SHRINKAGE BEHAVIOR OF STEEL FIBER REINFORCED CONCRETE ON SANDWICH LAYER CONCRETE.
perpustakaan.uns.ac.id
digilib.uns.ac.id
SHRINKAGE BEHAVIOR OF STEEL FIBER
REINFORCED CONCRETEON SANDWICH LAYER
CONCRETE
THESIS
Submitted to the Post Graduate of Civil Engineering Program in Partial
Fulfillment of the Requirements for the Degree of Master of Engineering
in Materials and Structure
By:
RAMADHAN AL MAHDI JIBRIL Z
S941208022
MASTER OF CIVIL ENGINEERING
GRADUATE PROGRAM
SEBELAS MARET UNIVERSITY
2014
i
perpustakaan.uns.ac.id
digilib.uns.ac.id
ii
perpustakaan.uns.ac.id
digilib.uns.ac.id
iii
perpustakaan.uns.ac.id
digilib.uns.ac.id
STATEMENT OF ORIGINALITY AND CONTENT
PUBLICATION OF FINAL PROJECT
I declare actually:
1. Thesis by the title:
SHRINKAGE BEHAVIOR OF STEEL FIBER
REINFORCED CONCRETEON SANDWICH LAYER CONCRETE
is my own work and has not been submitted for any degree or other
purposes, except has been mentioned on the bibliography as reference of
this paper. If in the future proved there is plagiarism in this paper, I am
willing to accept the sanction appropriate to legislation (Permendiknas No.
17, 2010).
2. Publication of this Thesis on Journal or scientific forum should be
permission and include the counselor as author and PPs UNS as institution.
In the period at least one semester I did not do the publication of part or all
of the contents of this thesis, the Master Civil Engineering Program of UNS
reserves the right to publish a scientific journal published by the Master
Civil Engineering Department of UNS. If I am in violation of the terms of
this publication, then I am willing to receive the applicable academic
sanctions.
Author,
RAMADHAN AL MAHDI JIBRIL Z
S941208022
iv
perpustakaan.uns.ac.id
digilib.uns.ac.id
FOREWORD
Praise to Allah SWT the lord of the world, who has given mercy and blessing so
that this thesis with a title SHRINKAGE BEHAVIOR OF STEEL FIBER
REINFORCED CONCRETE ON SANDWICH LAYER CONCRETE can be
resolved. This thesis is submitted as a condition for obtaining a master's degree in Civil
Engineering Master Program of Sebelas Maret University.
Respectfully I say many thanks to:
1. Director of Civil Engineering Master Program of Sebelas Maret University.
2. Dr. Ir. Mamok Suprapto, M.Eng, as the head of Civil Engineering Master
Program of Sebelas Maret University.
3.
of Sebelas Maret University.
4. Dr. Techn. Ir. Sholihin
, as first supervisor.
5. Yusep Muslih, St., MT., Ph. D., as second supervisor.
6. All faculty staff of Civil Engineering Master Program of Sebelas Maret
University who have helped during lectures.
7. My brothers and sisters who always support at every condition.
8. Student colleagues of Civil Engineering Master Program of Sebelas Maret
University who gave me inspiration and suggestion.
9. All those who helped me in completing this thesis, the author cannot
mention one by one.
I hope this thesis can contribute to the scientific academic community,
practitioners in the field of building materials and benefit the wider community in
general. The assistance that was given may receive just reward from Allah SWT.
Surakarta, February 2014
Writer,
RAMADHAN AL MAHDI JIBRIL Z
v
perpustakaan.uns.ac.id
digilib.uns.ac.id
ABSTRACT
Shrinkage of concrete causes a serious problem in concrete. If concrete is
restrained from shrinking, tensile stresses develop and it may exceed the tensile
strength of concrete which causes the concrete cracks. One possible method to
control or reduce the adverse effects of cracking due to shrinkage in concrete
structures is the addition of fiber in the concrete. Steel fiber can improve structural
strength, ductility, reduce crack widths and control the crack. In sandwich layer
where its material comprises of steel fiber reinforced concrete and some other by
plain concrete. The shrinkage behavior has been considerably different compared
to fiber reinforced concrete and plain concrete. Therefore this study investigates
the behavioral of shrinkage on the steel fiber reinforced concrete on sandwich
layer concept.
The test specimens were made by steel fiber dosages of 10 kg/m 3, 30kg/m3,
50 kg/m3, 80kg/m3and 100 kg/m3 and some others for sandwich layer specimen
with similar fiber dosages combined with plain concrete. The specimen form was
cylinder 5 cm in diameter and 27 cm in high for drying shrinkage test. All samples
were placed in open air on ambient temperature environment. The shrinkage was
recorded on 1 day to 56 days. The shrinkage prediction for three year or 1000
days was also calculated. Both recorded and predicted shrinkage were then
compared.
The test result showed that plain concrete experienced the highest drying
shrinkage and the addition of steel fiber reduced the drying shrinkage that
occurred at concrete. The greater amount of fiber contained in the concrete, the
lower occurrence of drying shrinkage. The shrinkage on sandwich samples
recorded moderate compared to plain concrete, however this shrinkage is higher
compared to samples of fully fiber reinforced concrete at the same fiber dosage.
The three group of samples; steel fiber reinforced concrete, sandwich concrete and
plain concrete showed the same trend of shrinkage curves following the time of
hydration. The presence of steel fiber in concrete can effectively hinder drying
shrinkage and affected the crack that can reduce and control the shrinkage of
concrete.
Keyword: Shrinkage behavior, shrinkage prediction, SFRC, sandwich concrete,
plain concrete, steel fiber.
vi
perpustakaan.uns.ac.id
digilib.uns.ac.id
ABSTRAK
Penyusutan beton menyebabkan masalah serius dalam beton. Jika beton
tertahan dari menyusut, tegangan tarik mengembangkan dan mungkin melebihi
kekuatan Tarik beton yang menyebabkan beton retak. Salah satu metode yang
mungkin untuk mengendalikan atau mengurangi dampak dari retakan karena susut
dalam struktu beton adalah penambahan serat dalam beton. Serat baja dapat
meningkatkan kekuatan struktural, daktilitas, mengurangi lebar retak dan
mengontrol retak. Dalam lapisan Sandwich mana terdiri materialnya serat baja
beton bertulang dan beberapa lainnya oleh beton normal. Perilaku penyusutan
telah jauh berbeda dibandingkan dengan serat beton bertulang dan beton normal.
Oleh karena itu penelitian ini ingin mengetahui perilaku penyusutan pada serat
baja beton bertulang pada konsep lapisan sandwich.
Spesimen uji dibuat dengan dosis serat baja dari 10 kg/m3, 30kg/m3, 50
kg/m3, 80kg/m 3dan 100 kg/m3 dan beberapa lainnya untuk Sandwich lapisan
specimen dengan dosis serat yang sama dikombinasikan dengan beton normal.
Bentuk specimen adalah silinder dengan diameter 5 cm dan tinggi 27 cm untuk uji
pengeringan penyusutan. Semua sampel ditempatkan di udara terbuka pada suhu
lingkungan. Penyusutan ini direkam pada 1 hari sampai 56 hari. Prediksi
penyusutan selama tiga tahun atau 1000 hari juga dihitung. Keduanya dicatat dan
diprediksi susut tersebut kemudian dibandingkan.
Hasil pengujian menunjukkan bahwa beton normal mengalami pengeringan
penyusutan tertinggi dan penambahan serat baja mengurangi susut pengeringan
yang terjadi pada beton. Jumlah yang lebih besar dari serat yang terkandung
dalam beton, terjadinya rendah pengeringan penyusutan. Penyusutan pada sampel
Sandwich tercatat moderat dibandingkan dengan beton normal, namun penyusutan
ini lebih tinggi dibandingkan dengan sampel penuh serat beton bertulang pada
dosis serat yang sama. Tiga kelompok sampel; serat baja beton bertulang,
sandwich beton dan beton normal menunjukkan kecenderungan yang sama dari
vii
perpustakaan.uns.ac.id
digilib.uns.ac.id
kurva penyusutan setelah waktu hidrasi. Kehadiran sera baja dalam beton dapat
secara efektif menghambat pengeringan susut dan mempengaruhi celah yang
dapat mengurangi dan mengontrol susut beton.
viii
perpustakaan.uns.ac.id
digilib.uns.ac.id
CONTENTS`
THESIS
STATEMENT OF ORIGINALITY
FOREWORD
ABSTRACT
ABSTRAK
CONTENTS`
LIST OF FIGURE
LIST OF TABLE
CHAPTER I INTRODUCTION
1.1
Background
1.2
Problem Statement
1.3
Research Scope
1.4
Research Objectives
1.5
Research Outcomes and Significance
CHAPTER II LITERATURE REVIEW AND BASIC THEORY
2.1
Literature Review
2.1.1 Concrete
2.2
2.1.2
Drying shrinkage in concrete
2.1.3
Fiber
2.1.4
Steel Fiber Reinforced Concrete (SFRC)
2.1.5
Sandwich Layer Concept
Basic Theory
2.2.1
Concrete
2.2.2
Shrinkage in concrete
2.2.3
Fiber
2.2.4
Steel Fiber Reinforced Concrete (SFRC)
2.2.5
Sandwich Layer Concept
2.3
The difference between this research and previous researches
2.4
Hypothesis
CHAPTER III RESEARCH METHODOLOGY
3.1
Introduction
3.1.1
Concrete Mix Design
ix
perpustakaan.uns.ac.id
3.1.2
3.2
3.3
Sample Preparation
Materials
3.2.1
Type of Fiber
3.2.2
Cement
Concrete Material Testing
3.3.1
Los Angeles test
3.3.2
Water absorption test
3.3.3
Specific gravity test
3.3.4
Aggregate gradation test
3.4
Concrete Mixing
3.5
Shrinkage Testing
3.6
Shrinkage Prediction
3.7
Analysis
3.8
digilib.uns.ac.id
3.7.1
Shrinkage behavior of SFRC
3.7.2
Shrinkage Behavior of Sandwich Concrete
3.7.3
Shrinkage behavior of SFRC and plain concrete on sandwich concrete.
Systematic Research Methods
CHAPTER IV RESULT AND DISCUSSION
4.1
Material Test
4.1.1
Fine Aggregate
4.1.2
Coarse Aggregate
4.2
Mix Design (plain concrete)
4.3
Compressive Strength Test
4.4
Drying Srinkage Test
4.5
Drying Shrinkage Prediction
4.6 Discussion
CHAPTER V CONCLUSION AND SUGGESTION
5.1
Conclusion
5.2
Suggestion
REFERENCE
x
perpustakaan.uns.ac.id
digilib.uns.ac.id
LIST OF FIGURE
Figure 2.1 Effect of ambient (constant) relative humidity of exposure on the drying
shrinkage rate
for 4 x 8x 32mm mortar specimens with two different w/c ratios (a) 0.35 (b)
0.50 (from
Bissonnette et al., 1999).
Figure 2.2 (a) Effect of aggregate concentration on shrinkage of concrete: theoretical vs.
experimental
results by Pickett (from Soroka, 1993). (b) Relation between shrinkage strains
and concrete
secant modulus of elasticity, data by Richard (from Soroka, 1993).
Figure 2.3 Effect of w/c ratio on the drying shrinkage of concrete as a function of time,
data by Haller
(from Soroka, 1993).
Figure 2.4 (a) Different possibilities of strain measurement in a drying shrinkage test. (b)
Relation
between the height of concrete specimens of constant diameter and the
measured
longitudinal strains at the border and at the centre of the samples
(from Wittmann,
1993).
Figure 2.5 Various types of steel fiber form (Soroushian and Bayasi, 1991)
Figure 2.6 Bridge deck with steel fibers.
Figure 2.7 Tightly bunched steel fibers are placed in a form, before cement slurry is
poured into this
application of slurry-infiltrated steel-fiber concrete (SIFCON).
Figure 2.8 Sketch of sandwich layer concrete.
Figure 3.1 Water-cement ratio relationship graphs and the average compressive strength
of cylinder
(SNI 03-2834-2000 ).
Figure 3.2 Graph fine aggregate percentages on the overall aggregate for the maximum
grain size of 20
mm (SNI 03 -2834-200)
Figure 3.3 Graph showing the relationship of water content, specific gravity of aggregate
mix, an heavy
concrete( after .SNI 03-3834-2000)
Figure 3.4 Steel fibers RC 80/60 BN
Figure 3.5 Specimen dimension
Figure 3.6 Shrinkage performance (boral laboratory testing, 2013)
Figure 3.7 Flow chart of research method
Figure 4.4 Relation between drying shrinkage and drying age of plain concrete and plain
concrete of
sandwich.
xi
perpustakaan.uns.ac.id
digilib.uns.ac.id
LIST OF TABLE
Table 2.1 Typical values of shrinkage strains in mortar and concrete samples with
a squared cross
section of 127mm2, exposed to a 50% RH environment at 21ÂșC (Neville,
2002)
Table 2.2 SIFCON mix design.
Table 3.1 Specimen types with various dosages of steel fiber.
Table 4.1 Specific grafity test result
Table 4.2 Fine aggregate gradation test result
Table 4.3 Specific grafity test result
Table 4.4 Fine aggregate gradation test result
Table 4.5 Material requirement
Table 4.6 Compressive strength test result
Table 4.7
Table 4.8 Comparison of coefficient error between predicted shrinkage
xii
sh(u)=4579.1)
perpustakaan.uns.ac.id
digilib.uns.ac.id
LIST OF APPENDIX
Appendix A..............................................................................................
Ap A-1
Appendix B..............................................................................................
Ap B-1
Appendix C..............................................................................................
Ap C-
1
xiii
digilib.uns.ac.id
SHRINKAGE BEHAVIOR OF STEEL FIBER
REINFORCED CONCRETEON SANDWICH LAYER
CONCRETE
THESIS
Submitted to the Post Graduate of Civil Engineering Program in Partial
Fulfillment of the Requirements for the Degree of Master of Engineering
in Materials and Structure
By:
RAMADHAN AL MAHDI JIBRIL Z
S941208022
MASTER OF CIVIL ENGINEERING
GRADUATE PROGRAM
SEBELAS MARET UNIVERSITY
2014
i
perpustakaan.uns.ac.id
digilib.uns.ac.id
ii
perpustakaan.uns.ac.id
digilib.uns.ac.id
iii
perpustakaan.uns.ac.id
digilib.uns.ac.id
STATEMENT OF ORIGINALITY AND CONTENT
PUBLICATION OF FINAL PROJECT
I declare actually:
1. Thesis by the title:
SHRINKAGE BEHAVIOR OF STEEL FIBER
REINFORCED CONCRETEON SANDWICH LAYER CONCRETE
is my own work and has not been submitted for any degree or other
purposes, except has been mentioned on the bibliography as reference of
this paper. If in the future proved there is plagiarism in this paper, I am
willing to accept the sanction appropriate to legislation (Permendiknas No.
17, 2010).
2. Publication of this Thesis on Journal or scientific forum should be
permission and include the counselor as author and PPs UNS as institution.
In the period at least one semester I did not do the publication of part or all
of the contents of this thesis, the Master Civil Engineering Program of UNS
reserves the right to publish a scientific journal published by the Master
Civil Engineering Department of UNS. If I am in violation of the terms of
this publication, then I am willing to receive the applicable academic
sanctions.
Author,
RAMADHAN AL MAHDI JIBRIL Z
S941208022
iv
perpustakaan.uns.ac.id
digilib.uns.ac.id
FOREWORD
Praise to Allah SWT the lord of the world, who has given mercy and blessing so
that this thesis with a title SHRINKAGE BEHAVIOR OF STEEL FIBER
REINFORCED CONCRETE ON SANDWICH LAYER CONCRETE can be
resolved. This thesis is submitted as a condition for obtaining a master's degree in Civil
Engineering Master Program of Sebelas Maret University.
Respectfully I say many thanks to:
1. Director of Civil Engineering Master Program of Sebelas Maret University.
2. Dr. Ir. Mamok Suprapto, M.Eng, as the head of Civil Engineering Master
Program of Sebelas Maret University.
3.
of Sebelas Maret University.
4. Dr. Techn. Ir. Sholihin
, as first supervisor.
5. Yusep Muslih, St., MT., Ph. D., as second supervisor.
6. All faculty staff of Civil Engineering Master Program of Sebelas Maret
University who have helped during lectures.
7. My brothers and sisters who always support at every condition.
8. Student colleagues of Civil Engineering Master Program of Sebelas Maret
University who gave me inspiration and suggestion.
9. All those who helped me in completing this thesis, the author cannot
mention one by one.
I hope this thesis can contribute to the scientific academic community,
practitioners in the field of building materials and benefit the wider community in
general. The assistance that was given may receive just reward from Allah SWT.
Surakarta, February 2014
Writer,
RAMADHAN AL MAHDI JIBRIL Z
v
perpustakaan.uns.ac.id
digilib.uns.ac.id
ABSTRACT
Shrinkage of concrete causes a serious problem in concrete. If concrete is
restrained from shrinking, tensile stresses develop and it may exceed the tensile
strength of concrete which causes the concrete cracks. One possible method to
control or reduce the adverse effects of cracking due to shrinkage in concrete
structures is the addition of fiber in the concrete. Steel fiber can improve structural
strength, ductility, reduce crack widths and control the crack. In sandwich layer
where its material comprises of steel fiber reinforced concrete and some other by
plain concrete. The shrinkage behavior has been considerably different compared
to fiber reinforced concrete and plain concrete. Therefore this study investigates
the behavioral of shrinkage on the steel fiber reinforced concrete on sandwich
layer concept.
The test specimens were made by steel fiber dosages of 10 kg/m 3, 30kg/m3,
50 kg/m3, 80kg/m3and 100 kg/m3 and some others for sandwich layer specimen
with similar fiber dosages combined with plain concrete. The specimen form was
cylinder 5 cm in diameter and 27 cm in high for drying shrinkage test. All samples
were placed in open air on ambient temperature environment. The shrinkage was
recorded on 1 day to 56 days. The shrinkage prediction for three year or 1000
days was also calculated. Both recorded and predicted shrinkage were then
compared.
The test result showed that plain concrete experienced the highest drying
shrinkage and the addition of steel fiber reduced the drying shrinkage that
occurred at concrete. The greater amount of fiber contained in the concrete, the
lower occurrence of drying shrinkage. The shrinkage on sandwich samples
recorded moderate compared to plain concrete, however this shrinkage is higher
compared to samples of fully fiber reinforced concrete at the same fiber dosage.
The three group of samples; steel fiber reinforced concrete, sandwich concrete and
plain concrete showed the same trend of shrinkage curves following the time of
hydration. The presence of steel fiber in concrete can effectively hinder drying
shrinkage and affected the crack that can reduce and control the shrinkage of
concrete.
Keyword: Shrinkage behavior, shrinkage prediction, SFRC, sandwich concrete,
plain concrete, steel fiber.
vi
perpustakaan.uns.ac.id
digilib.uns.ac.id
ABSTRAK
Penyusutan beton menyebabkan masalah serius dalam beton. Jika beton
tertahan dari menyusut, tegangan tarik mengembangkan dan mungkin melebihi
kekuatan Tarik beton yang menyebabkan beton retak. Salah satu metode yang
mungkin untuk mengendalikan atau mengurangi dampak dari retakan karena susut
dalam struktu beton adalah penambahan serat dalam beton. Serat baja dapat
meningkatkan kekuatan struktural, daktilitas, mengurangi lebar retak dan
mengontrol retak. Dalam lapisan Sandwich mana terdiri materialnya serat baja
beton bertulang dan beberapa lainnya oleh beton normal. Perilaku penyusutan
telah jauh berbeda dibandingkan dengan serat beton bertulang dan beton normal.
Oleh karena itu penelitian ini ingin mengetahui perilaku penyusutan pada serat
baja beton bertulang pada konsep lapisan sandwich.
Spesimen uji dibuat dengan dosis serat baja dari 10 kg/m3, 30kg/m3, 50
kg/m3, 80kg/m 3dan 100 kg/m3 dan beberapa lainnya untuk Sandwich lapisan
specimen dengan dosis serat yang sama dikombinasikan dengan beton normal.
Bentuk specimen adalah silinder dengan diameter 5 cm dan tinggi 27 cm untuk uji
pengeringan penyusutan. Semua sampel ditempatkan di udara terbuka pada suhu
lingkungan. Penyusutan ini direkam pada 1 hari sampai 56 hari. Prediksi
penyusutan selama tiga tahun atau 1000 hari juga dihitung. Keduanya dicatat dan
diprediksi susut tersebut kemudian dibandingkan.
Hasil pengujian menunjukkan bahwa beton normal mengalami pengeringan
penyusutan tertinggi dan penambahan serat baja mengurangi susut pengeringan
yang terjadi pada beton. Jumlah yang lebih besar dari serat yang terkandung
dalam beton, terjadinya rendah pengeringan penyusutan. Penyusutan pada sampel
Sandwich tercatat moderat dibandingkan dengan beton normal, namun penyusutan
ini lebih tinggi dibandingkan dengan sampel penuh serat beton bertulang pada
dosis serat yang sama. Tiga kelompok sampel; serat baja beton bertulang,
sandwich beton dan beton normal menunjukkan kecenderungan yang sama dari
vii
perpustakaan.uns.ac.id
digilib.uns.ac.id
kurva penyusutan setelah waktu hidrasi. Kehadiran sera baja dalam beton dapat
secara efektif menghambat pengeringan susut dan mempengaruhi celah yang
dapat mengurangi dan mengontrol susut beton.
viii
perpustakaan.uns.ac.id
digilib.uns.ac.id
CONTENTS`
THESIS
STATEMENT OF ORIGINALITY
FOREWORD
ABSTRACT
ABSTRAK
CONTENTS`
LIST OF FIGURE
LIST OF TABLE
CHAPTER I INTRODUCTION
1.1
Background
1.2
Problem Statement
1.3
Research Scope
1.4
Research Objectives
1.5
Research Outcomes and Significance
CHAPTER II LITERATURE REVIEW AND BASIC THEORY
2.1
Literature Review
2.1.1 Concrete
2.2
2.1.2
Drying shrinkage in concrete
2.1.3
Fiber
2.1.4
Steel Fiber Reinforced Concrete (SFRC)
2.1.5
Sandwich Layer Concept
Basic Theory
2.2.1
Concrete
2.2.2
Shrinkage in concrete
2.2.3
Fiber
2.2.4
Steel Fiber Reinforced Concrete (SFRC)
2.2.5
Sandwich Layer Concept
2.3
The difference between this research and previous researches
2.4
Hypothesis
CHAPTER III RESEARCH METHODOLOGY
3.1
Introduction
3.1.1
Concrete Mix Design
ix
perpustakaan.uns.ac.id
3.1.2
3.2
3.3
Sample Preparation
Materials
3.2.1
Type of Fiber
3.2.2
Cement
Concrete Material Testing
3.3.1
Los Angeles test
3.3.2
Water absorption test
3.3.3
Specific gravity test
3.3.4
Aggregate gradation test
3.4
Concrete Mixing
3.5
Shrinkage Testing
3.6
Shrinkage Prediction
3.7
Analysis
3.8
digilib.uns.ac.id
3.7.1
Shrinkage behavior of SFRC
3.7.2
Shrinkage Behavior of Sandwich Concrete
3.7.3
Shrinkage behavior of SFRC and plain concrete on sandwich concrete.
Systematic Research Methods
CHAPTER IV RESULT AND DISCUSSION
4.1
Material Test
4.1.1
Fine Aggregate
4.1.2
Coarse Aggregate
4.2
Mix Design (plain concrete)
4.3
Compressive Strength Test
4.4
Drying Srinkage Test
4.5
Drying Shrinkage Prediction
4.6 Discussion
CHAPTER V CONCLUSION AND SUGGESTION
5.1
Conclusion
5.2
Suggestion
REFERENCE
x
perpustakaan.uns.ac.id
digilib.uns.ac.id
LIST OF FIGURE
Figure 2.1 Effect of ambient (constant) relative humidity of exposure on the drying
shrinkage rate
for 4 x 8x 32mm mortar specimens with two different w/c ratios (a) 0.35 (b)
0.50 (from
Bissonnette et al., 1999).
Figure 2.2 (a) Effect of aggregate concentration on shrinkage of concrete: theoretical vs.
experimental
results by Pickett (from Soroka, 1993). (b) Relation between shrinkage strains
and concrete
secant modulus of elasticity, data by Richard (from Soroka, 1993).
Figure 2.3 Effect of w/c ratio on the drying shrinkage of concrete as a function of time,
data by Haller
(from Soroka, 1993).
Figure 2.4 (a) Different possibilities of strain measurement in a drying shrinkage test. (b)
Relation
between the height of concrete specimens of constant diameter and the
measured
longitudinal strains at the border and at the centre of the samples
(from Wittmann,
1993).
Figure 2.5 Various types of steel fiber form (Soroushian and Bayasi, 1991)
Figure 2.6 Bridge deck with steel fibers.
Figure 2.7 Tightly bunched steel fibers are placed in a form, before cement slurry is
poured into this
application of slurry-infiltrated steel-fiber concrete (SIFCON).
Figure 2.8 Sketch of sandwich layer concrete.
Figure 3.1 Water-cement ratio relationship graphs and the average compressive strength
of cylinder
(SNI 03-2834-2000 ).
Figure 3.2 Graph fine aggregate percentages on the overall aggregate for the maximum
grain size of 20
mm (SNI 03 -2834-200)
Figure 3.3 Graph showing the relationship of water content, specific gravity of aggregate
mix, an heavy
concrete( after .SNI 03-3834-2000)
Figure 3.4 Steel fibers RC 80/60 BN
Figure 3.5 Specimen dimension
Figure 3.6 Shrinkage performance (boral laboratory testing, 2013)
Figure 3.7 Flow chart of research method
Figure 4.4 Relation between drying shrinkage and drying age of plain concrete and plain
concrete of
sandwich.
xi
perpustakaan.uns.ac.id
digilib.uns.ac.id
LIST OF TABLE
Table 2.1 Typical values of shrinkage strains in mortar and concrete samples with
a squared cross
section of 127mm2, exposed to a 50% RH environment at 21ÂșC (Neville,
2002)
Table 2.2 SIFCON mix design.
Table 3.1 Specimen types with various dosages of steel fiber.
Table 4.1 Specific grafity test result
Table 4.2 Fine aggregate gradation test result
Table 4.3 Specific grafity test result
Table 4.4 Fine aggregate gradation test result
Table 4.5 Material requirement
Table 4.6 Compressive strength test result
Table 4.7
Table 4.8 Comparison of coefficient error between predicted shrinkage
xii
sh(u)=4579.1)
perpustakaan.uns.ac.id
digilib.uns.ac.id
LIST OF APPENDIX
Appendix A..............................................................................................
Ap A-1
Appendix B..............................................................................................
Ap B-1
Appendix C..............................................................................................
Ap C-
1
xiii