Pengaruh Komposisi Lembaran Anoda LTO (Li4Ti5O12) Terhadap Performa Sel Baterai Ion Lithium

DAFTAR PUSTAKA

Armand, M. and J.M. Tarascon. 2008. Building better batteries. Nature. 451: 652657.
Bach, S., Pereira - Ramos, J. P., Baffier, N. 1998. Electrochemical behavior of a
lithium titanium spinel compound synthesized via a sol-gel process. J.
Materials Chemistry. 8(1): 251-253.
Bach, S., Pereira-Ramos, J. P. and Baffier, N. 1999. Electrochemical Properties
Of Sol-Gel Li4/3Ti5/3O4. Journal Of Power Sources. 81-82: 273-276.
Bard, J.A. and Faulkner R.L. 2001. Electrochemical Methods: Fundamentals and
Applications. Second Edition. University of Texas at Austin. New York.
Belharouak, I., Koenig, G.M. and Amine, K. 2001. Electrochemistry and safety of
Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric
vehicle Li-ion battery applications. Journal Of Power Sources. 196:
10344–10350.
Borodin, O. and Smith, G.D. 2009. Quantum Chemistry and Molecular Dynamics
Simulation Study of Dimethyl Carbonate Electrolytes Doped with LiPF6.
The Journal of Physical Chemistry B. 113: 1763.
Buchmann, Isidor. 2007. Lithium-ion Safety Concerns. Retrieved July 30, 2010,
From http://www.batteryuniversity.com/partone-5B.htm.
Chen, Y., Miao, Q., Zheng, B., Wu, S. and Pecht, M. 2013. Quantitative analysis
of lithium-ion battery capacity prediction via adaptive bathtub-shaped

function. Energies. 6: 3082–3096.
Copper foil. MSDS. No. UL510. [online]. RoHS. 3M.
Day, Jr. R.A and Underwood, A.L. 1990. Quantitative Analysis. Terjemahan Drs.
R. Soendoro, dkk. Edisi ke-4. Jakarta: Penerbit Erlangga, Jakarta.
Dell, R. 2000. Batteries: fifty years of material Development. Solid State Ionics.
134: 139-158.
Deutsche Bank. 2009. Autos & auto parts Electric Cars: Plugged in 2.
From http://www.db.com
Farley, R. and David U.S. 2010. Will Have 40 Percent of Global Market for
Advanced Batteries by 2015. Retrieved July 19, 2010,

Universitas Sumatera Utara

Fromhttp://www.politifact.com/truthometer/statements/2010/jul/15/da
vidaxelrod/davidaxelrod-says-us-willhave 40-percent-global-/.
Han, X., et al. 2013. A comparative study of commercial lithium ion battery cycle
life in electrical vehicle: Aging mechanism identification. Journal Of
Power Source. 251: 38–54.
Harrison, M. R., et al. 1985. Philosophical Magazine B. 52(3): 679 699.
Hu, X., Sun, F., and Zou, Y. 2010. Estimation of state of charge of a lithium-ion

battery pack for electric vehicles using an adaptive Luenberger observer.
Energies. 3: 1586–1603.
Http://id.wikipedia.org/wiki/Spektrofotometer_FTIR.
Diakses tanggal 15 Maret 2015.
Https://materialcerdas.wordpress.com/teori-dasar/scanning-electronmicroscopy/
Diakses tanggal 20 Maret 2015.
Http://persembahanku.wordpress.com
Diakses tanggal 27 Februari 2015.
Kavan, L., Prochazka, J., Spitler, T.M., Kalbac, M., Zukalova, M.T., Drezen, T.,
and Grätzel, M. 2003. Li insertion into Li4Ti5O12 (spinel), Charge
capability vs. Particle Size in thin-film electrodes. Journal of The
Electrochemical Society. 150(7): A1000-A1007.
Kawamura, T., Okada, S., and Yamaki, J. 2006. Decomposition reaction of LiPF6based electrolytes for litium ion cells. Journal of Power Sources. 156:
547-554.
Khopkar, S.M. 2003. Konsep Dasar Kimia Analitik. Terjemahan A.
Saptorahardjo, Edisi pertama, UI Press: Jakarta.
K. M. Colbow, J. R. Dahn, and R. R. Haering. 1989. Structure And Electrochemistry
Of The Spinel Oxides LiTi2O4 and Li4/3Ti5/3O4. Journal of Power Sources. 26
(3-4): 397 - 402.
Lithium Titanium Oxide. MSDS. No. BE-15. [online]. NEI Corporation. USA.

Lu, L., Han, X., Li, J., Hua, J. and Ouyang, M. 2013. A review on the key issues
for lithium-ion battery management in electric vehicles. J. Power Sources.
226: 272–288.
Meti. 2009b. Patent Trend Report, Lithium Ion Battery. Retrieved June 7, 2010,
Fromhttp://www.jpo.go.jp/shiryou/pdf/gidouhoukoku/21lithium_ion_ba
ttery.pdf.

Universitas Sumatera Utara

Nedo.

2009. Outline of Li-EAD Project. Retrieved June 1, 2010,
Fromhttp://app3.infoc.nedo.go.jp/gyouji/events/FA/nedoevent.2009051
2.5433825802/O-00%20H206210679c5831544a4f1a-NEDO5c0f6797
(67007d427248).pdf.

N,N-Dimethylacetamide. MSDS. No. 07932. [online]. Basf Corporation. Florham
Park, NJ.
Nordh, Tim. 2013. Li4Ti5O12 as an anode material for Li ion batteries in situ XRD
and XPS studies. Uppsala Universitet. Upteck k 13001.

Ohzuku, T., Ueda, A. and Yamamoto, N. 1995. Zero-strain insertion material of
Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc.
Vol.142(5). pp.1431-1435.
Palacín, M.R. 2009. Recent advances in rechargeable battery materials: a
chemist’s perspective – chemical. Chemical Society Reviews. 38 (9): 2565.
Peramunage, D. and Abraham, K.M.1998. Preparation of Micro-sized Li4Ti5O12
and its electrochemistry in polyacrylonitrile electrolyte-based litium
cells.Journal of the Electrochemical. Society145(8), 2609-2622.
Priyono, S. 2014. Sintesis serbuk Li4Ti5O12 yang didoping atom Al dan Na untuk
anoda baterai ion lithium. Tesis. Universitas Indonesia: Jakarta.
PRTM. 2010. Paving the Way for Electric Vehicles.
Fromhttp://www.prtm.com/uploadedFiles/Thought_Leadership/Perspect
ives/PRTM_Paving_the_Way_for_Electric_Vehicles.pdf.
Roland Berger Strategy Consultants. 2010. Powertrain 2020 (Presentation).
http://www.rolandberger.com/media/pdf/Roland_Berger_LiIon_batterie
s_20100222.pdf.
R.M. Silverstein., dkk. 1986. Penyidikan Spektrometrik Senyawa Organik.
Diterjemahkan oleh Drs. A.J. Hartono, dkk. Jakarta: Penerbit Erlangga.
Ronci, F., P. Reale, B. Scrosati, et al. 2002. High-Resolution In-Situ Structured
Measurement of the Li4/3Ti5/3O4 “Zero Strain” Insertion Material.

Departement of Chemistry. Sapienza University of Rome: Italy. The
Journal of Physical Chemistry. 106: 3082.
Scrosati, B. and Garche, J. 2010. Lithium batteries: Status, prospects and future. J.
Power Sources. 195: 2419–2430.
Shu, Jie. 2008. Syudy of interface between Li 4Ti5O12 electrodes and standart
electrolyte Solution in 0.0-5.0 V. Electrochemical and Solid-State Letters.
11(12): A238-A240.

Universitas Sumatera Utara

Simon, D.R. 2007. Characterization of Li4Ti5O12 and LiMn2O4 spinel materials
treated with aqueous acidic solutions. University of Cincinnati.
Netherlands.
Subhan, A. 2011. Fabrikasi dan karakterisasi Li4Ti5O12 untuk bahan anoda baterai
lithium keramik. Tesis. Universitas Indonesia: Jakarta.
Super-P. MSDS. No. G6H 2J1. [online]. Prolab Technolub Inc. Canada.
Tarascon, J. M. and Armand, M. 2001. Issues Ana challenges facing rechargeable
litium batteries. Nature414. 6861: 359-367.
T. Ohzuku, A. Ueda, N. Yamamoto, and Y. Iwakoshi. 1995. Factor affecting the
capacity retention of lithium-ion cells. Journal of Power Sources. Vol. 54.

No. 1. pp. 99–102.
Wang, G.X., Bradhurst, D.H., Dou, S.X. and Liu, H.K. 1999. Spinel Li[Li1/3Ti5/3]
as an anode material for ion lithium batteries. Journal of Power Sources.
83(1-2): 156-161.
Whittingham, M.S. 1976. Electrical Energy Storage and Intercalation Chemistry.
Science. Vol. 192. No. 4244. pp. 1126 –1127.
Winter, M. and Brodd R.J. 2004. What are batteries: status, prospect and future.
Chemical Reviews. 104: 4245.
Wise, Ralph. 2010. Chief
Technology Officer at Novolyte. Personal
communication with CGGC research staff.
Xu, K. 2004. Nonaqueous liquid electrolytes for lithium-based rechargeable
batteries. Chemical Reviews. 104: 4303.
Zaghib, K., Simoneau, M., Armand, M. and Gauthier, M. 1999. Electrochemical
study of Li4Ti5O12 as negatif elektrode for Li-ion polymer rechargeable
batteries. Journal of Power Sources. 82: 300-305.
Zaghib, K. and Dontigny, M. 2011. Safe and fast-charging Li-ion battery with
long shelf life for power applications. Journal of Power Sources. 196:
3949–3954.


Universitas Sumatera Utara