1. Rangkaian Antarmuka Transduser Ultrasonik - Appendix (1.686Mb)

  Lampiran

  1. Rangkaian Antarmuka Transduser Ultrasonik

  2. Lay-Out PCB Antarmuka Transduser Ultrasonik

  3. Rangkaian Sistem Minimal

  4. Lay-Out PCB Sistem Minimal

5. Program Anemometer Ultrasonik

  / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Fi l e Name : pr og30. c Des c r i pt i on : Uj i c oba f ungs i PORT Tar get : ATMega16

  Fr equenc y Set :

  16MHz Compi l l er : Wi nAVR/ GCC- AVR Aut hor : J ac k s on

  • / #i nc l ude <av r / i o. h> #i nc l ude <av r / i nt er r upt . h> #i nc l ude <ut i l / del ay . h> #i nc l ude <mat h. h> #i nc l ude " l c d. h"

  #def i ne mak s _c y c l e

  80 #def i ne t i me_out 4000 #def i ne pembagi 150000 #def i ne er r or 398 uns i gned c har j al ur = 1, c y c l e = 0; uns i gned c har t i me_ar r ay [ 4] = { 0, 0, 0, 0} ; uns i gned i nt t i me = 0; v oi d s et _j al ur ( uns i gned c har t x , uns i gned c har r x ) { PORTC = 0x 80; i f ( t x == 1) PORTC = 1 << PC0; el s e i f ( t x == 2) PORTC = 1 << PC1; el s e i f ( t x == 3) PORTC = 1 << PC2; el s e i f ( t x == 4) PORTC = 1 << PC3; el s e PORTC &= ~( ( 1 << PC0) | ( 1 << PA1) | ( 1 << PC2) | ( 1 << PC3) ) ; i f ( ( r x >= 1) | | ( r x <=4) ) {

  PORTC | = ( r x - 1) << 4; PORTC &= ~( 1 << PC7) ; } el s e { PORTC &= ~( ( 1 << PC4) | ( 1 << PA5) | ( 1 << PC6) ) ; PORTC | = 1 << PC7; }

  } v oi d pos i s i ( uns i gned c har l i ne) { i f ( l i ne >= 4) s et _j al ur ( 4, 2) ; el s e i f ( l i ne >= 3) s et _j al ur ( 3, 1) ; el s e i f ( l i ne >= 2) s et _j al ur ( 2, 4) ; el s e i f ( l i ne >= 1) s et _j al ur ( 1, 3) ; el s e s et _j al ur ( 0, 0) ; } uns i gned c har r es ul t ( ) { uns i gned l ong v 1, v 2, v 3; uns i gned c har i ; i f ( t i me_ar r ay [ 1] ! = 0)

v 1 = pembagi / ( uns i gned l ong) ( t i me_ar r ay [ 1] - er r or ) ; el s e v 1 = 0; i f ( t i me_ar r ay [ 3] ! = 0)

v 2 = pembagi / ( uns i gned l ong) ( t i me_ar r ay [ 3] - er r or ) ; el s e v 2 = 0; i f ( v 1 > v 2) i f ( t i me_ar r ay [ 2] ! = 0)

v 2 = pembagi / ( uns i gned l ong) ( t i me_ar r ay [ 2] - er r or ) ;

el s e v 2 = 0; i f ( t i me_ar r ay [ 4] ! = 0)

v 3 = pembagi / ( uns i gned l ong) ( t i me_ar r ay [ 4] - er r or ) ;

el s e v 3 = 0; i f ( v 2 > v 3) v 2 = v 2 - v 3; el s e v 2 = v 3 - v 2; f or ( i = 1; i <= 4; i ++) t i me_ar r ay [ i ] = 0; v 3 = ( uns i gned l ong) s qr t ( v 1 * v 1 + v 2 * v 2) ; r et ur n ( uns i gned c har ) v 3;

  } uns i gned di s pl ay _r es ul t ( uns i gned c har l i ne) { c l ear ( ) ; } v oi d i nt er r upt _i ni t ( ) { GI CR = ( 1 << I NT0) | ( 1 << I NT1) ;

  MCUCR = ( 1 << I SC01) | ( 1 << I SC11) ; } v oi d t i mer _i ni t ( ) {

  TCCR0 = 1 << WGM01; TCNT0 = 0x 00; OCR0 = 0x 01; TCCR2 = ( 1 << WGM21) | ( 1 << COM20) ;

  TCNT2 = 0x 00; OCR2 = 0x c 5; TI MSK = ( 1 << OCI E0) | ( 1 << OCI E2) ; } v oi d s t ar t ( ) {

  TCCR0 | = 1 << CS01; TCCR2 | = ( 1 << CS20) | ( 1 << COM20) ; GI CR | = 1 << I NT1; }

  I SR( I NT0_v ec t ) { _del ay _ms ( 1000) ; s t ar t ( ) ; c l ear ( ) ; }

  I SR( I NT1_v ec t ) { t i me_ar r ay [ j al ur ] = t i me; c l ear _l i ne( 0) ; s end_s t r i ng( " Rec i v e : " ) ; i f ( j al ur >= 4)

  { uns i gned c har s peed, i ; j al ur = 1; s peed = r es ul t ( ) ; c l ear _l i ne( 1) ; s end_s t r i ng( " Speed : " ) ; s end_num( s peed) ; s end_s t r i ng( " m/ s " ) ; f or ( i = 1; i << 4; i ++) { t i me_ar r ay [ i ] = 0; }

  } el s e { j al ur ++; s t ar t ( ) ; } t i me = 0; pos i s i ( j al ur ) ; _del ay _ms ( 3) ; }

  I SR( TI MER0_COMP_v ec t ) { i f ( t i me >= t i me_out ) {

  TCCR0 &= ~( ( 1 << CS00) | ( 1 << CS01) | ( 1 << CS02) ) ; t i me = 0; GI CR &= ~( 1 << I NT1) ; } el s e t i me++; }

  I SR( TI MER2_COMP_v ec t ) { i f ( c y c l e >= mak s _c y c l e) {

  TCCR2 &= ~( ( 1 << COM20) | ( 1 << CS20) | ( 1 << CS21) | ( 1 << CS22) ) ; c y c l e = 0; } el s e c y c l e++; } i nt mai n( ) {

  

DDRA = ( 1 << PA0) | ( 1 << PA1) | ( 1 << PA2) | ( 1 << PA3) | ( 1 << PA4) ;

DDRA | = ( 1 << PA5) | ( 1 << PA6) | ( 1 << PA7) ; DDRB = ( 1 << PB0) | ( 1 << PB1) | ( 1 << PB2) | ( 1 << PB4) ;

DDRC = ( 1 << PC0) | ( 1 << PC1) | ( 1 << PC2) | ( 1 << PC3) | ( 1 << PC4) ;

DDRC | = ( 1 << PC5) | ( 1 << PC6) | ( 1 << PC7) ;

DDRD = ( 1 << PD0) | ( 1 << PD1) | ( 1 << PD4) | ( 1 << PD5) | ( 1 << PD6) ;

DDRD | = ( 1 << PD7) ; l c d_i ni t ( ) ; c l ear ( ) ; s et _c ur s or ( 0, 0) ; s end_s t r i ng( " Tugas Ak hi r " ) ; s et _c ur s or ( 0, 1) ; s end_s t r i ng( " Ol eh J ac k s on" ) ; t i mer _i ni t ( ) ; i nt er r upt _i ni t ( ) ; pos i s i ( j al ur ) ; s t ar t ( ) ; s ei ( ) ; whi l e( 1) { _del ay _ms ( 3000) ; c l ear _l i ne( 0) ; s end_s t r i ng( " Send. . . " ) ; s t ar t ( ) ;

  } }

  • Internally Frequency Compensated for Unity Gain • Large DC Voltage Gain: 100dB
  • Wide Power Supply Range:
  • Input Common Mode Voltage Range Includes Ground • Large Output Voltage Swing: 0V DC to Vcc -1.5V DC • Power Drain Suitable for Battery Operation.

  1

  LM 2 9 0 4 ,LM 3 5 8 /LM 3 5 8 A,LM 2 5 8 / LM 2 5 8 A Dua l Ope ra t iona l Am plifie r

  www.fairchildsemi.com

  8 V CC

  Features

  LM258/LM258A, LM358/LM358A: 3V~32V (or ±1.5V ~ 16V) LM2904 : 3V~26V (or ±1.5V ~ 13V)

  Description

  The LM2904,LM358/LM358A, LM258/LM258A consist of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltage. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifier, DC gain blocks and all the conventional OP-AMP circuits which now can be easily implemented in single power supply systems.

  8-DIP 8-SOP

  1

  1 Internal Block Diagram

IN1 (-)

IN2 (-)

  3

  4

  5

  6

  7

  Rev. 1.0.2

  OUT2

  IN2 (+) OUT1

  IN1 (+) GND

  2

LM2904,LM358/LM358A,LM258/LM258A

  Schematic Diagram

  (One section only)

  V CC Q12 Q5 Q6

  Q17 Q19 Q20 Q3 R1 Q2 C1 Q18

Q4

  IN(-) Q1 R2

  IN(+) Q11 OUTPUT Q21 Q15 Q10 Q7 Q13 Q14 Q8 Q9 Q16 GND

  Absolute Maximum Ratings

Parameter Symbol LM258/LM258A LM358/LM358A LM2904 Unit

  Supply Voltage V 16 or 32 16 or 32 13 or 26

  V CC ± ± ± Differential Input Voltage

  V I(DIFF)

  32

  32

  26 V Input Voltage V -0.3 to +32 -0.3 to +32 -0.3 to +26

  V I Output Short Circuit to GND

  • Continuous Continuous Continuous -

  V

  15V, T = 25 C(One Amp)

  CC ≤ A °

  Operating Temperature Range T OPR -25 ~ +85 0 ~ +70 -40 ~ +85 ° C Storage Temperature Range T -65 ~ +150 -65 ~ +150 -65 ~ +150 ° C

  STG

LM2904,LM358/LM358A,LM258/LM258A

  Input Offset Voltage

  Electrical Characteristics

  (Vcc = 5.0V, V EE = GND, T A = 25 °

  C, unless otherwise specified)

  V CM = 0V to V CC

  • 1.5V
  • 2.9
  • 45 150 -
  • Vcc -1.5
  • Vcc -1.5 -
  • 1.5
  • 0.8

  V IO

  5 20 mV Common-Mode Rejection Ratio

  40 60 -

  40 60 -

  I SC

  CS f = 1kHz to 20kHz (Note1)

  PSRR - 65 100 - 65 100 - 50 100 - dB Channel Separation

  50 80 - dB Power Supply Rejection Ratio

  65 80 -

  70 85 -

  CMRR -

  5 20 -

  I SOURCE

  5 20 -

  V CC = 5V, R L = 10k Ω -

  V V O(L)

  23 24 -

  27 28 -

  27 28 -

  = 10k Ω

  L

  V R

  40 60 mA Output Current

  V I(+) = 1V,

  Ω

  10 15 - mA

  V

  V CC

  V CC

  V CC

  V I(DIFF)

  12 100 - - - - µ A Differential Input Voltage

  V O(P) = 200mV 12 100 -

  V CC = 15V,

  V I(+) = 0V,V I(-) =1V ,

  10 15 -

  V I(-) = 0V

  10 15 -

  V O(P) = 2V

  V CC = 15V,

  V I(+) = 0V, V I(-) = 1V,

  I SINK

  20 30 - mA

  20 30 -

  20 30 -

  V O(P) = 2V

  V CC = 15V,

  26 - - 26 - - 22 - -

  = 2k

  Note: 1. This parameter, although guaranteed, is not 100% tested in production. Parameter Symbol Conditions LM258 LM358 LM2904 Unit Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.

  I BIAS

  I CC R

  V Supply Current

  Vcc

  =26V)

  CC

  (LM2904, V

  V CC = 30V

  V I(R)

  45 250 - 45 250 nA Input Voltage Range

  5 50 nA Input Bias Current

  =

  5 50 -

  3 30 -

  I IO

  2.9 7.0 mV Input Offset Current

  2.9 7.0 -

  5.0 -

  = 0 Ω

  S

  V O(P) = 1.4V, R

  L

  ∞

  L

  , V

  R

  V CC =30V

  V O(H)

  25 100 - 25 100 - V/mV Output Voltage Swing

  V O(P) = 1V to 11V 50 100 -

  = 15V, R L = 2k Ω

  V V CC

  G

  0.5 1.2 mA Large Signal Voltage Gain

  0.5 1.2 -

  0.5 1.2 -

  = 5V -

  CC

  = ∞ , V

  L

  0.8 2.0 mA R

  0.8 2.0 -

  2.0 -

  = 30V (LM2904, V CC =26V)

  CC

  (V CC =26V for LM2904)

  • 120 - - 120 - - 120 - dB Short Circuit to GND

LM2904,LM358/LM358A,LM258/LM258A

  C

  Electrical Characteristics (Continued)

  (V CC = 5.0V, V EE = GND, unless otherwise specified) The following specification apply over the range of -25

  T

  • 85
  • 70
  • 85
    • 1.5V
    • 7.0 - -
    • 7.0 - -
    • 100 - - 150 - 45 200 nA
    • 40 300 -
    • Vcc -2.0
    • Vcc -2.0 -
    • 2.0

  

  V R

  L =

  V CC = 5V, R

  V V O(L)

  23 24 -

  27 28 -

  27 28 -

  Ω

  =10k

  L

  = 2k Ω 26 - - 26 - - 22 - -

  20 -

  L

  R

  26V for LM2904)

  =

  CC

  V CC =30V (V

  V O(H)

  25 - - 15 - - 15 - - V/mV Output Voltage Swing

  V O(P) = 1V to 11V

  Ω

  10k Ω

  5 20 -

  L

  V CC = 15V,

  V

  V CC

  V CC

  V CC

  V I(DIFF)

  5 9 - mA Differential Input Voltage

  5 9 -

  5 8 -

  V O(P) = 2V

  V I(-) = 1V

  5 20 mV Output Current

  V I(+) = 0V,

  I SINK

  10 30 - mA

  10 30 -

  10 30 -

  V O(P) = 2V

  V CC = 15V,

  V I(-) = 0V

  V I(+) = 1V,

  I SOURCE

  = 2.0k

  = 15V, R

  °

  C

  V CM = 0V to

  V IO

  Input Offset Voltage

  Parameter Symbol Conditions LM258 LM358 LM2904 Unit Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.

  C for the LM2904

  °

  A ≤

  T

  ≤

  °

  V O(P) = 1.4V, R S = 0

  C for the LM358; and the -40

  °

  A ≤

  T

  ≤

  C

  °

  C for the LM258; and the 0

  °

  A ≤

  V CC

  Ω

  CC

  9.0 - - 10.0 mV Input Offset Voltage Drift

  V V

  V Large Signal Voltage Gain

  Vcc

  V CC = 26V)

  V CC = 30V (LM2904 ,

  V I(R)

  40 500 - 40 500 nA Input Voltage Range

  I BIAS

  I IO / ∆ T - - 10 - - 10 - - 10 - pA/ ° C Input Bias Current

  ∆

  Input Offset Current Drift

  I IO

  C Input Offset Current

  °

  V/

  µ

  7.0 - - 7.0 -

  = 0 Ω

  V IO/ ∆ T R S

  ∆

  G

  • 5

LM2904,LM358/LM358A,LM258/LM258A

  • 1.0
  • V CC
  • 1.5
  • 1.5

  5 20 mV Common-Mode Rejection Ratio

  40 60 mA Output Current

  40 60 -

  I SC

  PSRR - 65 100 - 65 100 - dB Channel Separation CS f = 1kHz to 20kHz (Note1) - 120 - - 120 - dB Short Circuit to GND

  65 85 - dB Power Supply Rejection Ratio

  70 85 -

  CMRR -

  5 20 -

  V I(+) = 1V, V I(-) = 0V

  V CC = 5V, R L = 10k Ω -

  V V O(L)

  27 28 -

  27 28 -

  V R L =10k Ω

  26 - - 26 - -

  Ω

  I SOURCE

  V CC = 15V, V

  L

  V O(P) = 200mV 12 100 -

  V

  V CC

  V CC

  V I(DIFF)

  A Differential Input Voltage

  µ

  12 100 -

  10 15 - mA V in + = 0V, V in (-) = 1V

  = 2V

  10 15 -

  V CC = 15V, V O(P) = 2V

  = 0V

  V I(+) = 1V, V

  I SINK

  20 30 - mA

  20 30 -

  = 2k

  R

  V CC = 30V

  S

  5 30 nA Input Bias Current

  2 15 -

  I IO

  2.0 3.0 mV Input Offset Current

  3.0 -

  Ω

  = 0

  V O(P) = 1.4V, R

  40 80 - 45 100 nA Input Voltage Range

  V CM = 0V to V CC -1.5V

  V IO

  Input Offset Voltage

  Note: 1. This parameter, although guaranteed, is not 100% tested in production. Parameter Symbol Conditions LM258A LM358A Unit Min. Typ. Max. Min. Typ. Max.

  C, unless otherwise specified)

  (V CC = 5.0V, V EE = GND, T A = 25 °

  Electrical Characteristics (Continued)

  I BIAS - -

  V I(R)

  V CC = 30V -

  0.8 2.0 mA RL = ∞ , V CC = 5V -

  V OH

  25 100 - V/mV Output Voltage Swing

  V O = 1V to 11V 50 100 -

  V V CC = 15V, R L = 2k Ω

  G

  0.5 1.2 mA Large Signal Voltage Gain

  0.5 1.2 -

  0.8 2.0 -

  = 30V -

  CC

  ,V

  ∞

  =

  L

  I CC R

  V Supply Current

  V CC

O(P)

I(-)

LM2904,LM358/LM358A,LM258/LM258A

  • 1.5V
  • 4.0 - -
  • 30 - -
  • 40 100 -
  • Vcc -2.0
  • 2.0

  5 20 -

  V O(P) = 1V to 11V 25 - -

  =2.0k Ω

  

L

  = 15V, R

  V V CC

  5 20 mV Large Signal Voltage Gain G

  V CC = 5V, R L =10k Ω -

  I SOURCE

  V V O(L)

  27 28 -

  27 28 -

  Ω

  = 10k

  

L

  15 - - V/mV Output Current

  V I(+) = 1V, V

  Electrical Characteristics (Continued)

  V CC = 15V, V O(P) = 2V

  V

  V CC

  V CC - -

  V I(DIFF) - - -

  5 9 - mA Differential Input Voltage

  5 9 -

  = 0V

  = 0V

  V I(+) = 1V, V

  I SINK

  10 30 - mA

  10 30 -

  = 2V

  V CC = 15V, V

  V R

  26 - - 26 - -

  Ω

  V IO

  7.0 15 -

  V IO / ∆ T - -

  5.0 mV Input Offset Voltage Drift ∆

  V O(P) = 1.4V, R S = 0 Ω

  

CC

  V CM = 0V to V

  Input Offset Voltage

  = 2k

  Parameter Symbol Conditions LM258A LM358A Unit Min. Typ. Max. Min. Typ. Max.

  = GND, unless otherwise specified) The following specification apply over the range of -25 ° C ≤ T A ≤ +85 ° C for the LM258A; and the 0 ° C ≤ T A ≤ +70 ° C for the LM358A

  EE

  = 5.0V, V

  CC

  (V

  7.0 20 µ V/ ° C Input Offset Current

  I IO

  75 nA Input Offset Current Drift

  ∆

  

L

  R

  V CC = 30V

  V O(H)

  V Output Voltage Swing

  Vcc

  V CC = 30V -

  V I(R)

  40 200 nA Input Common-Mode Voltage Range

  I BIAS

  C Input Bias Current

  °

  T - - 10 200 - 10 300 pA/

  ∆

  I IO /

I(-)

O(P)

I(-)

LM2904,LM358/LM358A,LM258/LM258A

  Typical Performance Characteristics

Figure 1. Supply Current vs Supply Voltage Figure 2. Voltage Gain vs Supply Voltage

  Figure 3. Open Loop Frequency Response Figure 4. Large Signal Output Swing vs Frequency

Figure 5. Output Characteristics vs Current Sourcing Figure 6. Output Characteristics vs Current Sinking

LM2904,LM358/LM358A,LM258/LM258A

  (Continued) Typical Performance Characteristics

  

Figure 7. Input Voltage Range vs Supply Voltage Figure 8. Common-Mode Rejection Ratio

Figure 9. Output Current vs Temperature (Current Limiting) Figure 10. Input Current vs Temperature Figure 11. Voltage Follower Pulse Response Figure 12. Voltage Follower Pulse Response (Small Signal)

LM2904,LM358/LM358A,LM258/LM258A

8-DIP

  0.060 ± 0.004

  0.010

  0.25

  MIN

  ° 0.300 MAX

  7.62 0~15

  5.08 0.200 0.33 0.013

  9.60 0.378 MAX

  0.10 0.362 ± 0.008

  1.524 ±

  0.10 0.018 ± 0.004

  Mechanical Dimensions Package Dimensions in millimeters

  0.46 ±

  2.54 0.100 0.031 ()

  0.79

  0.20

  9.20 ±

  ± 0.008

  #4 #5 #8 0.252

  0.20 0.134 ± 0.008 #1

  0.30 0.130 ± 0.012 3.40 ±

  0.20 3.30 ±

  6.40 ±

  • 0.10
    • –0.05

  • 0.004
    • –0.002

LM2904,LM358/LM358A,LM258/LM258A

  (Continued) Mechanical Dimensions Package

  Dimensions in millimeters 8-SOP 0.1~0.25 MIN

  0.004~0.001

  

1.55

  0.20 ±

  0.061 ± 0.008

  0.56 0.022 ()

  #1 #8 0.20 0.008

  MAX ± ±

  4.92

  

5.13

0.202 0.194

  0.10 0.004 #4 #5

  ± ± 0.41 0.016

  6.00 ±

  0.30

1.80 MAX

  1.27 0.236 0.012 0.050

  ± 0.071

  0.006

  0.15

  • 0.002
  • 0.05 0.004

  3.95 0.10 ±

  0.20 0.156 ± 0.008

  MAX0.10 MAX0.004

°

  5.72

0~8

  0.225 0.50 ±

  0.20 0.020 ± 0.008

  LM2904,LM358/LM358A,LM258/LM258A Ordering Information Product Number Package Operating Temperature

  LM358N 8-DIP

  LM358AN 0 ~ +70 C

  °

  LM358M 8-SOP

  LM358AM LM2904N 8-DIP

  • 40 ~ +85 C

  °

  LM2904M 8-SOP LM258N

  8-DIP LM258AN

  • 25 ~ +85 ° C LM258M

  8-SOP LM258AM

LM2904,LM358/LM358A,LM258/LM258A

  DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY

LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

  

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES

OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR

CORPORATION. As used herein:

1. Life support devices or systems are devices or systems

  2. A critical component in any component of a life support which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be or (b) support or sustain life, and (c) whose failure to reasonably expected to cause the failure of the life support

perform when properly used in accordance with device or system, or to affect its safety or effectiveness. instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. www.fairchildsemi.com This datasheet has been download from: Datasheets for electronics components.

LM193/LM293/LM393/LM2903

  August 2002 LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators General Description Advantages The LM193 series consists of two independent precision n High precision comparators voltage comparators with an offset voltage specification as drift over temperature

  OS n Reduced V low as 2.0 mV max for two comparators which were de- n Eliminates need for dual supplies signed specifically to operate from a single power supply n Allows sensing near ground over a wide range of voltages. Operation from split power n Compatible with all forms of logic supplies is also possible and the low power supply current n Power drain suitable for battery operation drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteris- tic in that the input common-mode voltage range includes Features

  Low ground, even though operated from a single power supply n Wide supply voltage.

  — Voltage range:

  2.0V to 36V — Single or dual supplies: ±

  1.0V to ±

  18V Application areas include limit comparators, simple analog to Power digital converters; pulse, squarewave and time delay gen- n Very low supply current drain (0.4 mA) — independent of supply voltage erators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM193 series was

  25 nA n Low input biasing current: designed to directly interface with TTL and CMOS. When

  ± 5 nA n Low input offset current: operated from both plus and minus power supplies, the

  ± 3 mV n Maximum offset voltage:

  Low LM193 series will directly interface with MOS logic where n Input common-mode voltage range includes ground their low power drain is a distinct advantage over standard n Differential input voltage range equal to the power comparators. supply voltage

  Offset The LM393 and LM2903 parts are available in National’s 250 mV at 4 mA n Low output saturation voltage,: innovative thin micro SMD package with 8 (12 mil) large n Output voltage compatible with TTL, DTL, ECL, MOS bumps. and CMOS logic systems n Available in the 8-Bump (12 mil) micro SMD package

  V n See AN-1112 for micro SMD considerations oltage Squarewave Oscillator Non-Inverting Comparator with Hysteresis Dual Comparators

  00570909 00570938

  Schematic and Connection Diagrams 00570902

  Metal Can Package Dual-In-Line/SOIC Package 00570903

  00570901 micro SMD micro SMD Marking

  

00570945

Top View

  00570946 Top View LM193/LM293/LM393/LM2903

LM193/LM293/LM393/LM2903

   LM193/LM193A −55˚C to +125˚C Absolute Maximum Ratings

  LM2903 −40˚C to +85˚C If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/

  Storage Temperature Range −65˚C to +150˚C Distributors for availability and specifications. Lead Temperature

  • Supply Voltage, V

  36V (Soldering, 10 seconds) +260˚C Differential Input Voltage

  36V Soldering Information Input Voltage −0.3V to +36V Dual-In-Line Package Input Current (V < −0.3V) 50 mA

  IN Soldering (10 seconds) 260˚C Power Dissipation

  Small Outline Package 215˚C Molded DIP 780 mW Vapor Phase (60 seconds) Metal Can 660 mW Infrared (15 seconds) 220˚C Small Outline Package 510 mW

  See AN-450 “Surface Mounting Methods and Their Effect micro SMD Pacakge 568mW on Product Reliability” for other methods of soldering Output Short-Circuit to Ground surface mount devices.

   Continuous ESD rating Operating Temperature Range (1.5 kΩ in series with 100 pF) 1300V LM393 0˚C to +70˚C LM293 −25˚C to +85˚C

  Electrical Characteristics

  • (V =5V, T = 25˚C, unless otherwise stated)

  A Parameter Conditions LM193A Units Min Typ Max

  Input Offset Voltage 1.0 2.0 mV Input Bias Current

  I (+) or I (−) with Output In Linear 25 100 nA

  IN

  IN Range, V = 0V

  CM Input Offset Current I (+)−I (−) V = 0V

  3.0 25 nA

  IN

IN CM

  • Input Common Mode V+ = 30V

  V −1.5

  V Voltage Range

  • Supply Current R =∞

  V =5V

  0.4 1 mA L

  • V =36V

  1 2.5 mA

  • Voltage Gain R ≥15 kΩ, V =15V

  50 200 V/mV L

  V = 1V to 11V O

  Large Signal Response V =TTL Logic Swing, V =1.4V 300 ns

IN REF

  Time V =5V, R =5.1 kΩ RL L

  Response Time V =5V, R =5.1 kΩ 1.3 µs RL L

  Output Sink Current V (−)=1V, V (+)=0, V ≈1.5V

  6.0 16 mA

  IN

  IN O Saturation Voltage V (−)=1V, V (+)=0, I ≤4 mA 250 400 mV

  IN

IN SINK

  Output Leakage Current V (−)=0, V (+)=1V, V =5V 0.1 nA

  IN

  IN O Electrical Characteristics

  • (V =5V, T = 25˚C, unless otherwise stated)

  A Parameter Conditions LM193 LM293, LM393 LM2903 Units Min Typ Max Min Typ Max Min Typ Max

  Input Offset Voltage

  1.0

  5.0

  1.0

  5.0

  2.0 7.0 mV Input Bias Current I (+) or I (−) with Output In 25 100 25 250 25 250 nA

  IN

  IN Linear Range, V = 0V

  CM Input Offset Current I (+)−I (−) V = 0V

  3.0

  25

  5.0

  50

  5.0 50 nA

  IN

IN CM

  Input Common Mode V+ = 30V V+−1.5 V+−1.5 V+−1.5

  V Voltage Range

  (Continued) Electrical Characteristics

  • (V =5V, T = 25˚C, unless otherwise stated)

  A Parameter Conditions LM193 LM293, LM393 LM2903 Units Min Typ Max Min Typ Max Min Typ Max

  • Supply Current R =∞

  V =5V

  0.4

  1

  0.4

  1

  0.4 1.0 mA L

  • V =36V

  1

  2.5

  1

  2.5

  1 2.5 mA

  • Voltage Gain R ≥15 kΩ, V =15V

  50 200 50 200 25 100 V/mV L

  V = 1V to 11V O

  Large Signal Response V =TTL Logic Swing, V =1.4V 300 300 300 ns

IN REF

  Time V =5V, R =5.1 kΩ RL L

LM193/LM293/LM393/LM2903

  Response Time V =5V, R =5.1 kΩ

  1.3

  1.3 1.5 µs RL L

  Output Sink Current V (−)=1V, V (+)=0, V ≤1.5V

  6.0

  16

  6.0

  16

  6.0 16 mA

  IN

  IN O Saturation Voltage V (−)=1V, V (+)=0, I ≤4 mA 250 400 250 400 250 400 mV

  IN

IN SINK

  Output Leakage Current V (−)=0, V (+)=1V, V =5V

  0.1

  0.1 0.1 nA

  IN

  IN O Electrical Characteristics

  (V+ = 5V) Parameter Conditions LM193A Units Min Typ Max

  Input Offset Voltage 4.0 mV Input Offset Current

  I −I , V =0V 100 nA

  IN(+)

  IN(−) CM Input Bias Current I (+) or I (−) with Output in Linear Range, 300 nA

  IN

  IN V =0V

  CM

  Input Common Mode V =30V V −2.0

  V Voltage Range Saturation Voltage V (−)=1V, V (+)=0, I ≤4 mA 700 mV

  IN

IN SINK

  Output Leakage Current V (−)=0, V =1V, V =30V 1.0 µA

  IN

  IN(+) O − Differential Input Voltage Keep All V ’s≥0V (or V , if Used),

  36 V

  IN Electrical Characteristics (V+ = 5V)

  Parameter Conditions LM193 LM293, LM393 LM2903 Units Min Typ Max Min Typ Max Min Typ Max Input Offset Voltage

  9

  9

  9 15 mV Input Offset Current

I −I , V =0V 100 150

50 200 nA

  IN(+)

  IN(−) CM Input Bias Current I (+) or I (−) with Output in 300 400 200 500 nA

  IN

  IN Linear Range, V =0V

  CM

  • + +

  Input Common Mode V =30V V −2.0 V −2.0 V −2.0

  V Voltage Range Saturation Voltage V (−)=1V, V (+)=0, 700 700 400 700 mV

  IN

  IN I ≤4 mA

  SINK Output Leakage Current V (−)=0, V =1V, V =30V

  1.0

  1.0 1.0 µA

  IN

  IN(+) O − Differential Input Voltage Keep All V ’s≥0V (or V , if

  36

  36

  36 V

  IN Used),

  Note 1: For operating at high temperatures, the LM393 and LM2903 must be derated based on a 125˚C maximum junction temperature and a thermal resistance of 170˚C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM193/LM193A/LM293 must be derated based on a 150˚C maximum junction temperature. The low bias dissipation and the “ON-OFF” characteristic of the outputs keeps the chip dissipation very small (P ≤100 mW),

  D provided the output transistors are allowed to saturate.

  • Note 2: Short circuits from the output to V can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output
  • current is approximately 20 mA independent of the magnitude of V .

  Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action

LM193/LM293/LM393/LM2903

  (Continued) Electrical Characteristics

  • on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than −0.3V.

  Note 4: These specifications are limited to −55˚C≤T ≤+125˚C, for the LM193/LM193A. With the LM293 all temperature specifications are limited to A −25˚C≤T ≤+85˚C and the LM393 temperature specifications are limited to 0˚C≤T ≤+70˚C. The LM2903 is limited to −40˚C≤T ≤+85˚C.

  A A A

  Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines. Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode

  • voltage range is V −1.5V at 25˚C, but either or both inputs can go to 36V without damage, independent of the magnitude of V .

  Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section. Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than −0.3V (or 0.3V below the magnitude of the negative power supply, if used).

  • Note 9: At output switch point, V =0Ω with V from 5V to 30V; and over the full input common-mode range (0V to V −1.5V), at 25˚C.

  .1.4V, R O S Note 10: Refer to RETS193AX for LM193AH military specifications and to RETS193X for LM193H military specifications.

  Ordering Information Package Temperature Range Part Number NSC Drawing

  • LM193H LM193H/883 LM193H-MLS −55˚C to 125˚C LM193AH-MLS 8-Pin Metal Can LM193AH-QMLV H08C
    • LM193AH LM193AH/883 −25˚C to 85˚C LM293H 0˚C to 70˚C LM393H LM193J/883

  • LM193AJ/883 8-Pin Ceramic DIP −55˚C to 125˚C

  J08A LM193AJ-QMLV

  • LM193AJ-MLS 0˚C to 70˚C LM393N 8-Pin Molded DIP

  N08E −40˚C to 85˚C LM2903N LM393M 0˚C to 70˚C

  LM393MX 8-Pin SOIC M08A LM2903M

  −40˚C to 85˚C LM2903MX LM393TL 0˚C to 70˚C

  LM393TLX 8-Bump (12 mils) TLA08AAA micro SMD

  LM2903ITL −40˚C to 85˚C

LM2903ITLX

  Note: * Also available per LM38510/11202 Note: ** See STD Mil DWG 5962-94526

  Typical Performance Characteristics LM193/LM293/LM393, LM193A Supply Current Input Current 00570925

LM193/LM293/LM393/LM2903

  00570926 Output Saturation Voltage Response Time for Various Input Overdrives — Negative Transition

  00570927 00570928

  Response Time for Various Input Overdrives — Positive Transition 00570929

LM193/LM293/LM393/LM2903

  

LM2903

Typical Performance Characteristics Supply Current Input Current

  00570931 00570930 Response Time for Various Input Overdrives — Negative Output Saturation Voltage Transition

  00570933 00570932 Response Time for Various Input Overdrives — Positive Transition

  00570934

  • without damaging the device Protection should be provided to prevent the input voltages from going negative more than −0.3 V

  V

  00570940

  00570938 00570939

  00570937 Squarewave Oscillator Pulse Generator Crystal Controlled Oscillator

  

Basic Comparator Driving CMOS Driving TTL

00570935 00570936

  DC )

  Typical Applications (V

  SAT of the output transistor. The low offset voltage of the output transistor (1.0mV) allows the output to clamp essentially to ground level for small load currents.

  The output of the LM193 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR’ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V

  DC (at 25˚C). An input clamp diode can be used as shown in the applications section.

  The differential input voltage may be larger than V

LM193/LM293/LM393/LM2903

  • terminal of the LM193 package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of

  It is usually unnecessary to use a bypass capacitor across the power supply line.

  DC .

  DC to 30 V

  The bias network of the LM193 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2.0 V

  Application Hints The LM193 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator change states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input re- sistors to < 10 kΩ reduces the feedback signal levels and finally, adding even a small amount (1.0 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required. All input pins of any unused comparators should be tied to the negative supply.

  • ) and the β of this device. When the maximum current limit is reached (approximately 16mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the ap- proximately 60Ω r
  • =5.0 V
    • For large ratios of R1/R2, D1 can be omitted.

LM193/LM293/LM393/LM2903

  • (V =5.0 V ) (Continued)

  DC Two-Decade High Frequency VCO

  Typical Applications

  00570941 V* = +30 V DC

  • 250 mV ≤ V ≤ +50 V

  DC C DC 700Hz ≤ f ≤ 100kHz o

  Basic Comparator Non-Inverting Comparator with Hysteresis 00570906

  00570909 Inverting Comparator with Hysteresis Output Strobing

  00570910 00570911

  • =5.0 V

  Typical Applications (V

  DC ) (Continued)

  AND Gate OR Gate

LM193/LM293/LM393/LM2903

  00570912 00570913

  Large Fan-in AND Gate Limit Comparator 00570914

  00570915 Comparing Input Voltages of Opposite Polarity ORing the Outputs

  00570916 00570917

LM193/LM293/LM393/LM2903

  • =5.0 V

  Typical Applications (V

  DC ) (Continued)

  Zero Crossing Detector (Single Power Supply) One-Shot Multivibrator 00570921

  00570922

Bi-Stable Multivibrator One-Shot Multivibrator with Input Lock Out

  00570924 00570923

  Zero Crossing Detector Comparator With a Negative Reference 00570943

  00570944

  • =5.0 V

  Typical Applications (V

  DC ) (Continued)

  Time Delay Generator 00570907

LM193/LM293/LM393/LM2903

  • =+15 V

  Split-Supply Applications (V

  

DC

and V

  − =−15 V

  DC )

  MOS Clock Driver 00570942

LM193/LM293/LM393/LM2903

  Physical Dimensions inches (millimeters) unless otherwise noted

  Metal Can Package (H) NS Package Number H08C Ceramic Dual-In-Line Package NS Package Number J08A

  Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

  SOIC Package NS Package Number M08A Molded Dual-In-Line Package (N) NS Package N08E LM193/LM293/LM393/LM2903