulum moves down, the forces those acting on it are the buoyant force or Archimedes,

  F , Stokes force, F , gravity, g , and the tension of the strings,T . The equation will A S

  be: (3)

  mamgFFT A S 4 3 The pendulum is a solid ball having volume and density,  .The ball is dropped V   r b b 3

  into a viscous fluid having a density  , where  >  . Given the Archimedes and f b f A f b F   V g Stokes , then Eq. (3) would be:

  FS 6  rv 1

  (4)

  ma   Vg   Vgb f 6  rvMa 2 dv

  Where a is acceleration, or a,therefore we obtain:

  dt 4 3 (  ) r g    dv 6  r b f 3v  (5) 4 3 1 4 3 1 dt   . rb 3 b 2 M   . r 3 2 M

  Integrating the Eq. (5) we get: 2

  1 6  r v C exp t (6)

  2(  ) r g

   

b f

      14 3  1

9    . rM

b 3 2  

  Moreover, integrating the Eq. (6), we get: 2 4 3 1

  2(    ) r gb f t (   . rM ) 1 b 3 2 6 r

  (7)

  y   C exp   tC 1 24 3  1

  9 6 r . rM      b 3 2  

  When the ball does not reach it terminal velocity, Eq. (7) can be used for computing the value of viscosity. However, in this study we only analyze the motion of objects upon reaching the terminal velocity. So when the acceleration is zero, the viscosity has following form: 2

  2(    ) r g b f

  1 (8)

   

  9 v Eq. (8) applies to liquids with Reynolds Re <1 (Yuan, 2007; Altaify, 2017 & Web1), where:

  

vd

f

  (9)

  Re 

 With d being the diameter of the solid ball.

  For liquid flow with a value of 1 <Re <1000, empirical equation is used (Web1): 5/3

     

2 g  8/3  7/3

b

  A

  1 2 r v (10)         f  

  27  f       With A= 1.

  If Re is higher than 1000, we have to measure the value A of reference liquid. After getting the value of A, it can be used for other liquid having similar value of

  Re .

2.2 Procedures

  Basically, the program was designed by reading the movement of the cursor on the screen due to friction of the optical mouse by crane using get (0, 'position'). With that command the horizontal (x) and vertical (y) coordinates on the computer screen can be known. Since the cursor coordinates were still in pixel units, they must be converted into cm units with the calibration command. In this study, the direction of optical mouse sensor motion was conditioned only in y coordinates only. The y coordinates (in pixels) are then calibrated to obtain the coordinates j in cm, with the relation j = y /

  k, with k being the optical mouse reading distance (in pixels) per 1 cm displacement.

  After calibration, the timeout recording was determined, that was when the ball has reached the bottom of the pipe. Initially a large number of N data was selected, then after the ball reaches the bottom of the pipe, enter the break command, which means the recording process will stop at a certain number which was less than N. The results of the cursor motion recording was displayed as a position versus time graphic.

  In this process, it was possible that the graph recording contains less necessary parts for data analysis. So, we need the following process, which crops the graph to the selected linear part. It was represent as the motion of falling ball with a constant velocity that is used for computing the viscosity. In order to have the terminal velocity, the optimization procedure of Matlab, i.e polyfit has been used. The original cropped data is plotted together with the fitting approximation. So that the value of terminal velocity and also the value of Reynold used to find the value of viscosity coefficient can be determined.

3. Results and Discussion

  The data collection for each liquid was done 20 times. When the pendulum was falling down, the mouse recorded the crane movement and then displayed it in graphical position versus time shown in Figure 2.

  Figure 2. Graph of ball position before cropping

  Figure 2 displays graph of the crane motion recording from the moment the "START" button is pressed until "break". When the crane has not started moving, it is shown as a horizontal line. And when the crane has stopped moving, horizontal lines appeared again which indicated that there was no movement read by the sensor.

  After the original graph (Figure 2) has obtained, then the selected linear part of the graph was cropped. The program computed the slope of the linear motion as the terminal velocity and also compute the Reynolds number. Depended on the value of the Reynolds number, the program will compute the value of viscosity according to the Equation (8) or (10). After the value of viscosity was obtained, the program recomputed the new value of Reynolds number.

  Figure 3. Plotted graph of linear part has value terminal velocity, Reynold number and viscosity coefficient Table 1. Average of terminal velocity and Reynold number of each liquid Average of terminal Average of Reynold No. Liquid

  Information velocity number

  1 SAE 20W-50 oil (federal ) 9.2629 0.4781 Re<1

  

2 Cooking oil (hemart) 19.0022 177.9091 1<Re<1000 Then the data was processed by Microsoft Excel software to obtained the average value of viscosity coefficient, standart deviation and strandart deviation relative that shown on Table 2:

  Table 2. Descriptive statistic summary of 20 data Temp. Average of coefficient Standart Standart deviation No Liquid O (

  C) viscosity (poise) deviation relatives SAE 20W-50 oil 1 (federal)

  24 27.1478 0.9646 3.55%

  2 Cooking oil ( hemart) 24 0.1575 0.0077 4.91% Table 3. Reference value O

  No Liquid Temp. (

C) Viscosity coeff. (poise) Source

  1 SAE 20W- 50 (castrol active) room temperature 27.84 (Effendi: 2014)

  2 Cooking oil (bimoli) 25 0.473 (Hantoro: 2014)

  This study was obtained the value of engine oil and cooking oil viscosity is different with the refferences value. According to Effendi (2014), data was take 10 times at room temerature using falls down necker method into glass that filled with oil. And the oil that used by Effendi is different with the oil which used in this study. So its possible to obtain different value.

  Similiary with research that conducted by Hantoro (2014) that measure viscosity of cooking oil o with recording position of necker which dropped into oil at 25 C . The mass of necker that used is 5.4

  • -6 grams and having volume 2.19x 10 m3. Because the instrument has different with this study, so its possible to obtained different value and cannot be used as a comparisson.

  Especially for water, obtained value of A for Eq. (10) is 8.5 to get coefficient of viscosity as o closed as references value. In this study, the viscosity of water at 22 C have average value 0.0095 poise, whereas the reference has a value 0.00955 poise (web2). To ensure that A value is 8.5, the standart deviation relative of water from this experiment is compared with standart deviation relative reference, by using formula:

    air T 25 100

o o

  o x 100%

   T 25

  If a standart deviation reference more than standart deviation of the experiment, the value of multiplier A can be used to measure viscosity of water at various temperatures.

  o o As known, the reference of T water value at 25 C is 0.0089 poise and at 100 C is 0.0082 poise.

  0.0089 0.00282  So, the ratio is .

   100%  68.3% 0.0089

  Whereas the standart deviation relative of this experiment is 9.6%. So, the value of A can be used to measure viscosity of water in various temperature.

4. Conclusion and Remarks

  This study can used to measure viscosity of liquids. The viscosity value of engine oil SAE 20W- 50, cooking oil and water 27.14 P, 0.16 P and 0.95 P respectively. Whereas for water, obtained the value of multiplier A is 8.5 to get value viscosity of water that closed with reference value.

  References

  Nurjannah, N., Nasrudin M. & Nasution, T. I (2012). Perancangan viscometer digital untuk mengukur viskositas mintak berbasis mikrontroler AT8535 dengan tampilan PC. Hasyim, M. (2014). Penentuan koefisien minyak kelapa menggunakan prinsip Stokes. Can access on: http://epints.ung.ac.id/id/epint/3280 Budianto, A. (2008). Metode penentuan koefisien kekentalan zat cair dengan menggunakan regresi linear hukum stokes. Paper presented at Seminar Nasional IV, SDM Teknologi Nuklir, (1978-0176). Effendi, M. S. & Adawiyah, R. (2014). Penurunan nilai kekentalan akibat pengaruh kenaikan temperature pada beberapa merk minyak pelumas. Jurnal INTEKNA, Tahun XIV, No. 1. Surtono, A. & Susanto, E. (2007). Aplikasi sensor fotodioda pada viscometer metode bola jatuh berbantukan computer. Jurnal sains MIPA, edisi khusus tahun 2007, 13(03), (1978- 1873). Maulida, R. H. & Rani, E. (2010). Analisis karakteristik pengaruh suhu dan kontaminan terhadap viskositas oli menggunakan rotary viscometer. Jurnal Neutrino, 03(01). Hermawati, M. Y, Suciyati, S. W. & Warsito. (2013). Uji viskositas fluida menggunakan transduser ultrasonic sebagai fungsi temperatur dan akuisisinya pada computer menggunakan universal serial bus (USB). Journal of theory application, 01(01). Zemmansky, Sears. (1991). Fisika untuk universitas 1: Mekanika, Panas dan Bunyi. Page …… Ningrum, R. K., & Toifur, M. (2014). Penentuan viskositas larutan gula menggunakan metode vessel terhubung viscosimeter berbasis video based laboratory dengan software tracker. JRKPF UAD,

  01(02).

  Aryanti, E. S. & Mulyono, A. (2010). Otomatisasi pengukuran koefisien viskositas zat cair menggunakan gelombang ultrasonic. Jurnal Neutrino, 02(02). Hantoro, B. B. & Suharno. (2014). Menyelidiki hubungan kecepaan terminal dan viskositas zat cair dengan video analisis tracker. Proceedings of Pertemuan Ilmiah XXVIII HFI Jateng & DIY. (0853- 0823). Singh, Davendra, et.al. (2014). Prediction and analysis of engine friction power of a diesel engine influenced by engine speed, load, and lubricant viscosity. Hindawi publishing corporation, Advanced in tribology, Vol. 2014, article ID 928015. Can access on:

  Jumianto, S, Mujadin, A. & Elfidasari, D. (2013). Rancang bangun alat ukur viskositas dalam rangka modul praktikum fisika dasar. Jurnal al- Azhar Indonesia Seri Sains dan Teknologi, 02(01). Warsito, Suciyati, S. W. & Isworo, D. (2012). Desain dan analisis pengukuran viskositas dengan metode bola jatuh berbasis sensor optocoupler dan sistemakuisisinya pada computer. Jurnal Natur

  Indonesia, 14(03), (1410-9479).

  Suprayitno. (2007). Pengaruh variasi jarak kontak terhadap kemampuan sensor mouse optic. Jurnal Transmisi, 03(02). rd Halliday, D. & Rescnik, R. (1985). Fisika (3 Ed.). Page: 360-361. Jakarta, Penerbit: Erlangga.

  Yuan, P., Lin, B. & Liu, S. (2007). Measurement of viscosity in a vertical falling bal method. Altaify, D. O. (2017). Improvement of a vertical falling ball viscometer for measuring engine oil properties using 532nm diode laser, with estimation of the concentration of operated oil. Jurnalof Babylon University, engineering Science, Vol. 25, No. 2. Web1. Retrivied from: http://web.cecs.pdx.edu/ Web2. Retrivied from:

Dokumen yang terkait

FORMULATION AND PHYSICOCHEMICAL STABILITY OF 20% GLYCOLIC ACID CREAMS USING POLYACRYLAMIDE, C13-14 ISOPARAFFIN, LAURETH-7 AND COMBINATION OF POLYACRYLAMIDE, C13-14 ISOPARAFFIN, LAURETH 7 WITH A GLUKOLIPID OF VEGETABLE ORIGIN - Ubaya Repository

0 0 23

Ag-ZSM-11 ZEOLITE SYNTHESIS USING SILICA FROM ELEPHANT GRASS FOR LED APPLICATION

0 0 10

THE ABILITY OF THE EIGTH GRADE STUDENTS OF SMP 02 TRANGKIL PATI IN THE ACADEMIC YEAR 20112012 IN WRITING DESCRIPTIVE TEXT TAUGHT BY USING PARALLEL WRITING TECHNIQUE By: MOERWINDA ULFAH

0 0 17

THE ABILITY OF WRITING RECOUNT TEXT OF THE TENTH GRADE STUDENTS OF MA MADARIJUL HUDA KEMBANG DUKUHSETI PATI IN THE ACADEMIC YEAR 20122013 TAUGHT BY USING PORTFOLIO By FUIDATUL ULFA

0 0 18

NIM 2007 32 218 DEPARTMENT OF ENGLISH EDUCATION FACULTY OF TEACHER TRAINING AND EDUCATION

0 0 16

IMPROVING THE READING COMPREHENSION TO THE ELEVENTH GRADE STUDENTS OF SMK N 1 KUDUS IN ACADEMIC YEAR 20122013 BY USING HOT POTATOES

1 0 15

CODE MIXING ANALYSIS IN THE HEADLINE OF ECONOMIC BUSINESS ARTICLES OF KOMPAS IN DECEMBER EDITION 2010

0 0 19

THE READING COMPREHENSION OF DESCRIPTIVE TEXT OF THE EIGHTH GRADE STUDENTS OF SMP NU AL MA’RUF KUDUS TAUGHT BY USING CRAZY PROFESSOR READING GAME IN ACADEMIC YEAR 20112012

0 2 15

i OPTIMASI PRODUKSI PEMANIS ALAMI CAIR DARI TANAMAN Stevia rebaudiana Bertoni OPTIMIZATION OF LIQUID NATURAL SWEETENER PRODUCTION FROM Stevia rebaudiana Bertoni Oleh: Tiara Kasih Mirasanti 652013040 TUGAS AKHIR - Institutional Repository | Satya Wacana Ch

1 1 24

i KARAKTERISASI FISIKOKIMIA DAN PROFIL ASAM LEMAK PENYUSUN MINYAK BIJI KROKOT (Portulaca oleracea L.) PHYSICOCHEMICAL CHARACTERISTIC AND FATTY ACID PROFILE OF PURSLANE SEEDS OIL( Portulaca oleracea L.) Oleh : Bawana Putra 652013029 TUGAS AKHIR - Instituti

0 0 30