Techniq es in Wate shed Management”

  M odu le 6 – ( L2 2 – L2 6 ) : “ Use of M ode r n Te ch n iqu e s in W a t e r sh e d M a n a ge m e n t ” Te ch n iq e s in W a t e sh e d M a n a ge m e n t ” Applica t ion s of Ge ogr a ph ica l I n for m a t ion Syst e m a n d Re m ot e Se n sin g in W a t e r sh e d M a n a ge m e n t , Role of g g , D e cision Su ppor t Syst e m in W a t e r sh e d M a n a ge m e n t Re m ot e Se n sin g & Applica t ion s 2 3 2 3 in W a t e r sh e d M a n a ge m e n t in W a t e r sh e d M a n a ge m e n t

  L23– L23 Rem ot e Sensing & Applicat ions in Wat ershed Managem ent i W t h d M t

  

Topics Cove r e d p

   

  Rem ot e sensing ( RS) , Basics, Feat ures of rem ot e Rem ot e sensing ( RS) , Basics, Feat ures of rem ot e sensing, Rem ot e sensing process & advant ages, sensing, Rem ot e sensing process & advant ages, I m port ant sat ellit es, I m age processing, Applicat ions of I m port ant sat ellit es, I m age processing, Applicat ions of RS in surface wat er & groundwat er, Applicat ions of RS in surface wat er & groundwat er, Applicat ions of rem ot e sensing in Wat ershed Managem ent . rem ot e sensing in Wat ershed Managem ent .

    Rem ot e sensing, Feat ures, I m age Rem ot e sensing, Feat ures, I m age Keywords: Keywords: processing, Elect rom agnet ic spect rum , Sat ellit es. processing, Elect rom agnet ic spect rum , Sat ellit es. Rem ot e Sensing ( RS ) - Basics 

  W h a t is Re m ot e Se n sin g? ( RS) : Art and science of obt aining inform at ion about Eart h feat ures from m easurem ent s m ade at a dist ance. f t d t di t

   

RS: RS: Science of m aking inferences about obj ect s from Science of m aking inferences about obj ect s from

  m easurem ent s, m ade at a dist ance, wit hout com ing int o physical cont act wit h t he obj ect s under st udy.’

  

  Generally ‘Rem ot e sensing m eans sensing of t he Eart h s surface from space by m aking use of t he Eart h’s surface from space by m aking use of t he propert ies of elect rom agnet ic wave em it t ed, reflect ed or diffract ed by t he sensed obj ect s, for t he purpose of im proving nat ural resource m anagem ent , land use, & im proving nat ural resource m anagem ent land use &

  

  Bands refers t o

Ele ct r om a gn e t ic Spe ct r u m -

  spect ral channels in t he elect rom agnet ic spect rum . spect ral channels in t he elect rom agnet ic spect rum UV 0.4 0.5 0.6 0.7 Near - Infrared micro m

  • -6 -5 -4 -3 -2 -1
  • V I B G Y O R Cou r t e sy: D r . P. Gu pt a , SAC, Ah m e da ba d 2 3 4 5 6 7 8 9 Wavelength micro m

      10

      10

      10

      10

      10

      10

      1

      10

      10

      10

      10

      10

      10

      10

      10

      10 Band Wavelength Nominal Principal Application (micro m) Spectral Location

      1 1 0.45 - 0.52 0 45 0 52 Blue Bl C Coastal water mapping, soil / vegetation, t l t i il / t ti 2 0.52 - 0.62 Green Vegetation discrimination, 3 0.62- 0.69 Red Chlorophyll absorption region, 4 0.76 - 0.90 Near IR Vegetation, water body, soil moisture 5 1.55 - 2.35 Mid IR Moisture content, Snow &Cloud, Mineral & rock discrimination, vegetation moisture content 6 10.4 - 12.5 Thermal IR Vegetation, Soil moisture discrimination

      Feat ures of Rem ot e Sensing ( RS ) 

      Rem ot e sensing provides a regional view 

      

    Rem ot e sensing provides repet it ive looks at t he sam e area

      Rem ot e sensors Rem ot e sensors " see" over a broader port ion of t he " see" over a broader port ion of t he

      spect rum t han t he hum an eye

       Sensors can focus in on specific bandwidt h in an im age

       They can also look at a num ber of bandwidt hs

      sim ult aneously

       Rem ot e sensors Rem ot e sensors oft en record signals elect ronically and oft en record signals elect ronically and

      Sat ellit e

      provide geo- referenced, digit al, dat a

      Aeroplane 

      Som e rem ot e sensors operat e in all seasons, at night , and in bad weat her

      su r fa ce Ref: Marwan Koudmani (2004) Rem ot e Sensing - Process 

      RS Pr oce ss:

      Energy Source Energy I nt eract ion wit h t he at m osphere 

      Energy I nt eract ion wit h t he at m osphere 

      I nt eract ion 

      Recording of Energy by Sensor Recording of Energy by Sensor 

      Dat a Transm ission and Processing 

      I m a ge Pr oce ssin g a n d An a lysis:

    • – I m age Rest orat ion / Correct ion
    • – I m age Enhancem ent

      I m age t ransform at ion – I m age t ransform at ion

    • – I m age Classificat ion ( supervised

      ( ground t rut h) / unsupervised) Advant ages of Rem ot e Sensing 

      Advant ages: Synopt ic view, Tem poral 

      Mult i- disciplinary applicat ions – Land, ocean, at m osphere

       Spat ial Resolut ion: A m easure of t he sm allest angular

      or linear separat ion bet ween t wo obj ect s t hat can be or linear separat ion bet ween t wo obj ect s t hat can be resolved by t he sensor.

      

    Spect ral Resolut ion : Num ber & dim ension of specific

      w avelengt h int ervals in t he elect rom agnet ic spect rum l t h i t l i t h l t t i t t o which a sensor is sensit ive.

      

    Tem poral Resolut ion p : I t refers t o how oft en a sensor

    records im agery of a part icular area.

       Radiom et ric Resolut ion: sensit ivit y of a det ect or t o

      differences in signal st rengt h differences in signal st rengt h

    RS - Som e I m por t a n t Sa t e llit e s

      LANDSAT - A series of sat ellit es put int o orbit around t he

    • eart h t o collect environm ent al dat a about t he eart h's surface.

      

      Various Landsat s have had Mult ispect ral Scanners ( MSS) , Ret urn Beam Vidicon ( RBV) scanners, and Them at ic Mapper ( TM) scanners. Them at ic Mapper ( TM) scanners.

      

      Each t ype has it s own spect ral range and spat ial resolut ion.

      

      Three im port ant m et hods of inform at ion ext ract ion and int erpret at ion

      ( i) ( i)

      Phot o int erpret at ion Phot o int erpret at ion

      Cou r t e sy: D r . P. Gu pt a , SAC, Ah m e da ba d ( ii)

      Spect ral analysis

      ( iii)

      Dat a int egrat ion

    RS - Som e I m por t a n t Sa t e llit e s

       Topogr a ph y: Lida r ( Air bor n e La se r Sca n n in g)

    • Highly accurat e 1 m DEMs; - High- cost s
    • Special soft ware and expert ise needed

       Sh u t t le Ra da r Topogr a ph y M ission ( SRTM )

    • 100 m DEM w it h alm ost global coverage; - Free dat a - 100 m DEM w it h alm ost global coverage; - Free dat a

       ERS- 1 / 2 t a n de m in t e r fe r om e t r y

    • 30- 100 m DEM
    • Dat a from years 1995- 98 available for m ost part s of world
    • Accuracy- vary depending on land cover & t opography
    • Reasonable accuracy ( < 10m ) for non- veget at ed, flat t er
    • Dat a cost s m oderat e- special soft ware & expert ise needed Dat a cost s m oderat e special soft ware & expert ise needed

    RS - Som e I m por t a n t Sa t e llit e s p

      Veget at ion: 

      Lida r : Airborne laser scanning 

      Lida r : Airborne laser scanning

       Research is st ill in t he beginning

       Full- waveform sat ellit e lidars for veget at ion m apping g pp g have been proposed

       High- qualit y 1m veget at ion height m odels, but expensive for large areas for large areas Synt het ic Apert ure Radars ( SAR) & SAR I nt erferom et ry

      

      Broad veget at ion cat egories can be dist inguished g g g

      

      Not suit ed at local scale ( < 100 m )

      

      Dat a cost s m oderat e, need of specialised soft ware and hi h l l f t i high level of expert ise Rem ot e Sensing – I ndian Sat ellit es

      I RS- 1A & 1B ( 1988 & 91) LI SS- 1&2 ( 72/ 36M, 4 •

      BANDS; VI S & NI R)

      

      I RS- P2 ( 1994) , LI SS- 2 

      I RS- 1C ( 1995) LI SS- 3 ( 23/ 70M, STEERABLE PAN ( 5.8

      M) ; WiFS ( 188M) M) WiFS ( 188M)

      

      I RS- P3 ( 1996) WiFS MOS X- Ray,  

      I RS 1D ( 1997) LI SS 3 ( 23/ 70M, STEERABLE PAN ( 5.8 ( 1997) LI SS- 3 ( 23/ 70M, STEERABLE PAN ( 5.8

      I RS- 1D

      M) ; WiFS ( 188M)

      

      I RS- P4 ( 1999) OCEANSAT OCM, MSMR 

      

    RESOURCESAT - 1( 2004) LI SS3 - 23 M; 4 XS LI SS4 -

      5.8 M; 3- XS, AWI FS - 56 M; 4- XS

        CARTOSAT CARTOSAT – 1 PAN - 2.5M, 30 KM, F/ A

      1 PAN 2.5M, 30 KM, F/ A

    RS Applica t ion s - Su r fa ce W a t e r

       Pure wat er reflect s radiat ion in t he visible bands of t he

      elect rom agnet ic spect rum & absorbs alm ost all of it in t h t he near- & m iddle- infrared bands. I n t he infrared, & iddl i f d b d I t h i f d w at er appears dark & is easily dist inguishable from ot her land feat ures

       Spect ral response of w at er m ay vary w it h t he presence

      suspended sedim ent s, w hich increase t he am ount of radiat ion reflect ed radiat ion reflect ed

      ( i) Surface runoff m odeling of a wat ershed w it h land use

      from rem ot e sensing

       Type of LU/ LC significant ly affect s t he runoff charact erist ics of a wat ershed.

       

      The The acquisit ion acquisit ion of of land land cover cover inform at ion inform at ion is is of of

    RS Applica t ion s - Su r fa ce W a t e r .

      

    I n surface w at er resource developm ent & m anagem ent

      (ii)

      

      RS- dat a provide cat chm ent charact erizat ion - bet t er m odeling surface wat er resource - rainfall runoff rat io

      

      RS - collect s m ult i- spect ral, m ult i resolut ion, & m ult i- t em poral dat a, & t urns t hem int o inform at ion – LU/ LC t em poral dat a & t urns t hem int o inform at ion – LU/ LC dat a set s

      ( iii) Snow m elt runoff ( iv) Mapping and m onit oring of surface wat er bodies

      ( v) Assessm ent of Wat er logging

      ( vi) Wat er t em perat ure and ot her qualit ies of wat er

      ( vii) Det ect ion of dept h of shallow wat er and bed load

      ( Viii) Physical wat er qualit y ( Viii) Physical wat er qualit y

    RS Applica t ion s - Gr ou n dw a t e r

       Groundwat er m odels need spat ial and t em poral dist ribut ions of input and calibrat ion dat a.

      

    Pat t erns from rem ot e sensing P t t f t i can be t ranslat ed int o a b t l t d i t

      det erm inist ic dist ribut ion of input dat a on a cell- by- cell basis or in t he form of zones.

      

      Raw rem ot e- sensing dat a present spat ial pat t erns  feat ures or processes above t he surface ( clouds)  on t he surface ( evapot ranspirat ion)  on t he s fa e ( e apot anspi at ion)  shallow subsurface ( hydraulic conduct ivit y)

        Com binat ion of t he pat t ern inform at ion Com binat ion of t he pat t ern inform at ion wit h point wit h point

      inform at ion at ground observat ion st at ions allow s spat ial dist ribut ions of param et er t o be obt ained

      

      RS – ident ifies lineam ent , fault s, dikes et c. RS ident ifies lineam ent fault s dikes et c

    RS Fu r t h e r Applica t ion s

       Clim at e param et ers: Cli Precipit at ion ( using ground based P i i i ( i d b d

      Radars; Sat ellit es im ages) , Snow ( fall & m elt ing) , Glaciers condit ions; Cyclone predict ion; Tem perat ure variat ion; Cloud m ovem ent ; Drought predict ion

       Flood variat ions

       

      Veget at ion cover t ype Veget at ion cover t ype

       Forest m anagem ent – variat ion, fire et c. 

      Soil m oist ure ( direct & indirect m easurem ent ) ( )

      

      Evapot ranspirat ion assessm ent

      

      Agricult ural m anagem ent – cropping pat t ern

      

      Desert ificat ion – sand, dunes, dust st orm

      

      Ocean applicat ions

        Environm ent al im pact assessm ent Environm ent al im pact assessm ent

    Applica t ion s of RS in W M

       Wat ershed delineat ion

       Resource m apping

       I dent ificat ion of erosion- prone areas

       Modeling sedim ent yield

       Conservat ion priorit izat ion

       Conservat ion planning

       Monit oring w at ershed for environm ent al im pact assessm ent

    Re sou r ce M a ppin g Usin g RS

       Enables easy, accurat e, t im e and cost effect ive E bl i d ff i m apping

      

      Upda es se e a Updat es several resources inform at ion such as: esou ces o a o suc as

      1. St ream Net work Map

      2. Surface Wat er Map

      3. Land use Map

      4. Veget at ion Map

      5 Physiographic Soil Map

      5. Physiographic Soil Map

      6. Erosion- prone Area Map

      7. Snow Cover Map p

      8. Soil Moist ure Map

      9. Landform Map

      10. Ground Wat er Prospect Map I dent ificat ion of Erosion- prone Areas 

      Facilit at es ident ificat ion of exist ing or pot ent ial erosion prone areas

      

      Help in planning reclam at ion or prevent ive m easures H l i l i l t i t i

      

      Based on sat ellit e im age, various erosion int ensit y classes can be assigned: nil t o slight , slight , slight t o classes can be assigned: nil t o slight , slight , slight t o m oderat e, m oderat e, m oderat e t o severe and severe can be delineat ed and m apped

      

      W Wast elands inform at ion are also possible using high t l d i f t i l ibl i hi h resolut ion, m ult i- spect ral and m ult i- t em poral sat ellit e im ages g

      Cou r t e sy: D r . P. Gu pt a , SAC, Ah m e da ba d Cou r t e sy: D r P Gu pt a SAC Ah m e da ba d

    M ode lin g Se dim e n t Yie ld

       Em pirical m odels are used t o est im at e sedim ent yield

      

      Average annual soil loss and conservat ion planning for erosion cont rol in agricult ural lands, const ruct ion sit es, erosion cont rol in agricult ural lands const ruct ion sit es reclaim ed m ines & forest m anagem ent , since it requires sm all areas, low cost , short proj ect span and t here is lit t le risk of failure. t here is lit t le risk of failure.

       These m odels require input param et ers in t erm s of

      spat ial inform at ion on land use, veget at ion cover, soil, drainage densit y, runoff and rainfall int ensit y soil drainage densit y runoff and rainfall int ensit y w hich are t im e consum ing and cost ly by convent ional surveys

        Sat ellit e dat a Sat ellit e dat a provide convenient t ool t o derive t hese provide convenient t ool t o derive t hese

      inform at ion

      Soil e r osion

      Conservat ion Priorit izat ion in Wat ershed

      

    I dent ificat ion of erosion- prone areas To evolve

      appropriat e conservat ion m anagem ent st rat egies appropriat e conservat ion m anagem ent st rat egies

      

      Hence, m axim um benefit can be derived out of any such m oney- t im e- effort m aking schem e

       Priorit y classificat ion l f – Arrangem ent of different unit s f d ff

      of a w at ershed in decreasing order of t heir sedim ent yield pot ent ials

      

      Arrived t hrough sedim ent yield m odeling and t hen, provide t hreshold values t hrough frequency dist ribut ion of such dat a int o t he priorit y classes dist ribut ion of such dat a int o t he priorit y classes

       Applicat ion of rem ot e sensing

      

    Conservat ion Planning in Wat ershed

      One of t he key sect ors for conservat ion planning in

      wat ershed is rain- wat er harvest ing 

      Rain- w at er R i t harvest ing h t i opt im um t i sit e it select ion l for - t i f const ruct ing check dam & st orage of wat er

       Sit e invest igat ion needs following resources inform at ion: g g

    • Drainage area & st ream net work
    • Physiography and relief land use, veget at ion and soil
    • Rainfall int ensit y- durat ion recurrence int erval
    • Wat er ut ilizat ion pot ent ial ( socioeconom ic)
    • Wat ershed m anagem ent pract ice - Wat ershed m anagem ent pract ice

      

      These resources inform at ion can be ext ract ed using

      rem ot e sensing t echnique Monit oring Wat ershed for EI A 

      

    Wat er resources developm ent proj ect s are essent ial for

    agricult ural, indust rializat ion & econom ic grow t h of a region g g g

      

    Large- scale wat er resources proj ect s m ay induce adverse

    im pact on environm ent

       

    A sound approach for A sound approach for Environm ent al I m pact Assessm ent Environm ent al I m pact Assessm ent

    ( EI A) is required t o assist engineers and decision m akers

      

    To choose proper alt ernat ive so as t o decrease

    environm ent al im pact due t o w at er resources developm ent environm ent al im pact due t o w at er resources developm ent

      

    Monit oring is essent ial t o know adverse im pact of w at er

    resources developm ent proj ect s & beneficial im pact of

    subsequent w at ershed m anagem ent program s. subsequent w at ershed m anagem ent program s

      

    This is possible by 't im e series analysis' of sat ellit e dat a of

    w at ershed over a period

    Re m ot e Se n sin g Applica t ion For Ca se St u dy: M M a n a ge m e n t of W a t e r & La n d in Pr a k a sa m D ist r ict , AP f W & L d i P k D i i AP

        Ref: Padm aj a Vuppala et al., ( 2004) Ref: Padm aj a Vuppala et al ( 2004) Environm ent al I nform at ics Environm ent al I nform at ics Archives, Volum e 2 ( 2004) , 885- 892

      

      Racherla m andal of Prakasam dist rict falls under sem i–arid zone in peninsular I ndia

      

      Tot al area - 670.80Sq.k.m ( 165759acres)

       

      I dent ified as chronically drought affect ed area in t he st at e I dent ified as chronically drought affect ed area in t he st at e wit h t he agro–ecological sit uat ion

      

      Charact erized by single crop syst em s due t o predom inant ly rainfed cult ivat ion wit h low and errat ic rainfall

      

      Clim at e is dry, t ropical sem i- arid t ype w it h hot sum m er during March t o May follow ed by sout hwest m onsoon from during March t o May follow ed by sout hwest m onsoon from

      Case St udy: Applicat ion of RS 

      Begins wit h acquiring t he sat ellit e im age and t opo sheet of t he required st udy area sheet of t he required st udy area

      

      The following st eps are adopt ed for t he wat ershed m anagem ent of Racherla Wat ershed using Rem ot e Sensing &GI S t echniques: Sensing &GI S t echniques:

      St e p1 : Preparat ion of Drainage m ap using SOI

      t oposheet s and sat ellit e im agery t o det erm ine t he Drainage pat t ern and for calculat ing various drainage charact erist ics like densit y, basin slope et c.

      St e p2 : Preparat ion of land use/ land cover m ap using St e p2 : Preparat ion of land use/ land cover m ap using

      SOI t oposheet s and sat ellit e im agery t o know t he various uses of t he land. This m ay also used t o find t he area of cropland, Wat ershed et c. t he area of cropland Wat ershed et c Case St udy: Applicat ion of RS St e p3 : Preparat ion of hydro geom orphology m ap using

      SOI t oposheet s and sat ellit e im agery w hich is used for finding t he groundwat er prospect s and suggest wat er finding t he groundwat er prospect s and suggest wat er- harvest ing st ruct ures.

      St e p 4 : Preparat ion of slope m ap using SOI t oposheet s

      t o know t he t errain propert ies. t o know t he t errain propert ies

      St e p 5 : A GI S digit al syst em , ARC/ I NFO is used for input

      and m anipulat ion, and creat ion of error free digit al dat abase for all t he nat ural resources. Case St udy: Applicat ion of RS St e p 6 : Depending on t he com binat ion of above

      m ent ioned resources t hem es, act ion plans for land and wat er resources and t reat m ent plans for and wat er resources and t reat m ent plans for cat chm ent s area are generat ed for t he developm ent of t he wat ershed.

      

    St e p 7 : Depending on t he soils, clim at e, local pract ices

      & also keeping in view t he long t erm m arket prospect s, cropping pat t erns are det erm ined based on p p , pp g p crop wat er requirem ent in view of wat er availabilit y.

       All t he above st eps aim for opt im um developm ent of land & wat er resources t o m eet t he basic m inim um needs of people wat er resources t o m eet t he basic m inim um needs of people t hereby im proving t heir socio- econom ic condit ions.

       The inform at ion generat ed from such st udies can be used by decision m akers for sust ainable developm ent . decision m akers for sust ainable developm ent

      RS Applicat ions – Concluding Rem arks 

      Rem ot e Sensing dat a could be assessed w it hout rest rict ions in m any cases.

      

      The The advant age of RS dat a advant age of RS dat a is t hat it is not biased and is t hat it is not biased and is available short ly aft er sat ellit e overpass.

       Special purpose RS product s t hat can direct ly support

      various w at ershed m anagem ent proj ect s are: i t h d t j t ( i) hydrology, ( ) ( ii) w at er account ing,

      g, ( iii) disast er m anagem ent , ( iv) irrigat ion m anagem ent , ( v) w et land m anagem ent , ( v) w et land m anagem ent ( vi) wat ershed m anagem ent and ( vii) land degradat ion

    Re fe r e n ce s Re fe r e n ce s

      J.V.S Murt hy ( 1991) , Wat ershed Managem ent , New Age I nt . Pub. • ht t p: / / w w w .esa.int / esaLP/ ESAMBA2VMOC_LPsm os_1.ht m l 

      ( ( ht t p: / / www.t errasar.de/ p ) )  ht t p: / / w w w .roc.noaa.gov/ app/ app1.asp

       Brunner, P., Franssen, H.J., Kgot lhang, L., Kinzelbach, W., “ How can

    rem ot e sensing cont ribut e in groundwat er m odeling?” Hydrogeology

    Journal 15: 5–18( 2007)

      

    Marwan Koudm ani ( 2004) , Applica t ion s of Re m ot e Se n sin g t o

      H ydr ology a n d H ydr oge ology , I nt ernat ional Conf. on Wat er Resources & Arid Environm ent ( 2004) Resources & Arid Environm ent ( 2004)

       Leblanc, M., Favreau, G., Leduc, C., “ Rem ot e sensing for groundwat er m odeling in large sem iarid areas: Lake Chad Basin, Africa” Hydrogeology Journal 15: 97 100( 2007) Hydrogeology Journal 15: 97–100( 2007)

      

    Padm aj a Vuppala, Siva Sankar Asadi, Pavani .S and Anj i Reddy .M “

    Rem ot e Sensing Applicat ions For The Managem ent of Wat er And Land

    Resources in Rainfed Area of PRAKASAM Dist rict , Andhra Pradesh,

    I ndia” . Environm ent al I nform at ics Archives, Volum e 2 ( 2004) , 885- 892

    Tu t or ia ls - Qu e st ion !.?

       Crit ically st udy various Rem ot e sensing sat ellit es available ( eg. Landsat , I RS et c.) sat ellit es available ( eg Landsat I RS et c )

    and it s capabilit ies, resolut ion of im ages et c

    ( ( det ails can be obt ained from I nt ernet ) . )

        Evaluat e t he capabilit ies of each Sat ellit e for Evaluat e t he capabilit ies of each Sat ellit e for wat ershed m anagem ent plans. wat ershed m anagem ent plans. g g p p

       

    Explore how effect ively t he Rem ot e sensing Explore how effect ively t he Rem ot e sensing

    dat a can be used for t he developm ent of dat a can be used for t he developm ent of wat ershed m anagem ent plans. wat ershed m anagem ent plans.

      Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

    Se lf Eva lu a t ion - Qu e st ion s!. Q

      

      Discuss t he basics of rem ot e sensing?. How t he rem ot e sensing dat a is obt ained?. rem ot e sensing dat a is obt ained?.

       What are t he im port ant feat ures of rem ot e sensing?. 

      What are t he advant ages of rem ot e sensing for various problem s?. bl

      

      Describe about t he I ndian Sat ellit es available for rem ot e sensing. rem ot e sensing.

      

      What are t he im port ant applicat ions of rem ot e sensing for groundwat er relat ed problem s?.

      

      Describe t he various applicat ions of rem ot e sensing D ib h i li i f i for wat ershed m anagem ent / developm ent problem s.

      P Prof. T I Eldho, Department of Civil Engineering, IIT Bombay f T I Eldh D t t f Ci il E i i

      IIT B b

    Assign m e n t - Qu e st ion s?. g Q

      

      Discuss t he evolut ion in rem ot e sensing for t he last 10 decades?.

      

      Explain t he range of elect rom agnet ic spect rum used for rem ot e sensing.

       

      Discuss t he various st eps in rem ot e sensing & im age Discuss t he various st eps in rem ot e sensing & im age processing.

      

      Discuss t he det ails about im port ant sat ellit es available for rem ot e sensing in various count ries. il bl f t i i i t i

      

      What are t he im port ant applicat ions of rem ot e sensing for surface wat er relat ed problem s?. g p

      

      What are t he im port ant applicat ions of rem ot e sensing relat ed t o at m ospheric/ clim at e relat ed st udies?. st udies?

    Un solve d Pr oble m !. Un solve d Pr oble m !

        ht t p: / / ast erweb.j pl.nasa.gov/ ht t p: / / ast erweb.j pl.nasa.gov/ ) / ) / From ASTER ( From ASTER (

      SRTM ( SRTM ( SRTM ( SRTM ( ht t p: / / srt m usgs gov/ index php ht t p: / / srt m usgs gov/ index php ht t p: / / srt m .usgs.gov/ index.php ht t p: / / srt m .usgs.gov/ index.php ) / BHUVAN/ ) / BHUVAN/ ) / BHUVAN/ ) / BHUVAN/

      (( ht t p: / / bhuvan.nrsc.gov.in/ bhuvan_links.ht m l ht t p: / / bhuvan.nrsc.gov.in/ bhuvan_links.ht m l ))

      I RS

      I RS

      , , obt ain t he rem ot e sensing im age of your obt ain t he rem ot e sensing im age of your w at ershed. Delineat e t he w at ershed area. w at ershed. Delineat e t he w at ershed area.

        Based on Topo sheet and im ages & ot her Based on Topo sheet and im ages & ot her available dat a, generat e DEM, LU/ LC m ap, available dat a, generat e DEM, LU/ LC m ap, slope m ap, soil m ap et c. slope m ap, soil m ap et c.

        E E Explore how effect ively t he rem ot e sensing Explore how effect ively t he rem ot e sensing l l h h ff ff t i t i l t h l t h t t i i dat a can be used for w at ershed dat a can be used for w at ershed m anagem ent plans. m anagem ent plans. m anagem ent plans m anagem ent plans

      Dr. T. I. Eldho Dr. T. I. Eldho Professor, Professor, Department of Civil Engineering, Department of Civil Engineering, p p g g g g Indian Institute of Technology Bombay, Indian Institute of Technology Bombay, Mumbai, India, 400 076. Mumbai, India, 400 076. Email: Email: Email: Email: [email protected] [email protected] [email protected] [email protected]