Perancangan dan Pembuatan Transceiver SSB Untuk Komunikasi Suara dan Data Pada Spektrum High Frequency.

ABSTRAK
Transceiver (transmitter receiver) tidak hanya digunakan untuk
komunikasi suara saja tetapi dapat digunakan untuk komunikasi data dengan
menggunakan sebuah modem. Untuk komunikasi jarak jauh biasa digunakan
transceiver yang bekerja di High Frequency (HF) karena di HF ini gelombang
yang dipancarkan akan dipantulkan oleh lapisan ionosfer.
Tugas Akhir ini membahas prinsip kerja, perancangan, pembuatan
transceiver SSB yang bekerja di HF dan bagaimana cara menghubungkannya
dengan modem Phase Shift Keying (PSK). Transceiver SSB ini menggunakan
frekuensi radio amatir di 3,85 MHz dan daya pancar 10 Watt.
Transceiver SSB ini bisa digunakan untuk komunikasi suara dan data,
dengan memanfaatkan input microphone dan output speaker serta PTT dari
transceiver SSB yang dihubungkan ke modem PSK.

i

ABSTRACT
Transceiver (transmitter receiver) is not only used for audio
communication, but it is also can be used for data communication by using a
modem. For long distance communication, it is usually used transceiver that
works at high frequency (HF), because in the frequency, transmitted wave will be

bounced by ionosphere coat.
This Final Project discusses the principle work, design, realization SSB
transceiver that works at HF and how to connect it to the modem of Phase Shift
Keying (PSK). This SSB transceiver uses amateurish radio frequency at 3,8 MHz
and 10 watt emittance.
This SSB transceiver can be used for audio and data communication, by
using input microphone and output speaker, also PTT from SSB transceiver that
connected to PSK modem.

ii

DAFTAR ISI
ABSTRAK …………………………………..…….…….…………….

i

ABSTRACT ……………………………………………………………

ii


KATA PENGANTAR ……………...…………………………………

iii

DAFTAR ISI…….………………………………...………………….

v

DAFTAR TABEL …………………………………………..………..

vii

DAFTAR GAMBAR.……………………………………..….………

viii

DAFTAR LAMPIRAN……………………………………………….

x


BAB 1 PENDAHULUAN
1.1

Latar Belakang ………..……………………………..………

1

1.2

Perumusan Masalah ...………………………….……….……

1

1.3

Tujuan Penulisan ………………….…………..….……….…

2

1.4


Pembatasan Masalah ..…………………………….……… ..

2

1.5

Sistematika Penulisan ………………………..……………....

2

BAB 2 LANDASAN TEORI
2.1

Gelombang Radio ………..…………………………………

4

2.2


Frekuensi Radio ……..…………………………………….

5

2.3

Modulasi Sinyal ……………………………………………

6

2.3.1

Modulasi Amplitudo …………..……………………....

6

2.3.2

Sistem Modulasi SSB ….……………..……………....


8

2.4

Pemancar (Transmitter) Sistem SSB ……….…….……… ..

9

2.5

Penerima (Receiver) Sistem SSB…….………..………...

10

2.6

Balanced Modulator …………………………………….

10


2.7 Osilator ………………………………………………….

12

2.8

Filter …………………………………………………….

13

2.9 Detektor …………………………………………………

16

BAB 3 PERANCANGAN DAN REALISASI
3.1 Pemancar ………….……………………………………..

17

3.1.1


Penguat Mic (Pre Amp Mic) ………...…….………..

18

3.1.2

Balanced Modulator (BM1) ………….……….….

19

v

3.1.3

Osilator Lokal (OL1) …………………………………

20

3.1.4


Filter Upper Side Band 1 ……………………………

21

3.1.5

Balanced Modulator 2 (BM 2) sebagai Mixer …….

22

3.1.6

Osilator Lokal 2 (OL 2) ……………………………..

22

3.1.7

Filter Upper Side Band 2 ……………………………


23

3.1.8

Penguat Daya RF ……………………………………

24

3.1.8.1 RF Pre Driver …………………………………

24

3.1.8.2 RF Driver ……………………………………..

26

3.1.8.3

Rangkaian Penguat Akhir (RF Final) …………


27

Penerima (Receiver) …………………………………….

29

3.2.1 RF Amplifier …………………………………………

30

3.2.2 RF Mixer …………………………………………….

30

3.2.3

Osilator Lokal 2 (OL 2) ……………………………..

31

3.2.4

Filter USB I …………………………………………

31

3.2.5

Intermediate Frequency ……………….……………

31

3.2

3.2.6 Detektor ……………………………………………

32

3.2.7

Osilator Lokal 1 (OL 1) ……………………………

32

3.2.8 Penguat Audio / Suara ……………………………..

32

3.2.9

Automatic Gain Control (AGC) ……………………

33

Rangkaian PTT …………………………………………

34

3.3

BAB 4 PENGUJIAN DAN ANALISA
4.1

Pengujian Transceiver SSB ……………..…….……...

35

4.1.1

Pengujian Bagian Pemancar ………………………….

37

4.1.2

Pengujian Bagian Penerima ……………………….

44

4.2

Penghubungan Transceiver dengan Modem PSK ………

47

BAB 5 KESIMPULAN DAN SARAN
5.1

Kesimpulan…………………………………….…….

49

5.2

Saran…..………………………………..…………....

49

DAFTAR PUSTAKA
LAMPIRAN

vi

DAFTAR TABEL
Tabel

Judul

Halaman

2.1

Spektrum Frekuensi

5

3.1

Filter Chebychev

28

vii

DAFTAR GAMBAR
Gambar

Judul

Halaman

2.1

Modulasi Amplitudo

7

2.2

Pemancar (Transmitter) Sistem SSB

9

2.3

Penerima (Receiver) Sistem SSB

10

2.4

Balanced Modulator IC

11

2.5

Osilator colpitts

13

2.6

Osilator Kristal.

13

2.7

Low pass filter

14

2.8

High pass filter

14

2.9

Band pass filter

15

2.10

Band stop filter

15

2.11

Detektor

16

3.1

Diagram Blok Transceiver SSB

17

3.2

Rangkaian Pre Amp Mic dan Tone Control

18

3.3

IC LM 1496

19

3.4

Rangkaian Balanced Modulator

20

3.5

Rangkaian Osilator Lokal 1

21

3.6

Filter Upper Side Band

21

3.7

Rangkaian Balanced Modulator 2

22

3.8

Rangkaian Osilator Lokal 2

23

3.9

Rangkaian Filter Upper Side Band 2

24

3.10

Diagram Blok Penguat Daya

24

3.11

Rangkaian RF Pre Driver

26

3.12

Rangkaian RF Driver

27

3.13

Rangkaian LPF Normalisasi

27

3.14

Rangkaian LPF dengan fc=5,56 MHz

29

3.15

Rangkaian Penguat Akhir dan Filter

29

3.16

Rangkaian RF Amp

30

3.17

Rangkaian RF Mixer

30
viii

3.18

Rangkaian Intermediate Frequency

31

3.19

Detektor

32

3.20

Rangkaian Penguat Audio

33

3.21

Rangkaian AGC

33

3.22

Rangkaian PTT

34

4.1

Diagram Blok Pengujian Transceiver

36

4.2

Hasil Pengukuran TP 1 dengan Osiloskop

37

4.3

Sinyal Informasi dengan Frekuensi 2 KHz

37

4.4

Hasil Pengukuran TP 2 dengan Frekuensi Counter

38

4.5

Hasil Pengukuran TP 2 dengan Osiloskop

38

4.6

Sinyal Carrier dengan Frekuensi 455 KHz

38

4.7

Sinyal Hasil Modulasi

39

4.8

Hasil Pengukuran TP 4 dengan Frekuensi Counter

40

4.9

Hasil Pengukuran TP 4 dengan Spectrum Analyzer

40

4.10

Spektrum Sinyal Carrier dengan Frekuensi 3.4 MHz

40

4.11

Hasil Pengukuran TP 5 dengan Spectrum Analyzer

41

4.12

Hasil Pengukuran TP 5 dengan Osiloskop

41

4.13

Spektrum Sinyal USB dengan Frekuensi 3,857 MHz

41

4.14

Hasil Pengukuran TP 6 dengan Power Meter

42

4.15

Sketsa Hasil Pengukuran TP 6

42

4.16

Hasil Pengukuran TP 7 dengan Power Meter

43

4.17

Sketsa Hasil Pengukuran TP 7

43

4.18

Hasil Pengukuran TP 8 dengan SWR Meter

44

4. 19

Sketsa Hasil Pengukuran TP 8

44

4.20

Signal Generator dengan Frekuensi 3,857 MHz

45

4.21

Spektrum Sinyal USB

45

4.22

Spektrum dari TP 11

46

4.23

Spektrum dari TP 12

46

4.24

Sinyal Informasi dari Output Detektor

47

4.25

Sinyal Informasi 2 KHz

47

4.26

Penghubungan Transceiver dengan Modem PSK

48

ix

DAFTAR LAMPIRAN
Lampiran

Judul

Halaman

A

Data Sheet Transistor 2SK 192

A-1

B

Data Sheet Transistor 2SC 828

B-1

C

Data Sheet Transistor 2SC 829

C-1

D

Data Sheet Transistor 2SC 1383

D-1

E

Data Sheet Transistor 2SC 1162

E-1

F

Data Sheet Transistor 2SC 1969

F-1

G

Data Sheet IC LM 741

G-1

H

Data Sheet IC LM 386

H-1

I

Data Sheet IC LM 1496

I-1

J

Layout PCB

J-1

x

LM386
Low Voltage Audio Power Amplifier
General Description

Features

The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to
keep external part count low, but the addition of an external
resistor and capacitor between pins 1 and 8 will increase the
gain to any value up to 200.

n
n
n
n
n
n
n
n
n

The inputs are ground referenced while the output is automatically biased to one half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a
6 volt supply, making the LM386 ideal for battery operation.

Battery operation
Minimum external parts
Wide supply voltage range: 4V–12V or 5V–18V
Low quiescent current drain: 4 mA
Voltage gains from 20 to 200
Ground referenced input
Self-centering output quiescent voltage
Low distortion
Available in 8 pin MSOP package

Applications
n
n
n
n
n
n
n
n

AM-FM radio amplifiers
Portable tape player amplifiers
Intercoms
TV sound systems
Line drivers
Ultrasonic drivers
Small servo drivers
Power converters

Equivalent Schematic and Connection Diagrams
Small Outline,
Molded Mini Small Outline,
and Dual-In-Line Packages

DS006976-2

DS006976-1

© 2000 National Semiconductor Corporation

DS006976

Top View
Order Number LM386M-1,
LM386MM-1, LM386N-1,
LM386N-3 or LM386N-4
See NS Package Number
M08A, MUA08A or N08E

www.national.com

LM386 Low Voltage Audio Power Amplifier

January 2000

LM386

Absolute Maximum Ratings (Note 2)

Dual-In-Line Package
Soldering (10 sec)
+260˚C
Small Outline Package
(SOIC and MSOP)
Vapor Phase (60 sec)
+215˚C
Infrared (15 sec)
+220˚C
See AN-450 “Surface Mounting Methods and Their Effect
on Product Reliability” for other methods of soldering
surface mount devices.
Thermal Resistance
37˚C/W
θJC (DIP)
107˚C/W
θJA (DIP)
35˚C/W
θJC (SO Package)
172˚C/W
θJA (SO Package)
210˚C/W
θJA (MSOP)
56˚C/W
θJC (MSOP)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage
(LM386N-1, -3, LM386M-1)
Supply Voltage (LM386N-4)
Package Dissipation (Note 3)
(LM386N)
(LM386M)
(LM386MM-1)
Input Voltage
Storage Temperature
Operating Temperature
Junction Temperature
Soldering Information

15V
22V
1.25W
0.73W
0.595W
± 0.4V
−65˚C to +150˚C
0˚C to +70˚C
+150˚C

Electrical Characteristics (Notes 1, 2)
TA = 25˚C
Parameter

Conditions

Min

Typ

Max

Units

12

V

Operating Supply Voltage (VS)
LM386N-1, -3, LM386M-1, LM386MM-1

4

LM386N-4
Quiescent Current (IQ)

5
VS = 6V, VIN = 0

4

18

V

8

mA

Output Power (POUT)

LM386N-4

VS = 6V, RL = 8Ω, THD = 10%
VS = 9V, RL = 8Ω, THD = 10%
VS = 16V, RL = 32Ω, THD = 10%

Voltage Gain (AV)

VS = 6V, f = 1 kHz

LM386N-1, LM386M-1, LM386MM-1
LM386N-3

Bandwidth (BW)
Total Harmonic Distortion (THD)
Power Supply Rejection Ratio (PSRR)

10 µF from Pin 1 to 8
VS = 6V, Pins 1 and 8 Open
VS = 6V, RL = 8Ω, POUT = 125 mW
f = 1 kHz, Pins 1 and 8 Open
VS = 6V, f = 1 kHz, CBYPASS = 10 µF

250

325

500

700

mW
mW

700

1000

mW

26

dB

46

dB

300

kHz

0.2

%

50

dB

50

kΩ

250

nA

Pins 1 and 8 Open, Referred to Output
Input Resistance (RIN)
Input Bias Current (IBIAS)

VS = 6V, Pins 2 and 3 Open

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is
given, however, the typical value is a good indication of device performance.
Note 3: For operation in ambient temperatures above 25˚C, the device must be derated based on a 150˚C maximum junction temperature and 1) a thermal resistance of 107˚C/W junction to ambient for the dual-in-line package and 2) a thermal resistance of 170˚C/W for the small outline package.

www.national.com

2

LM386

Application Hints
INPUT BIASING

GAIN CONTROL
To make the LM386 a more versatile amplifier, two pins (1
and 8) are provided for gain control. With pins 1 and 8 open
the 1.35 kΩ resistor sets the gain at 20 (26 dB). If a capacitor
is put from pin 1 to 8, bypassing the 1.35 kΩ resistor, the
gain will go up to 200 (46 dB). If a resistor is placed in series
with the capacitor, the gain can be set to any value from 20
to 200. Gain control can also be done by capacitively coupling a resistor (or FET) from pin 1 to ground.

The schematic shows that both inputs are biased to ground
with a 50 kΩ resistor. The base current of the input transistors is about 250 nA, so the inputs are at about 12.5 mV
when left open. If the dc source resistance driving the LM386
is higher than 250 kΩ it will contribute very little additional
offset (about 2.5 mV at the input, 50 mV at the output). If the
dc source resistance is less than 10 kΩ, then shorting the
unused input to ground will keep the offset low (about 2.5 mV
at the input, 50 mV at the output). For dc source resistances
between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in
value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.
When using the LM386 with higher gains (bypassing the
1.35 kΩ resistor between pins 1 and 8) it is necessary to bypass the unused input, preventing degradation of gain and
possible instabilities. This is done with a 0.1 µF capacitor or
a short to ground depending on the dc source resistance on
the driven input.

Additional external components can be placed in parallel
with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example,
we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series
RC from pin 1 to 5 (paralleling the internal 15 kΩ resistor).
For 6 dB effective bass boost: R ≅ 15 kΩ, the lowest value
for good stable operation is R = 10 kΩ if pin 8 is open. If pins
1 and 8 are bypassed then R as low as 2 kΩ can be used.
This restriction is because the amplifier is only compensated
for closed-loop gains greater than 9.

3

www.national.com

LM386

Typical Performance Characteristics
Quiescent Supply Current
vs Supply Voltage

Power Supply Rejection Ratio
(Referred to the Output)
vs Frequency

Peak-to-Peak Output Voltage
Swing vs Supply Voltage

DS006976-5
DS006976-13
DS006976-12

Voltage Gain vs Frequency

Distortion vs Frequency

DS006976-15

DS006976-14

Device Dissipation vs Output
Power — 4Ω Load

Device Dissipation vs Output
Power — 8Ω Load

DS006976-17

www.national.com

Distortion vs Output Power

DS006976-18

4

DS006976-16

Device Dissipation vs Output
Power — 16Ω Load

DS006976-19

LM386

Typical Applications
Amplifier with Gain = 20
Minimum Parts

Amplifier with Gain = 200

DS006976-4
DS006976-3

Amplifier with Gain = 50

Low Distortion Power Wienbridge Oscillator

DS006976-6

DS006976-7

Square Wave Oscillator

Amplifier with Bass Boost

DS006976-8

DS006976-9

5

www.national.com

LM386

Typical Applications

(Continued)
Frequency Response with Bass Boost

DS006976-10

AM Radio Power Amplifier

DS006976-11

Note 4: Twist Supply lead and supply ground very tightly.
Note 5: Twist speaker lead and ground very tightly.
Note 6: Ferrite bead in Ferroxcube K5-001-001/3B with 3 turns of wire.
Note 7: R1C1 band limits input signals.
Note 8: All components must be spaced very closely to IC.

www.national.com

6

LM386

Physical Dimensions

inches (millimeters) unless otherwise noted

SO Package (M)
Order Number LM386M-1
NS Package Number M08A

7

www.national.com

LM386

Physical Dimensions

inches (millimeters) unless otherwise noted (Continued)

8-Lead (0.118” Wide) Molded Mini Small Outline Package
Order Number LM386MM-1
NS Package Number MUA08A

www.national.com

8

LM386 Low Voltage Audio Power Amplifier

Physical Dimensions

inches (millimeters) unless otherwise noted (Continued)

Dual-In-Line Package (N)
Order Number LM386N-1, LM386N-3 or LM386N-4
NS Package Number N08E

LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.
National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com
www.national.com

National Semiconductor
Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.

National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: sea.support@nsc.com

National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

LM741
Operational Amplifier
General Description
The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements
for the 709C, LM201, MC1439 and 748 in most applications.
The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and
output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C/LM741E are identical to the LM741/LM741A
except that the LM741C/LM741E have their performance
guaranteed over a 0˚C to +70˚C temperature range, instead
of −55˚C to +125˚C.

Schematic Diagram

DS009341-1

Offset Nulling Circuit

DS009341-7

© 1999 National Semiconductor Corporation

DS009341

www.national.com

LM741 Operational Amplifier

May 1998

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
(Note 6)
LM741A
LM741E
LM741
LM741C
± 22V
± 22V
± 22V
± 18V
Supply Voltage
Power Dissipation (Note 2)
500 mW
500 mW
500 mW
500 mW
± 30V
± 30V
± 30V
± 30V
Differential Input Voltage
± 15V
± 15V
± 15V
± 15V
Input Voltage (Note 3)
Output Short Circuit Duration
Continuous
Continuous
Continuous
Continuous
Operating Temperature Range
−55˚C to +125˚C
0˚C to +70˚C
−55˚C to +125˚C
0˚C to +70˚C
Storage Temperature Range
−65˚C to +150˚C
−65˚C to +150˚C
−65˚C to +150˚C
−65˚C to +150˚C
Junction Temperature
150˚C
100˚C
150˚C
100˚C
Soldering Information
N-Package (10 seconds)
260˚C
260˚C
260˚C
260˚C
J- or H-Package (10 seconds)
300˚C
300˚C
300˚C
300˚C
M-Package
Vapor Phase (60 seconds)
215˚C
215˚C
215˚C
215˚C
Infrared (15 seconds)
215˚C
215˚C
215˚C
215˚C
See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering
surface mount devices.
ESD Tolerance (Note 7)
400V
400V
400V
400V

Electrical Characteristics (Note 4)
Parameter

Conditions

LM741A/LM741E
Min

Input Offset Voltage

Typ

Max

0.8

3.0

LM741
Min

LM741C

Typ

Max

1.0

5.0

Min

Units

Typ

Max

2.0

6.0

TA = 25˚C
RS ≤ 10 kΩ
RS ≤ 50Ω

mV
mV

TAMIN ≤ TA ≤ TAMAX
RS ≤ 50Ω

4.0

mV

RS ≤ 10 kΩ

6.0

Average Input Offset

7.5

15

mV
µV/˚C

Voltage Drift
Input Offset Voltage

TA = 25˚C, VS = ± 20V

± 10

± 15

± 15

mV

Adjustment Range
Input Offset Current

TA = 25˚C

3.0

TAMIN ≤ TA ≤ TAMAX
Average Input Offset

30

20

200

70

85

500

20

200

nA

300

nA

0.5

nA/˚C

Current Drift
Input Bias Current

TA = 25˚C

Input Resistance

TAMIN ≤ TA ≤ TAMAX
TA = 25˚C, VS = ± 20V
TAMIN ≤ TA ≤ TAMAX,
VS = ± 20V

Input Voltage Range

30
1.0

80

6.0

500

80

1.5
0.3

2.0

0.3

2.0

0.5

500

nA

0.8

µA
MΩ
MΩ

± 12

TA = 25˚C
TAMIN ≤ TA ≤ TAMAX

www.national.com

80
0.210

± 12

2

± 13

± 13

V
V

Electrical Characteristics (Note 4)
Parameter

(Continued)

Conditions

LM741A/LM741E
Min

Large Signal Voltage Gain

TA = 25˚C, RL ≥ 2 kΩ
VS = ± 20V, VO = ± 15V
VS = ± 15V, VO = ± 10V

Typ

Max

LM741
Min

Typ

50

200

LM741C
Max

Min

Typ

20

200

Units
Max

50

V/mV
V/mV

TAMIN ≤ TA ≤ TAMAX,
RL ≥ 2 kΩ,
VS = ± 20V, VO = ± 15V
VS = ± 15V, VO = ± 10V
VS = ± 5V, VO = ± 2V
Output Voltage Swing

32

V/mV
25

RL ≥ 10 kΩ

10

V/mV

± 16
± 15

V
V

RL ≥ 10 kΩ

± 12
± 10

RL ≥ 2 kΩ
TA = 25˚C

10

Current

TAMIN ≤ TA ≤ TAMAX

10

Common-Mode

TAMIN ≤ TA ≤ TAMAX
RS ≤ 10 kΩ, VCM = ± 12V

Rejection Ratio

RS ≤ 50Ω, VCM = ± 12V
Supply Voltage Rejection
Ratio

25

35

± 14
± 13

± 12
± 10

25

± 14
± 13

V

25

mA

40

mA
70

80

95

86

96

90

70

90

dB

RS ≤ 10 kΩ
TA = 25˚C, Unity Gain

77

96

77

96

dB
µs

0.25

0.8

0.3

0.3

Overshoot

6.0

20

5

5

Slew Rate
Supply Current
Power Consumption

LM741A

dB
dB

Rise Time
Bandwidth (Note 5)

V

TAMIN ≤ TA ≤ TAMAX,
VS = ± 20V to VS = ± 5V
RS ≤ 50Ω

Transient Response

V/mV

VS = ± 20V
RL ≥ 2 kΩ
VS = ± 15V

Output Short Circuit

15

TA = 25˚C
TA = 25˚C, Unity Gain
TA = 25˚C

0.437

1.5

0.3

0.7

TA = 25˚C
VS = ± 20V
VS = ± 15V

80

VS = ± 20V
TA = TAMIN

%
MHz

0.5

0.5

V/µs

1.7

2.8

1.7

2.8

50

85

50

85

150

mA
mW
mW

165

mW

135

mW

LM741E

TA = TAMAX
VS = ± 20V
TA = TAMIN

150

mW

150

mW

LM741

TA = TAMAX
VS = ± 15V
TA = TAMIN
TA = TAMAX

60

100

mW

45

75

mW

Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
functional, but do not guarantee specific performance limits.

3

www.national.com

Electrical Characteristics (Note 4)

(Continued)

Note 2: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tj max. (listed under “Absolute Maximum Ratings”). Tj = TA + (θjA PD).

Thermal Resistance
θjA (Junction to Ambient)
θjC (Junction to Case)

Cerdip (J)

DIP (N)

HO8 (H)

SO-8 (M)

100˚C/W

100˚C/W

170˚C/W

195˚C/W

N/A

N/A

25˚C/W

N/A

Note 3: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage.
Note 4: Unless otherwise specified, these specifications apply for VS = ± 15V, −55˚C ≤ TA ≤ +125˚C (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to 0˚C ≤ TA ≤ +70˚C.
Note 5: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).
Note 6: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.
Note 7: Human body model, 1.5 kΩ in series with 100 pF.

Connection Diagram
Metal Can Package

Ceramic Dual-In-Line Package

DS009341-2

Note 8: LM741H is available per JM38510/10101

DS009341-5

Order Number LM741H, LM741H/883 (Note 8),
LM741AH/883 or LM741CH
See NS Package Number H08C

Note 9: also available per JM38510/10101
Note 10: also available per JM38510/10102

Order Number LM741J-14/883 (Note 9),
LM741AJ-14/883 (Note 10)
See NS Package Number J14A

Dual-In-Line or S.O. Package

Ceramic Flatpak

DS009341-6
DS009341-3

Order Number LM741W/883
See NS Package Number W10A

Order Number LM741J, LM741J/883,
LM741CM, LM741CN or LM741EN
See NS Package Number J08A, M08A or N08E

www.national.com

4

Physical Dimensions

inches (millimeters) unless otherwise noted

Metal Can Package (H)
Order Number LM741H, LM741H/883, LM741AH/883, LM741CH or LM741EH
NS Package Number H08C

Ceramic Dual-In-Line Package (J)
Order Number LM741CJ or LM741J/883
NS Package Number J08A

5

www.national.com

Physical Dimensions

inches (millimeters) unless otherwise noted (Continued)

Ceramic Dual-In-Line Package (J)
Order Number LM741J-14/883 or LM741AJ-14/883
NS Package Number J14A

Small Outline Package (M)
Order Number LM741CM
NS Package Number M08A

www.national.com

6

Physical Dimensions

inches (millimeters) unless otherwise noted (Continued)

Dual-In-Line Package (N)
Order Number LM741CN or LM741EN
NS Package Number N08E

7

www.national.com

LM741 Operational Amplifier

Physical Dimensions

inches (millimeters) unless otherwise noted (Continued)

10-Lead Ceramic Flatpak (W)
Order Number LM741W/883
NS Package Number W10A

LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.
National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com
www.national.com

National Semiconductor
Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.

National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: sea.support@nsc.com

National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

LM1596/LM1496 Balanced Modulator-Demodulator
General Description

Features

The LM1596/LM1496 are doubled balanced modulator-demodulators which produce an output voltage proportional to
the product of an input (signal) voltage and a switching (carrier) signal. Typical applications include suppressed carrier
modulation, amplitude modulation, synchronous detection,
FM or PM detection, broadband frequency doubling and
chopping.
The LM1596 is specified for operation over the b55§ C to
a 125§ C military temperature range. The LM1496 is specified for operation over the 0§ C to a 70§ C temperature range.

Y

Y
Y
Y
Y

Excellent carrier suppression
65 dB typical at 0.5 MHz
50 dB typical at 10 MHz
Adjustable gain and signal handling
Fully balanced inputs and outputs
Low offset and drift
Wide frequency response up to 100 MHz

Schematic and Connection Diagrams
Metal Can Package

TL/H/7887 – 2

Top View
Note: Pin 10 is connected electrically to the
case through the device substrate.

Order Number LM1496H or LM1596H
See NS Package Number H08C

TL/H/7887 – 1

Dual-In-Line and Small Outline Packages

Numbers in parentheses show DIP connections.

TL/H/7887 – 3

Order Number LM1496M or LM1496N
See NS Package Number M14A or N14A

C1995 National Semiconductor Corporation

TL/H/7887

RRD-B30M115/Printed in U. S. A.

LM1596/LM1496 Balanced Modulator-Demodulator

February 1995

Absolute Maximum Ratings
Soldering Information

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Internal Power Dissipation (Note 1)
Applied Voltage (Note 2)
Differential Input Signal (V7 b V8)

# Dual-In-Line Package
Soldering (10 seconds)

500 mW
30V

260§ C

# Small Outline Package
Vapor Phase (60 seconds)
215§ C
Infrared (15 seconds)
220§ C
See AN-450 ‘‘Surface Mounting Methods and their effects
on Product Reliability’’ for other methods of soldering surface mount devices.

g 5.0V

g (5 a I5R0)V
Differential Input Signal (V4 b V1)
5.0V
Input Signal (V2 b V1, V3 b V4)
Bias Current (I5)
12 mA
Operating Temperature Range LM1596 b55§ C to a 125§ C
LM1496
0§ C to a 70§ C

b 65§ C to a 150§ C

Storage Temperature Range

Electrical Characteristics (TA e 25§ C, unless otherwise specified, see test circuit)
Parameter

LM1596

Conditions

LM1496

Units

Min Typ Max Min Typ Max
Carrier Feedthrough

Carrier Suppression

Transadmittance Bandwidth

VC e 60 mVrms sine wave
fC e 1.0 kHz, offset adjusted
VC e 60 mVrms sine wave
fC e 10 kHz, offset adjusted
VC e 300 mVpp square wave
fC e 1.0 kHz, offset adjusted
VC e 300 mVpp square wave
fC e 1.0 kHz, not offset adjusted
fS e 10 kHz, 300 mVrms
fC e 500 kHz, 60 mVrms sine wave offset adjusted
fS e 10 kHz, 300 mVrms
fC e 10 MHz, 60 mVrms sine wave offset adjusted

50

RL e 50X
Carrier Input Port, VC e 60 mVrms sine wave
fS e 1.0 kHz, 300 mVrms sine wave
Signal Input Port, VS e 300 mVrms sine wave
V7 b V8 e 0.5Vdc

40

40

mVrms

140

140

mVrms

0.04

0.2

0.04

0.2

mVrms

20

100

20

150

mVrms

65

50

65

dB

50

50

dB

300

300

MHz

80

80

MHz

3.5

V/V

Voltage Gain, Signal Channel

VS e 100 mVrms, f e 1.0 kHz
V7 b V8 e 0.5 Vdc

Input Resistance, Signal Port

f e 5.0 MHz
V7 b V8 e 0.5 Vdc

200

200

kX

Input Capacitance, Signal Port

f e 5.0 MHz
V7 b V8 e 0.5 Vdc

2.0

2.0

pF

40

40

kX

5.0

5.0

pF

2.5

Single Ended Output Resistance f e 10 MHz

3.5

2.5

Single Ended Output
Capacitance

f e 10 MHz

Input Bias Current

(I1 a I4)/2

12

25

12

30

Input Bias Current

(I7 a I8)/2

12

25

12

30

mA

Input Offset Current

(I1 b I4)

0.7

5.0

0.7

5.0

mA

Input Offset Current

(I7 b I8)

0.7

5.0

5.0

5.0

Average Temperature
Coefficient of Input
Offset Current

(b55§ C k TA k a 125§ C)
(0§ C k TA k a 70§ C)

2.0

Output Offset Current

(I6 b I9)

14

Average Temperature
Coefficient of Output
Offset Current

(b55§ C k TA k a 125§ C)
(0§ C k TA k a 70§ C)

90

14
90

2

mA
nA/§ C
nA/§ C

2.0
50

mA

60

mA
nA/§ C
nA/§ C

Electrical Characteristics (TA e 25§ C, unless otherwise specified, see test circuit) (Continued)
Parameter

LM1596

Conditions
Min

Signal Port Common Mode
Input Voltage Range

fS e 1.0 kHz

Signal Port Common Mode
Rejection Ratio

V7 b V8 e 0.5 Vdc

Typ

LM1496
Max

Min

Typ

Units
Max

5.0

5.0

Vp-p

b 85

b 85

dB

Common Mode Quiescent
Output Voltage

8.0

8.0

Vdc

Differential Output Swing
Capability

8.0

8.0

Vp-p

Positive Supply Current

(I6 a Ig)

2.0

3.0

2.0

3.0

mA

Negative Supply Current

(I10)

3.0

4.0

3.0

4.0

mA

Power Dissipation

33

33

mW

Note 1: LM1596 rating applies to case temperatures to a 125§ C; derate linearly at 6.5 mW/§ C for ambient temperature above 75§ C. LM1496 rating applies to case
temperatures to a 70§ C.
Note 2: Voltage applied between pins 6-7, 8-1, 9-7, 9-8, 7-4, 7-1, 8-4, 6-8, 2-5, 3-5.
Note 3: Refer to rets1596x drawing for specifications of military LM1596H versions.

Typical Performance Characteristics
Carrier Suppression vs
Carrier Input Level

Carrier Suppression vs
Frequency

Carrier Feedthrough vs
Frequency

Sideband Output vs
Carrier Levels

Sideband and Signal Port
Transadmittances vs
Frequency

Signal-Port Frequency
Response

TL/H/7887 – 5

3

Typical Application and Test Circuit
Suppressed Carrier Modulator

Numbers in parentheses show DIP connections.

TL/H/7887 – 4

Note: S1 is closed for ‘‘adjusted’’ measurements.

SSB Product Detector

Numbers in parentheses show DIP connections.

TL/H/7887 – 6

This figure shows the LM1596 used as a single sideband (SSB) suppressed carrier demodulator (product detector). The carrier signal is applied to the carrier input
port with sufficient amplitude for switching operation. A carrier input level of 300 mVrms is optimum. The composite SSB signal is applied to the signal input port
with an amplitude of 5.0 to 500 mVrms. All output signal components except the desired demodulated audio are filtered out, so that an offset adjustment is not
required. This circuit may also be used as an AM detector by applying composite and carrier signals in the same manner as described for product detector
operation.

4

Typical Applications (Continued)
Broadband Frequency Doubler

Numbers in parentheses show DIP connections.

TL/H/7887 – 7

The frequency doubler circuit shown will double low-level signals with low distortion. The value of C should be chosen for low reactance at the operating frequency.
Signal level at the carrier input must be less than 25 mV peak to maintain operation in the linear region of the switching differential amplifier. Levels to 50 mV peak
may be used with some distortion of the output waveform. If a larger input signal is available a resistive divider may be used at the carrier input, with full signal
applied to the signal input.

5

6

Physical Dimensions inches (millimeters)

Metal Can Package (H)
Order Number LM1496H or LM1596H
NS Package Number H08C

Molded Small Outline Package (M)
Order Number LM1496M
NS Package Number M14A

7

LM1596/LM1496 Balanced Modulator-Demodulator

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N)
Order Number LM1496N
NS Package Number N14A

LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.
National Semiconductor
Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018

2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National Semiconductor
Europe
Fax: (a49) 0-180-530 85 86
Email: cnjwge @ tevm2.nsc.com
Deutsch Tel: (a49) 0-180-530 85 85
English Tel: (a49) 0-180-532 78 32
Fran3ais Tel: (a49) 0-180-532 93 58
Italiano Tel: (a49) 0-180-534 16 80

National Semiconductor
Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

National Semiconductor
Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Transistor

2SC829
Silicon NPN epitaxial planer type
For high-frequency amplification
Unit: mm

■ Features
Optimum for RF amplification, oscillation, mixing, and IF stage
of FM/AM radios.

(Ta=25˚C)

Parameter

Symbol

Ratings

Unit

Collector to base voltage

VCBO

30

V

Collector to emitter voltage

VCEO

20

V

Emitter to base voltage

VEBO

5

V

Collector current

IC

30

mA

Collector power dissipation

PC

400

mW

Junction temperature

Tj

150

˚C

Storage temperature

Tstg

–55 ~ +150

˚C

■ Electrical Characteristics

+0.2

+0.2

0.45 –0.1

0.45 –0.1
1.27

1.27

2.3±0.2

■ Absolute Maximum Ratings

13.5±0.5



4.0±0.2

5.1±0.2

5.0±0.2

1 2 3

2.54±0.15

1:Emitter
2:Collector
3:Base
JEDEC:TO–92
EIAJ:SC–43A

(Ta=25˚C)
Symbol

Parameter

Conditions

min

typ

max

Unit

Collector to base voltage

VCBO

IC = 10µA, IE = 0

30

V

Collector to emitter voltage

VCEO

IC = 2mA, IB = 0

20

V

Emitter to base voltage

VEBO

IE = 10µA, IC = 0

5

Forward current transfer ratio

hFE*

VCE = 10V, IC = 1mA

70
150

Transition frequency

fT

VCB = 10V, IC = 1mA, f = 200MHz

Common emitter reverse transfer capacitance

Cre

VCE = 10V, IC = 1mA, f = 10.7MHz

Reverse transfer impedance

Zrb

VCB = 10V, IE = –1mA, f = 2MHz

*h

FE

V
250
MHz

230
1.3

1.6

pF

60



Rank classification

Rank

B

C

hFE

70 ~ 160

110 ~ 250

1

Transistor

2SC829
PC — Ta

IC — VCE
60
IB=100µA

350
300
250
200
150
100

80µA
8
60µA
6
40µA

4

20µA

2

40
25˚C
30
Ta=75˚C

–25˚C

20

10

50
0
60

80 100 120 140 160

0
0

6

Collector to emitter saturation voltage VCE(sat) (V)

VCE=10V
Ta=25˚C
100

80

60

40

20

0
1.2

1.8

30
10
3
1
0.3
Ta=75˚C

25˚C
0.1

–25˚C
0.03
0.01
0.1

0.3

1

3

fT — IE

10

30

Reverse transfer impedance Zrb (Ω)

400
VCB=10V
6V
200

100

–1

–3

–10

–30

Emitter current IE (mA)

–100

Ta=75˚C
200
25˚C
150
–25˚C
100

50

0
0.1

0.3

60
50
40
VCB=6V
10V

20
10

– 0.3

–1

1

3

10

30

100

Cre — VCE

70

0
– 0.1

2.0

Collector current IC (mA)

f=2MHz
Ta=25˚C

30

1.6

250

Zrb — IE

500

1.2

VCE=10V

100

80
Ta=25˚C

0.8

300

IB/IB=10

Collector current IC (mA)

600

0
– 0.1 – 0.3

0.4

Base to emitter voltage VBE (V)

hFE — IC

100

Base to emitter voltage VBE (V)

300

0

VCE(sat) — IC

120

0.6

18

Collector to emitter voltage VCE (V)

IB — VBE

0

12

Forward current transfer ratio hFE

40

–3

Emitter current IE (mA)

–10

Common emitter reverse transfer capacitance Cre (pF)

20

Ambient temperature Ta (˚C)

Base current IB (µA)

50

Collector current IC (mA)

10

400

0

Transition frequency fT (MHz)

VCE=10V

Ta=25˚C
450

0

2

IC — VBE

12

Collector current IC (mA)

Collector power dissipation PC (mW)

500

2.4

IC=1mA
f=10.7MHz
Ta=25˚C

2.0

1.6

1.2

0.8

0.4

0
0.1

0.3

1

3

10

30

100

Collector to emitter voltage VCE (V)

2SC829

Transistor
Cob — VCB

bie — gie

1.0
0.8
0.6
0.4

Reverse transfer susceptance bre (mS)

1.2

0
yie=gie+jbie
VCE=10V

Input susceptance bie (mS)

Collector output capacitance Cob (pF)

IE=–1mA
f=1MHz
Ta=25˚C

1.4

100

10

6

25

4

10.7
IE=– 0.4mA
–1mA
–2mA
–4mA
–7mA

2

f=0.45MHz
0
1

3

10

30

0

100

Collector to base voltage VCB (V)

4

100

58

–1mA

–4mA

25
58

100

–40
100

58

f=10.7MHz
25

–60

58
IE=–7mA

–80

–100

1.0

0.8
58

25

40

60

–4mA

–2.0

–2.5

–3.0
– 0.5

100
IE=–7mA

– 0.4

– 0.3

– 0.2

– 0.1

0

Reverse transfer conductance gre (mS)

80

Forward transfer conductance

100

gfe (mS)

–7mA
–4mA
–2mA
–1mA

IE=– 0.1mA

0.4
10.7
0.2
yoe=goe+jboe
VCE=10V

f=0.45MHz

0
20

–2mA

– 0.4mA

0.6

yfe=gfe+jbfe
VCE=10V

–120
0

–1.5

100

10.7
–2mA

100

20

– 0.4mA
–1mA

1.2

0.45

Output susceptance boe (mS)

– 0.1mA

–20

25

16

58

–1.0

boe — goe

0.45
10.7

–0.4mA

12

Input conductance gie (mS)

bfe — gfe
0

8

f=0.45MHz
10.7
25

yre=gre+jbre
VCE=10V

– 0.5

58

8

0.2
0

Forward transfer susceptance bfe (mS)

bre — gre

12

1.6

0

0.2

0.4

0.6

0.8

1.0

Output conductance goe (mS)

3

2SC1162
Silicon NPN Epitaxial

Application
Low frequency power amplifier complementary pair with 2SA715

Outline
TO-126 MOD

1

1. Emitter
2. Collector
3. Base

2

3

Absolute Maximum Ratings (Ta = 25°C)
Item

Symbol

Ratings

Unit

Collector to base voltage

VCBO

35

V

Collector to emitter voltage

VCEO

35

V

Emitter to base voltage

VEBO

5

V

Collector current

IC

2.5

A

Collector peak current

I C(peak)

3

A

Collector power dissipation

PC

0.75

W

10

W

PC *

1

Junction temperature

Tj

150

°C

Storage temperature

Tstg

–55 to +150

°C

Note:

1. Value at TC = 25°C.

2SC1162
Electrical Characteristics (Ta = 25°C)
Item

Symbol

Min

Typ

Max

Unit

Test conditions

Collector to base breakdown
voltage

V(BR)CBO

35





V

I C = 1 mA, IE = 0

Collector to emitter breakdown V(BR)CEO
voltage

35





V

I C = 10 mA, RBE = ∞

Emitter to base breakdown
voltage

V(BR)EBO

5





V

I E = 1 mA, IC = 0

Collector cutoff current

I CBO





20

µA

VCB = 35 V, IE = 0

60



320

VCE = 2 V, IC = 0.5 A

hFE

20





VCE = 2 V, IC = 1.5 A
(pulse test)

Base to emitter voltage

VBE



0.93

1.5

V

VCE = 2 V, IC = 1.5 A
(pulse test)

Collector to emitter saturation
voltage

VCE(sat)



0.5

1.0

V

I C = 2 A, IB = 0.2 A (pulse test)

Gain bandwidth product

fT



180



MHz

VCE = 2 V, IC = 0.2 A

DC current transfer ratio

Note:

hFE*

1

1. The 2SC1162 is grouped by h FE as follows.

B

C

D

60 to 120

100 to 200

160 to 320

Maximum Collector Dissipation Curve

Area of Safe Operation
5

0.75

TC = 25°C

0.6

1.0

W

0.2

10

0.4

2
=

Collector current IC (A)

IC(max)(DC Operation)
PC

Collector power dissipation PC (W)

0.8

0.5

0.2
0.1
0

2

50
100
150
Ambient temperature Ta (°C)

200

1

5
20
50
2
10
Collector to emitter voltage VCE (V)

2SC1162
Typical Output Characteristics
Maximum Collector Dissipation Curve
16

TC = 25°C
Collector current IC (A)

Collector power dissipation PC (W)

2.0

12

8

4

17

1.6

15
1.2

12
10

0.8

8
6
4

0.4

50
100
150
200
Case temperature TC (°C)

0

1
3
4
2
5
Collector to emitter voltage VCE (V)

DC Current Transfer Ratio vs.
Collector Current

Typical Transfer Characteristics
2.0

280

Collector Current IC (A)

1.0
0.5

25
TC = 75°C

–25

0.1
0.05
0.02
0.01
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Base to emitter voltage VBE (V)

DC current transfer ratio hFE

VCE = 2 V

0

20

2 mA
IB = 0
0

0.2

24

240

VCE = 2 V

200
160
TC = 75°C
120
80

25
–25

40
0
0.01

0.3
0.03
0.1
1.0
Collector current IC (A)

3.0

3

Unit: mm
2.7 ± 0.4

120°

3.7 ± 0.7
11.0 ± 0.5



2.3 ± 0.3

φ 3.1 +0.15
–0.1

12

12


8.0 ± 0.5

15.6 ± 0.5

1.1

0.8
2.29 ± 0.5

2.29 ± 0.5

0.55

1.2

Hitachi Code
JEDEC
EIAJ
Weight (reference value)

TO-126 Mod


0.67 g

Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.

Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL

NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: (408) 433-1990
Fax: (408) 433-0223

Hitachi Europe GmbH
Electronic components Group
Dornacher Stra§e 3
D-85622 Feldkirchen, Munich
Germany
Tel: (89) 9 9180-0
Fax: (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: (1628) 585000
Fax: (1628) 778322

Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: (2) 2718-3666
Fax: (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: (2) 735 9218
Fax: (2) 730 0281
Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

Transistor

2SC1383, 2SC1384
Silicon NPN epitaxial planer type
For low-frequency power amplification and driver amplification
Unit: mm

Complementary to 2SA683 and 2SA684

4.9±0.2

5.9±0.2

Low collector to emitter saturation voltage VCE(sat).
Complementary pair with 2SA683 and 2SA684.

Collector to

2SC1383

base voltage

2SC1384

Collector to

Ratings

2SC1383

30

VCBO

25

V

50

+0.2

VEBO

5

V

Peak collector current

ICP

1.5

A

Collector current

IC

1

A

Collector power dissipation

PC

1

W

Junction temperature

Tj

150

˚C

Storage temperature

Tstg

–55 ~ +150

˚C

voltage

2SC1384

Collector to emitter

2SC1383

voltage

2SC1384

Emitter to base voltage

Conditions

VCBO

IC = 10µA, IE = 0

VCEO

IC = 2mA, IB = 0

VEBO

IE = 10µA, IC = 0

hFE1

Forward current transfer ratio

2

3

1:Emitter
2:Collector
3:Base
EIAJ:SC–51
TO–92L Package

min

typ

VCB = 20V, IE = 0

ICBO

2SC1383

1.27

(Ta=25˚C)
Symbol

Collector to base

0.45–0.1

1.27

1

Parameter
Collector cutoff current

+0.2

0.45–0.1

Emitter to base voltage

■ Electrical Characteristics

2.54±0.15

Unit
V

60

VCEO

emitter voltage 2SC1384

+0.3

(Ta=25˚C)

Symbol

Parameter

0.7–0.2

0.7±0.1

■ Absolute Maximum Ratings

13.5±0.5



3.2



8.6±0.2

■ Features

*1

VCE = 10V, IC =

500mA*2

max

Unit

0.1

µA

30

V

60
25

V

50

V

5
85

160

50

100

340

hFE2

VCE = 5V, IB = 1A*2

Collector to emitter saturation voltage

VCE(sat)

IC = 500mA, IB = 50mA*2

0.2

0.4

V

Base to emitter saturation voltage

VBE(sat)

IC = 500mA, IB = 50mA*2

0.85

1.2

V

Transition frequency

fT

VCB = 10V, IE = –50mA, f = 200MHz

200

Collector output capacitance

Cob

VCB = 10V, IE = 0, f = 1MHz

11

MHz
20
*2

*1h

FE1

pF

Pulse measurement

Rank classification

Rank

Q

R

S

hFE1

85 ~ 170

120 ~ 240

170 ~ 340

1

2SC1383, 2SC1384

Transistor
PC — Ta

IC — VCE

1.2

IC — I B

1.5

1.2

1.25

0.8

0.6

0.4

0.2

8mA

1.0

7mA
6mA

0.75

5mA
4mA
3mA

0.5

2mA

60

80 100 120 140 160

Ambient temperature Ta (˚C)

2

1
Ta=75˚C
25˚C
–25˚C

0.03
0.01
0.003
0.001
0.01 0.03

0.1

0.3

1

3

3
25˚C

75˚C
0.3
0.1
0.03

0.3

140
120
100
80
60
40
20

1

3

Emitter current IE (mA)

–100

8

10

12

500

400

300
Ta=75˚C
200
25˚C
–25˚C

100

0
0.01 0.03

10

0.1

0.3

1

3

10

Collector current IC (A)

VCER — RBE
120
IE=0
f=1MHz
Ta=25˚C

45
40
35
30
25
20
15
10
5
0

–30

6

VCE=10V

Cob — VCB
Collector output capacitance Cob (pF)

Transition frequency fT (MHz)

Ta=–25˚C

1

0.1

4

600

50

–10

2

Base current IB (mA)

Collector current IC (A)

VCB=10V
Ta=25˚C

–3

0

hFE — IC

10

0.01
0.01 0.03

10

160

0
–1

10

30

fT — IE
180

8

IC/IB=10

Collector current IC (A)

200

6

100

Base to emitter saturation voltage VBE(sat) (V)

Collector to emitter saturation voltage VCE(sat) (V)

3

0.1

4

VBE(sat) — IC
IC/IB=10

0.3

0.4

Collector to emitter voltage VCE (V)

VCE(sat) — IC
10

0.6

0
0

Forward current transfer ratio hFE

40

1

3

10

30

100

Collector to base voltage VCB (V)

Collector to emitter voltage VCER (V)

20

0.8

0.2

1mA

0
0

2

1.0

IB=10mA