Characterization of Polymeric Chemiresistors for Gas Sensor

TELKOMNIKA, Vol.10, No.2, June 2012, pp. 275~280
ISSN: 1693-6930
accredited by DGHE (DIKTI), Decree No: 51/Dikti/Kep/2010



275

Characterization of Polymeric Chemiresistors for Gas
Sensor
1*

1

2

3

Budi Gunawan , Muhammad Rivai , Hendro Juwono
Department of Electrical Engineering, Faculty of Engineering, Universitas Muria Kudus, Kudus, Indonesia
2

Department of Electrical Engineering, Faculty of Industrial Engineering, ITS, Surabaya, Indonesia
3
Department of Chemical, Faculty of Mathematics and Nature Sciences, ITS, Surabaya, Indonesia
*
e-mail: budi.gunawan13@yahoo.com

Abstrak
Polimer merupakan materi non konduktifyang dapat menjadi konduktif dengan menambahkan
karbon aktif sebagai filler sehingga terbentuk komposit polimer-karbon. Komposit polimer-karbon
mempunyai resistansi berubah apabila terkena gas. Konduktifitas komposit polimer-karbon sebagai
sensor gas dipengaruhi oleh beberapa faktor, yaitu; jenis gas yang dideteksi, volume gas, suhu dan
kelembaban. Untuk mengetahui karakteristik sensor komposit polimer-karbon, telah dibuat sensor polimer
dari 6 jenis bahan, yaitu; PEG6000, PEG20M, PEG200, PEG1540, silikon dan squelene. Sensor polimer
yang dibuat diuji dengan 9 jenis gas, yaitu; Aseton, Aseton Nitril, Benzena, Etanol, Metanol, Etil Aseton,
Kloroform, n-Hexan dan Toluena. Pengujian mengelompokkan menjadi 4 klaster; selektivitas, sensitivitas,
pengaruh suhu dan kelembaban. Sensor diuji dalam sebuah chamber terisolasi yang terhubung dengan
akuisisi data. Variasi suhu, kelembaban, jenis dan volume gas diberlakukan dalam chamber. Pengolahan
data menggunakan koresponden analisis dan regresi. Hasil pengujian didapatkan bahwa setiap sensor
dari jenis polimer yang berbeda mempunyai sensitifitas dan selektifitas terhadap jenis gas tertentu.
Resistansi sensor mengalami kenaikan dengan kenaikan suhu dan kelembaban lingkungan dengan

persamaan garis polinomial orde 2 dan orde 3.
Kata kunci: polimer, resistansi, selektifitas, sensitifitas, sensor gas

Abstract
Polymer is a non conductive materialthat can be conductive with carbon black filler to form
polymer-carbon composite. polymer-carbon composite’s resistance changes with gas. The conductivity of
polymer-carbon composite is influenced by several factors,i.e. type of gas, volume of gas, temperature and
humidity.. This research characterizes the polymer-carbon composite sensor from 6 types of polymers:
PEG6000, PEG20M, PEG200, PEG1540, Silicon and Squelene. The sensors are treated with Aceton,
Aceton Nitril, Benzene, Etanol, Methanol, Ethyl Aceton, Chloroform, n-Hexan and Toluene. This
characterization are grouped into 4 cluster according to their selectivity, sensitivity, influence of
temperature and humidity. sensors are put in an isolated chamber which is connected to data acquisition
with the variations of temperature, humidity, type and volume of gas. Correspondence analysis and
regression are used to process the data. Test results found that each sensor showed different sensitivity
and selectivity towards particular type of gas. Resistance of sensors increases with rising temperature and
humidity environment with order 2 and order 3 polynomial equation
Keywords: gas sensor, polymer, resistance, selectivity, sensitivity

1. Introduction
Polymer is one of the chemical matters, which is non conductive naturally. Some types

of Polymer can be changed into conductive by adding active carbon. The mixtures of polymer
and active carbon are called polymer-carbon composite. The resistance of polymer-carbon
composite may change when it is exposed by gas. Each type of polymer has been different
resistances. By having the following characteristic polymer-carbon composite can be used as
the chemiresistor sensors [1-5].
The change of the resistance of polymer affected by several factors such the types of
gas, the volume of gas, the temperature and the humidity [6-8]. To find out the characteristic of
composite polymer-carbon sensor, it has been made the sensor from the six types of polymer,
namely: polyethylene glycol (PEG) 6000, PEG 1540, PEG 20M, PEG 200, silicone, and
squalene. The six types of sensor were tested by nine types of gas, for instance; acetone,
Received January 22, 2012; Revised May 20, 2012; Accepted June 4, 2012

276 

ISSN: 1693-6930

acetone nitrile, benzene, ethanol, methanol, ethyl acetone, chloroform, n-hexane and toluene
[9-15].

2. Research Method

The process of making Chemiresistor sensor is as follows: the polymer is mixed with
active carbon in the ratio 1:1, used as a coupling agent who is utilized sodium lauryl sulfate
(SLS) 001 gr. The mixing process involves PEG, active carbon and sodium lauryl sulfate (SLS)
which are blended in a beaker glass. After that, the mixture was added with aquademin to form
a gel. Then the gel is glazed on the board. Next, the board is put into the oven for two hours at
0
40 C. Finally, the board placed in desiccators for 1x24 hours to neutralize the content of oxygen
or other gases.
Equipment that is used in this research involves isolated chamber, data acquisition,
computers, temperature and humidity sensors, gas injection, nitrogen gas, water heaters and
water spray, as shown Figure 1. The six types of sensor are tested in an isolated chamber
simultaneously. The result will be read by the acquisition data in real time, and it will be saved
as a file. The following is the picture of a tested scheme.
The principle of chamber works as follows: The six polymer sensors are placed in the
chamber in a row. Sample gas is injected into the chamber in varying the volume of gas. The
test is conditioned in different temperature. The result of data will be acquired by acquisition
data, which connect to computer directly.

3. Results and Discussion
3.1. Sensor response to the type of gas

In testing, the nine types of gas are injected into the same of volume, temperature and
humidity in the chamber. The results of the data are shown in Table 1.

Figure 2. Mapping selectivity of
polymer using R program

Figure 1. The testing scheme

Table 1. Resistance Polymer toward the Type of Gas
Acetone
AcetoneNitrile
Benzena
Cloroform
Ethanol
Ethyl Acetone
Methanol
n-Hexane
Toluena

PEG6000

(Ohm)
319
421
319
357
338
357
357
317
337

PEG20M
(Ohm)
397
648
547
572
548
472
463

423
443

PEG200
(Ohm)
5245
6170
5403
6462
5635
7270
5536
4104
5336

TELKOMNIKA Vol. 10, No. 2, June 2012 : 275 – 280

PEG1540
(Ohm)
4887

5971
2719
3034
2278
5152
2766
2436
2590

SILICON
(Ohm)
2468
5231
4762
5084
5078
3373
4157
4161
4462


SQUELENE
(Ohm)
4499
6218
5022
6569
6176
2974
4392
4585
6035

ISSN: 1693-6930

TELKOMNIKA

 277

Correspondence analysis method in R program is used to see the correlation between the

polymer and gas sample, shown in Figure 2.
The picture above shows that the PEG6000 and PEG20M are similar to Silicone with
Squelene. PEG1540 and PEG200 have different reaction, and they are not interconnected. The
nine gases are clustered into three sections based on the position of nearness between the
gases. The first group consists of acetone, and acetone nitrile. The second group consists of
methanol, benzene, ethanol, chloroform, toluene and n-hexane. The third group consists of
ethyl acetone gas.
Resistance
Resistansi

9000
8500

3

2

y = 268.33x - 2338x + 6869.7x + 1106

8000

7500

3

2

y = 124.67x - 1208.5x + 4072.8x + 2080

7000
6500
6000
5500

3

2

y = 154.17x - 1349.5x + 3818.3x + 2388

5000
4500
4000

3

2

y = 268.17x - 2376.5x + 6802.3x - 2226

3500
3000
2500
2000
1500
3

2

2

y = 31.167x - 282x + 839.83x - 211

1000

y = -58.25x + 385.95x - 3.25

500
0
R rata2 awal

R rata2 10ml

R rata2 20ml

R rata2 25ml

20000
19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
0

PEG 20M

PEG 200

PEG1540

Silicon

2

3

2

y = 370.17x - 3186x + 9191.8x - 470
3

2

y = 225.67x - 2013x + 5843.3x + 955
3

2

y = 352.67x - 3108x + 8849.3x - 3626

3

2

y = 63.5x - 558.5x + 1574x - 701

R rata2 awal

Volume
PEG 6000

3

y = 1745.2x - 15260x + 43656x - 25072

3

2

y = 74.833x - 674.5x + 1966.7x - 1048

R rata2 10ml

R rata2 20ml

R rata2 25ml

Volume

Squelene
PEG 6000

PEG 20M

PEG 200

PEG1540

Silicon

Squelene

Resistansi
Resistansi
24000

24000

22000

y = 437.83x3 - 4978x2 + 21608x - 11999

22000

y = 2583x 3 - 23635x 2 + 69939x - 43818

20000

20000

18000

18000

16000

16000
y = 215.33x3 - 1877.5x 2 + 5356.2x + 1317

14000
12000

y = 169.17x3 - 1539x2 + 4658.8x + 1722

14000

y = -45.333x 3 + 403.5x 2 - 836.17x + 6384

10000

12000

y = -4.8333x3 + 10x2 + 116.83x + 5784

10000

y = 289.83x3 - 2635.5x2 + 7745.7x - 2932

y = 373.5x3 - 3318x 2 + 9536.5x - 4124
y = 86.5x3 - 782x 2 + 2297.5x - 1224

8000
6000

8000

y = 90.667x3 - 812x2 + 2339.3x - 1240

6000

4000

4000
y = 194.33x3 - 1742.5x 2 + 5020.2x - 3153

2000

y = 201.33x3 - 1782.5x2 + 5091.2x - 3191

2000

0

0
R rata2 awal

R rata2 10ml

R rata2 20ml

R rata2 25ml

R rata2 awal

R rata2 10ml

Volume
PEG 6000

PEG 20M

R rata2 20ml

R rata2 25ml

Volume

PEG 200

PEG1540

Silicon

Squelene

PEG 6000

PEG 20M

PEG 200

PEG1540

Silicon

Squelene

Resistansi

Resistansi
30000

30000

28000

28000

y = 182.17x3 - 3646x 2 + 22008x - 13475

26000

26000

24000

24000

22000

22000

20000

y = 2350.3x3 - 21950x2 + 67550x - 42881

20000

18000

18000
3

16000

2

14000

3

14000

2

y = 70x - 518.5x + 1271.5x + 5083

12000
3

10000

2

y = -109x3 + 820.5x2 - 1548.5x + 6743

12000

y = 415.83x3 - 3782.5x2 + 11102x - 5267

10000

y = 358.33x - 3253.5x + 9573.2x - 4210
y = 73.333x 3 - 721.5x 2 + 2489.2x - 1463

8000

y = 192.33x3 - 1523.5x2 + 4320.2x + 2022

16000

y = 170x - 1521x + 4416x + 1946

6000

y = 115.5x3 - 1048.5x2 + 3095x - 1784

8000
6000

4000

4000

y = 194.67x3 - 1738x 2 + 5004.3x - 3142

2000

y = 175.17x3 - 1601.5x2 + 4731.3x - 2986

2000

0

0
R rata2 awal

R rata2 10ml

R rata2 20ml

R rata2 25ml

R rata2 awal

R rata2 10ml

Volume
PEG 6000

PEG 20M

PEG 200

R rata2 20ml

R rata2 25ml

Volume
PEG1540

Silicon

Squelene

PEG 6000

PEG 20M

PEG 200

PEG1540

Silicon

Squelene

Figure 3. the changes of the resistance of polymer into gas injection

Characterization of Polymeric Chemiresistors for Gas Sensor (Budi Gunawan)

278 

ISSN: 1693-6930

3.2. Sensor Response to the Volume of Gas
The nine types of gas are injected in varying volume at constant temperature and
humidity. To see the changes of the resistance of polymer into gas injection, plotting graphs are
made, shown in Figure 3.
3.3. Sensor Response to the Temperature
To test the effect of temperature, polymer sensors are tested in a chamber by varying
temperature conditions in the same of fixed volume of gas and fixed humidity. This test was
carried out to find the effect of the rising of temperature to the change of the resistance of each
sensor. The average percentages of resistance increases to the rising of temperature and
influenced coefficient temperature (ohm/0C). Below are the pictures of the percentage of the
average of temperature’s resistance.
In the Table 2 shows that all polymer resistance increases with increasing temperature.
The average percentage increase in the range 3% to 29% with the largest increase in polymer
PEG1540 and smallest in the silicone.
In the Table 3 shows that all polymer resistance increases with increasing temperature.
o
Average temperature coefficient (ohm/ c) range at 36 ohms to 437 ohms with the largest
increase in the polymer PEG1540 and the smallest in the PEG6000

Table 2. Percentage of resistance change
Polimer
PEG6000
PEG20M
PEG200
PEG1540
SILICONE
SQUALENE
PEG6000
PEG20M
PEG200
PEG1540
SILICONE
SQUALENE

Acetone
11%
7%
14%
18%
0%
5%
EtilAcetone
4%
2%
22%
36%
2%
2%

AcetoneNitrile
14%
27%
31%
31%
3%
2%
Methanol
5%
0%
17%
12%
2%
1%

Benzena
4%
24%
21%
37%
3%
12%
nHexane
7%
1%
17%
35%
5%
7%

Chloroform
4%
0%
16%
31%
3%
4%
Toluena
4%
3%
10%
31%
3%
8%

Ethanol
5%
3%
23%
28%
4%
1%
%average
6%
22%
19%
29%
3%
5%

0

Table 3. Temperature coefficient sensor (Ohm/ c)
Polimer
PEG6000
PEG20M
PEG200
PEG1540
SILICONE
SQUALENE
PEG6000
PEG20M
PEG200
PEG1540
SILICON
SQUALENE

Acetone
18
18
114
224
116
176
EthylAcetone
40
26
146
489
130
181

AcetoneNitrile
25
40
105
348
126
185
Methanol
40
26
140
446
136
175

Benzena
40
30
149
510
121
185
nHexane
40
26
144
476
143
188

Chloroform
40
26
149
452
122
180
Toluena
41
26
146
505
146
190

Ehtanol
40
26
150
483
128
177
Average
36
27
138
437
130
182

3.4. Sensor Response to Humidity
In testing the humidity, polymer sensors are tested in the chamber in the varying
humidity, in the fixed volume of gas and temperature. Table 4 and 5 show the result of the test.
In the tables show that all polymer resistance increases with increasing humidity. The average
percentage increase in the range 3,69% to 27,67% with the largest increase in polymer
PEG1540 and smallest in the silicone.
In the Table 6 shows that all polymer resistance increases with increasing humidity.
Average humidity coefficient (ohm/%) range at 27 ohms to 437 ohms with the largest increase in
the polymer PEG1540 and the smallest in the PEG20M

TELKOMNIKA Vol. 10, No. 2, June 2012 : 275 – 280

ISSN: 1693-6930

TELKOMNIKA

 279

Table 4. Percentage average increase of resistance to humidity
Polimer
PEG6000
PEG20M
PEG200
PEG1540
SILICONE
SQUALENE
PEG6000
PEG20M
PEG200
PEG1540
SILICON
SQUALENE

Acetone
0,40%
7,70%
1,96%
12,05%
14,57%
4,46%
EthylAcetone
3,29%
3,01%
11,87%
9,26%
4,63%
4,32%

AcetoneNitrile
6,60%
11,26%
13,03%
12,93%
5,73%
6,12%
Methanol
3,51%
4,24%
7,96%
31,46%
1,66%
1,71%

Benzena
4,11%
7,86%
12,22%
32,30%
1,73%
1,22%
nHexane
5,17%
4,72%
1,40%
39,11%
1,61%
16,84%

Chloroform
0,70%
3,90%
1,68%
28,59%
1,64%
3,80%
Toluena
6,36%
2,14%
0,00%
42,91%
0,23%
7,15%

Ethanol
5,87%
6,62%
5,56%
40,46%
1,44%
5,77%
%average
4,00%
5,72%
6,19%
27,67%
3,69%
5,71%

Table 5. Humidity coefficient (ohm/%)
Polimer
PEG6000
PEG20M
PEG200
PEG1540
SILICONE
SQUALENE
PEG6000
PEG20M
PEG200
PEG1540
SILICONE
SQUALENE

Acetone
18
18
114
224
116
176
EthylAcetone
40
26
146
489
130
181

AcetoneNitrile
25
40
105
348
126
185
Methanol
40
26
140
446
136
175

Benzena
40
30
149
510
121
185
nHexane
40
26
144
476
143
188

Chloroform
40
26
149
452
122
180
Toluena
41
26
146
505
146
190

Ethanol
40
26
150
483
128
177
average
36
27
138
437
130
182

4. Conclusion
The testing toward the type of gas shows how each gas is related to each polymeric
chemiresistor. The test toward the volume of gas, the test toward the temperature and humidity
shows that the resistance of the polymer increases as well as the rising of the volume of gas
proportionally. Test toward temperature, type of polymer PEG1540 is experiencing the largest
increase, with an average of 29% and the percentage of silicon is the type of polymer that has
the slightest increase, with an average percentage of 3%. Test toward humidity, PEG1540 is a
type of polymer, which had the largest increase, with an average of 27.69% and the percentage
of silicon is the type of polymer that has the tiniest increase, with an average percentage of
3.69%.

Reference:
[1]
[2]

Atkins PW. Physical Chemistry. 4th ed. New York: W.H. Freeman. 1990.
Chung TC, Kaufman JH, Heeger AJ, Wudl F. Charge Storage in Doped Poly (thiophene): Optical and
Electrochemical Study. Phys. Rev. B. 1984. 30(2): p. 702
[3] Department of Chemical Engineering Brigham Young University. Modeling and Data Analysis of
Conductive Polymer Composite Sensors. 2006.
[4] Dian G, Barbey G, Decroix B. Electrochemical synthesis of polythiophenes and polyselenophenes.
Synthetic Metals. 1986. 13(4): p. 281-289
[5] Prayitno A, Kubumwe O, Bosma H, Tazelaar E. Efficiency of polymer electrolyte membrane fuel cell
stack. TELKOMNIKA. 2011; 9(2): 303-310.
[6] Zee F, Judy J. MEMS Chemical Gas Sensor Using A Polymer-Based Array. The 10th International
Conference on Solid-State sensors and Actuators. June 7-10, Sendai, Japan. 1999.
[7] Grodzinsksi Review Electronically Conductive Polymers, Polym.Adv.Technol, 615-625, Weizman
Institute of Science, Rohovot, Israel. 2002.
[8] BaiH, Shi G. Gas Sensors Based on Conducting Polymers. 2006.
[9] Janata J, Josowicz M. Conducting Polymers In Electronic Chemical Sensors. 2002.
[10] Kohlman RS, Epstein AJ. Insulator-Metal Transition and Inhomogeneous Metallic State in Conducting
Polymers. Skotheim, Terje A.; Elsenbaumer, Ronald L., and Reynolds, John R., Editors. Handbook of
Conducting Polymers. 2nd ed. New York: Marcel Dekker. 1998: 85-122.

Characterization of Polymeric Chemiresistors for Gas Sensor (Budi Gunawan)

280 

ISSN: 1693-6930

[11] Kankare J, Kupila EL. In-situ conductance measurement during electro polymerization. Journal of
Electro analytical Chemistry. 1992; 322(1-2): 167-181
[12] Nalwa HS. Handbook of Organic Conductive Molecules an Polymers. 1997; (4): 1-3.
[13] Perepichka FI. Light Emitting Poluthiophene, Weizman Institute of Science, Rohovot, Israel. 2006.
[14] Persaud KC. Polymers for chemical sensing. Materials Today. 2005; 8(4): 38-44
[15] Pratt C. Conducting Polymer, John Wiley & Sons, New Jersey.1996.

TELKOMNIKA Vol. 10, No. 2, June 2012 : 275 – 280