Bab 5: Workload Characterization Techniques - Bab 5 Workload Characterization - Repository UNIKOM
Bab 5: Workload Characterization Techniques
1 Workload Characterisation
! " # #
Techniques for Workload Characterization
$ % & ' ( ' )
- , ,
! -
3 AVERAGING
% "
SPECIFYING DISPERSION
& .
" ! ! % ! / .
5 Case Study 6.1 The resource demands of various programs executed on six university sites were
measured for 6 months. The average demand by each program is shown in Table 6.1. Notice that
the C.O.V. of the measured values are rather high, indicating that combining all programs into one class is not a good idea. Programs should be divided into several classes. Table 6.2 showsSINGLE-PARAMETER HISTOGRAMS
% % # # #
1
2
3
# " "
"4
14
2 5/ !+6
4 %4 !+6 5/ 7 7 MULTIPARAMETER HISTOGRAMS
%
1
2
PRINCIPAL-COMPONENT ANALYSIS
: $ "
" #
$ & (
8
8 ( "
8 " #
& "
8 ; "
8
/ #
6 " /
9
:
$ &
9
'
9
#
8 "
8
$ &
#$ % & " "
" , ) % , & %
"
11
- (*& ? ? #
'
A *
&
'
&
( )
&
A $ >$, '
$
@
&
A = " $ >$, = =<) , % "
&
= >$,
&
# # 6 ) 6 ) 1@ $2
$ % & ' ( % "
$(<= )<<> $-)$
" , ) 13
8 "
8
"
' ! " "
- $$
&$ B $
$ & $
- $ &
'
$ & &
- $ &
, % + + , % % % " " $ . . ? $ $ *(*& $-)$
& & $ & * * ? & $ $ )<<> & & $(<=
" - " , )
15
- /
" " #
# (& *,* $ )(* " (& *,*51(& *,* C $ )(*2 >* -D
" ) (D 0 '
MARKOV MODELS
17 #$ % * " 7 " <=D
% <=D " & %
% # # %
"
- %
= $ # = < E " "
CLUSTERING
" $ " & ' ( " ) B
- ' , '
- < > !
( - $= ' 19
& + " /
" ,
" . + "
! "
1
2
3 4 % 5 6 $ 7 % ! " & ' ! "
Distance Metric
8
9 4 %
8
9 $ : *
9
21 Clustering Techniques
"