COMPRESIVE STRENGTHS AND MODULUS OF ELASTICITY OF STEEL FIBER REINFORCED CONCRETE Compresive Strengths And Modulus Of Elasticity Of Steel Fiber Reinforced Concrete Under Different Temperature Conditions.

COMPRESIVE STRENGTHS AND MODULUS OF
ELASTICITY OF STEEL FIBER REINFORCED CONCRETE
UNDER DIFFERENT TEMPERATURE CONDITIONS
THESIS
Submitted as Partial Fulfillment of the Requirements
For Getting Master of Civil Engineering Graduated Program

Arranged By:
Mohamed Alfitouri Masoud
S100130013

POSTGRADUATE PROGRAM
DEPARTMENT OF CIVIL ENGINEERING
MUHAMMADIYAH UNIVERSITY SURAKARTA
2015
i

ii

iii


iv

iv

v

ABSTRACT
COMPRESIVE STRENGTHS AND MODULUS OF ELASTICITY OF STEEL
FIBER REINFORCED CONCRETE UNDER DIFFERENT TEMPERATURE
CONDITIONS

The aim of this study is to investigate the strength and modulus of elasticity
progress of steel fiber reinforced concrete under different temperature condition on
difference fibers volume fractions: 1) to analyze the compressive strength and
modulus of elasticity of steel fiber reinforced concrete on volume fractions of 1%
fiber at three temperature levels of 200oC, 400oCand 600oC; 2) to analyze the
compressive strength and modulus of elasticity of steel fiber reinforced concrete on
volume fractions of 1.5% fiber at three temperature levels of 200oC, 400oC and
600oC; and 3) to analyze the comparison of the compressive strength and modulus of
elasticity at concrete without fibre on the same temperature.

This study will compare the compressive strength and modulus elasticity
between plain concrete and SFRC containing various volume fraction of steel fiber as
reinforcement on elevated temperature heating up to 600°C is subjected to some
concrete and SFRC specimen. Material test aims to find out the quality of the material
before making the concrete specimen. In this study conduct kinds of test, i.e. 1) Basic
Material Test; 2) Compressive Strength; and 3) Modulus of Elasticity. The data
analysis was conducted after testing of a specimen by comparing and analyzing the
data obtained. The tests was performed compressive test and modulus of elasticity.
From the research findings can be concluded that 1) The addition of 1% and
1.5% steel fiber in concrete mix is advantageous for concrete; 2) Overall the
compressive strength of concrete was increased as the percentage of steel fiber in
concrete increases. Up to 1.5% , Steel fiber reinforced concrete showed a better
overall residual strength and better crack resistance than non-fiber concrete; 3) The
carbonation process for concrete with steel fiber is a little influenced by temperature
compare to concrete without steel fiber; and 4) The concrete with 1.5 % steel fiber
demonstrated the highest compressive and modulus of elasticity value, 23.5 and
17172 MPa at 6000C respectively. It is expected that in future concrete having steel
fiber will act as a fire protective considerably.
Keyword: Compressive Strengths, modulus of elasticity, steel fiber


vi

ACKNOWLEDMENT

First and foremost, want thank Allah I would like to express my sincere
thanks and appreciation to my father and mother, and academic supervisors of Dr.
Mohammad Solikin and Yenny Nurchasanah, ST, MT who continously guided me
throughout every step of my study and generously shared their time and knowledge
with me.
My special thanks must be extended to technical staf members postgraduated
program of Civil Engineering Muhammadiyah University of Surakarta. Millions
words of thanks for fellow friends who showed the concern and support all the way.
Unfortunately, it is not possible to list all of them in this limited space.

vii

TABLE OF CONTENT

TITLE ....................................................................................................................


i

APPROVAL..........................................................................................................

ii

NOTE OF SUPERVISOR I ..................................................................................

iii

NOTE OF SUPERVISOR II .................................................................................

iv

THESIS STATEMENT OF AUTHENTICITY ....................................................

v

ABSTRACT ..........................................................................................................


vi

ACKNOWLEDMENT ..........................................................................................

vii

TABLE OF CONTENT ........................................................................................

viii

LIST OF TABLES ................................................................................................

xi

TABLE OF FIGURES ..........................................................................................

xii

CHAPTER I


CHAPTER II

INTRODUCTION ..................................................................

1

1.1 Background .....................................................................

1

1.2 Research Problem ............................................................

5

1.3 Research Scope ...............................................................

5

1.4 Research Objectives ........................................................


6

1.5 Research Outcomes and Significance .............................

6

LITERATURE REVIEW .....................................................

8

2.1. Thermal

Properties

of

Concrete

at


Elevated

Temperatures ...................................................................

8

2.1.1 Thermal Conductivity ............................................

8

2.1.2 Specific heat ...........................................................

10

2.1.3 Mass Loss ...............................................................

11

viii


2.2 Mechanical

CHAPTER III

Properties

of

Concrete

at

Elevated

Temperatures ...................................................................

13

2.2.1 Compressive Strength ............................................


13

2.2.2 Modulus of Elasticity .............................................

16

2.3 Basic Theory ...................................................................

17

2.3.1 Concrete .................................................................

17

2.3.2 Steel Fiber ..............................................................

18

2.3.3 Effect of Temperature on Concrete ........................


22

2.3.4 Compressive Strength ............................................

24

2.3.5 Modulus Elasticity..................................................

27

RESEARCH METHODOLOGY ...........................................

30

3.1 General ............................................................................

30

3.2 Material and Sample Preparation ....................................

31

3.2.1 Steel Fiber ..............................................................

31

3.2.2 Concrete Ingredient ................................................

32

3.2.3 Concrete Mix Design .............................................

32

3.3 Sample Preparation .........................................................

34

3.4 Concrete Burning Process ...............................................

35

3.5 Procedure of Test ............................................................

36

3.5.1 Basic Material Test .................................................

36

3.5.2 Compressive Strength ............................................

36

3.5.3 Modulus of Elasticity .............................................

37

3.6 Data Analysis ..................................................................

38

3.7 Result Analysis ................................................................

38

ix

CHAPTER IV

RESULT ANALYSIS AND DISCUSSION ..........................

40

4.1 Fine Aggregate Test ........................................................

40

4.2 Coarse Aggregate Test ....................................................

42

4.3 Temperature Test .............................................................

45

4.4 Compressive Strength .....................................................

46

4.5 Modulus Elasticity...........................................................

51

4.6 Carbonation test...............................................................

56

CONCLUSION AND SUGGESTION ..................................

60

5.1 Conclusion .......................................................................

60

5.2 Suggestion .......................................................................

60

REFERENCES......................................................................................................

62

CHAPTER V

APPENDIX

x

LIST OF TABLE

Table 3.1

Material requirement for 1m3 and 1 mixture ...................................

36

Table 3.2

Number of Specimen .......................................................................

37

Table 4.1

Fine aggregate test result .................................................................

40

Table 4.2

Gradation of Fine Aggregate ...........................................................

41

Table 4.3

Coarse Aggregate Test Result..........................................................

42

Table 4.4

Gradation of Coarse Aggregate .......................................................

44

Table 4.5

Compressive strength test result of experimental sample with and
without SFRCat different temperature .............................................

Table 4.6

Table 4.7

47

Modulus elasticity of experimental sample with and without
SFRC at various temperature ...........................................................

51

Effect of temperature on the depth of Carbonation .........................

56

xi

LIST OF FIGURES

Figure 2.1

Variation in thermal conductivity of normal strength concrete as a
function of temperature ....................................................................

Figure 2.2

Variation in specific heat of normal strength concrete as a
function of temperature. ...................................................................

Figure 2.3

14

Variation in relative compressive strength of high strength
concrete as a function of temperature ..............................................

Figure 2.6

12

Variation of relative compressive strength of normal strength
concrete as a function of temperature ..............................................

Figure 2.5

11

Variation in mass of concrete with different aggregates as a
function of temperature. ...................................................................

Figure 2.4

9

15

Variation in elastic modulus of concrete as a function of
temperature ......................................................................................

17

Figure 2.7

Various Types of Steel Fiber Form..................................................

20

Figure 2.8

Modeling the Compressive Strength Test and Crack Patterns in
Concrete ...........................................................................................

Figure 2.9

24

Water-cement ratio relationship graphs and the average
compressive strength of cylinder .....................................................

25

Figure 2.10 Relation between age and compressive strength on concrete ..........

26

Figure 2.11 Graph fine aggregate percentages on the overall aggregate for the
maximum grain size of 20 mm ........................................................

27

Figure 2.12 Relation between stress and strain ...................................................

28

Figure 3.1

31

Dramix RC 80/60 BN from Jakarta, Indonesia................................

xii

Figure 3.2

Compression test with Forney compression testing machine ..........

36

Figure 3.3

Modulus of Elasticity Machine ........................................................

37

Figure 3.4

Flowchart of Research Process ........................................................

39

Figure 4.1

Fine Aggregate gradation.................................................................

42

Figure 4.2

Coarse Aggregate Gradation ............................................................

44

Figure 4.3

Preparation of burning the SFRC for 24 hours ................................

45

Figure 4.4

Compressive strength test result of experimental sample with and
without SFRCat different temperature .............................................

47

Figure 4.5

Specimen surface before compressive strength test ........................

50

Figure 4.6

Specimen surface after compressive strength test ...........................

50

Figure 4.7

Modulus elasticity of experimental sample with and without
SFRC at various temperature ...........................................................

51

Figure 4.8

Concrete with steel fiber ..................................................................

54

Figure 4.9

Concrete without steel fiber .............................................................

55

Figure 4.10 Effect of temperature on the depth of Carbonation .........................

57

xiii

APPENDIX LIST

Appendix A Sieve Analysis of Coarse Agregate and Fine Agregat .........................

68

Appendix B

Compressive Strength Test ...................................................................

71

Table B-1

Compressive strength test result of experimental sample

83

Figure B-1 Compressive strength test result of experimental sample

83

Modulus of Elasticity Test....................................................................

84

Table C-1

Modulus elasticity of experimental sample .....................

85

Figure C-1 Modulus elasticity of experimental sample .....................

85

Appendix D Carbonation Test ..................................................................................

86

Appendix C

Table D-1

Appendix E

Effect of temperature on the depth of Carbonation .........

87

Figure D-1 Effect of temperature on the depth of Carbonation .........

87

Picture of the Test from the Laboratory ...............................................

88

Figure E-1

Compressive Strength Test .............................................

89

Figure E-2

Modulus of Elasticity Test ..............................................

90

Figure E-3

Carbonation Test .............................................................

91

xiv