L10– Rainwater Harvesting System

  M odu le 3 – ( L8 - L1 1 ) : I n t e gr a t e d W a t e r sh e d M a n a ge m e n t

I n t r odu ct ion t o I n t e gr a t e d Appr oa ch , I n t e gr a t e d W a t e r Re sou r ce s

M a n a ge m e n t , Con j u n ct ive Use of W a t e r Re sou r ce s, Ra in w a t e r H a r ve st in g; Roof Ca t ch m e n t Syst e m .

  Ra in w a t e r H a r ve st in g Syst e m g y 1 0 1 0 L10 L10 L10– Rainw at er Harvest ing Syst em L10 Rainw at er Harvest ing Syst em 

Topics Cove r e d Topics Cove r e d

    I nt roduct ion t o Rainw at er harvest ing syst em , I nt roduct ion t o Rainw at er harvest ing syst em ,

Hydrological aspect s, Hydro-- geological Hydrological aspect s, Hydro Hydrological aspect s Hydro geological Hydrological aspect s Hydro geological geological

aspect s, Groundw at er recharge, I nt egrat ed aspect s, Groundw at er recharge, I nt egrat ed syst em , Case st udy syst em , Case st udy

      Rainw at er harvest ing syst em , Hydro Rainw at er harvest ing syst em , Hydro Rainw at er harvest ing syst em Hydro-- Rainw at er harvest ing syst em Hydro Keywords: Keywords: Keywords: Keywords: geology, Groundw at er recharge geology, Groundw at er recharge

  

I nt roduct ion t o Rainwat er Harvest ing I nt roduct ion t o Rainwat er Harvest ing

  Ra in W a t e r H a r ve st in g - pr oce ss of colle ct in g, con ve yin g & st or in g w a t e r fr om r a in fa ll in a n a r e a – for be n e ficia l u se .

    St or a ge St or a ge – in t a n k s r e se r voir s in t a n k s, r e se r voir s, u n de r gr ou n d st or a ge - gr ou n dw a t e r

   N N e ce ssit y: Te m por a l & spa t ia l it T l & t i l http://wrmin.nic.in/ va r ia t ion of r a in fa ll & w a t e r a va ila bilit y

  

I nt roduct ion t o Rainwat er Harvest ing.. I nt roduct ion t o Rainwat er Harvest ing..

   Rainwat er harvest ing- t echnology used for collect ing &

  st oring rainwat er from rooft ops, land surface or cat chm ent s/ cat chm ent s/ w at ersheds w at ersheds using using various various t echniques t echniques such as t anks or check dam s or recharge t o aquifer.

  

  Most prom ising alt ernat ives for supplying freshw at er in t he face of increasing wat er scarcit y & escalat ing dem and.

    Basic Com ponent s of RWH: Basic Com ponent s of RWH:

  • – Precipit at ion
  • – Collect ion of w at er from surface cat chm ent
  • – Wat er st orage W t t
  • – Dist ribut ion of w at er

W h y Ra in w a t e r H a r ve st in g ( RW H ) ?. W h y Ra in w a t e r H a r ve st in g ( RW H ) ?

   Rainwat er Harvest ing - yield copious am ount s of wat er.

  For average rainfall of 1,000m m , approxim at ely four m illion lit ers of rainwat er can be collect ed in a year in m illion lit ers of rainwat er can be collect ed in a year in an acre of land ( 4,047 m 2) , post - evaporat ion.

  

  As RWH is neit her energy- int ensive nor labor- int ensive,

  • a cost - effect ive alt ernat ive t o ot her wat er- accruing m et hods, such as desalinat ion of seawat er & wat er t ransfer.

  

  Wit h t he wat er t able falling rapidly, & wit h concret e buildings, paved car parks, business com plexes, & landfill dum ps t aking t he place of wat er bodies, landfill dum ps t aking t he place of wat er bodies RWH is t he m ost reliable solut ion for augm ent ing groundwat er level t o at t ain self- sufficiency in public dist ribut ion of wat er. dist ribut ion of wat er

Ra in w a t e r H a r ve st in g -- Pu r pose s Ra in w a t e r H a r ve st in g Pu r pose s

  Rainwat er Harvest ing t echniques can serve t he following purposes:

   Tw o Maj or Purposes: T M j P A Agricult ural i lt l

  and hum an consum pt ion

  Photo, A.K. Singh, 2002

  Freshwat er augm ent at ion g

  l l e e e e n n n n

  t echnology

  a a h h c c

  I ncrease groundwat er recharge

  in in a a m m

  Reduce st orm w at er discharges, Red e st o m at e dis ha ges m m

  n n i i ir ir

  urban floods and overloading of

  o o rv rv

  sewage t reat m ent plant s

  e e s s s s e e Photo, A.K. Singh, 2002 Ph t A K Si h 2002 R R

  Reduce seawat er ingress in coast al areas

  Roof & Land based RWH

  Conserving wat er t hrough wat ershed m anagem ent

  

  Roof & Land based RWH

  

   For Urban & I ndust rial Environm ent –

  Conserving wat er t hrough wat ershed m anagem ent

  

  

  Photo A K Singh 2002

Rainwat er Harvest ing Rainwat er Harvest ing -- Met hodologies Met hodologies

  Capt uring seasonal floodwat ers from local st ream s

  

  Capt uring runoff from local cat chm ent s – Land harvest

  

  Capt uring runoff from rooft ops – Roof wat er harvest

  Photo, A.K. Singh, 2002 Wat er harvest ing - undert aken t hrough a variet y of ways 

  • – Public, Privat e, Office & I ndust rial buildings
  • – Pavem ent s, Lawns, Gardens & ot her open spaces
Rainwat er Harvest ing -- Advant ages Rainwat er Harvest ing Advant ages 

  Provides self- sufficiency t o wat er supply 

  Reduces t he cost for pum ping of groundwat er 

  

Provides high qualit y wat er, soft and low in m inerals

  I m proves t he qualit y of ground wat er t hrough dilut ion when recharged t o groundwat er when recharged t o groundwat er 

  Reduces soil erosion in urban areas 

  Rooft op rain wat er harvest ing is less expensive p g p

   Rainwat er harvest ing syst em s are sim ple which can be adopt ed by individuals

   Rooft op rain w at er harvest ing syst em s are easy t o R ft i t h t i t t const ruct , operat e and m aint ain. Rainwat er Harvest ing – Rainwat er Harvest ing – Advant ages… Advant ages… 

  I n hilly t errains, rain wat er harvest ing is preferred

  

  I n saline or coast al areas, rain wat er provides good qualit y wat er and when recharged t o groundwat er, it reduces salinit y and also helps in m aint aining balance bet ween t he fresh- saline wat er int erface

  

  I n I slands, due t o lim it ed ext ent of fresh wat er aquifers, rain wat er harvest ing is t he m ost preferred source of wat er for dom est ic use source of wat er for dom est ic use

  

  I n desert , where rain fall is low, rain wat er harvest ing has been providing relief t o people Rainwat er Harvest ing – Rainwat er Harvest ing – Technology Technology 

  Type of rainwat er harvest ing st ruct ures depends Topography – Topography

  • – Availabilit y of land
  • – Rainfall – Econom ic st at us Econom ic st at us

   Built - up areas

  • – Tem ple t anks
  • – Rooft op harvest ing Rooft op harvest ing
  • – Wells and radiat or wells
  • – Parking lot st orage
  • – Recreat ional Park ponds Recreat ional Park ponds

   Open areas

  • – Percolat ion ponds
  • – I nfilt rat ion galleries I nfilt rat ion galleries

  Ph t Photo, A.K. Singh, 2002 A K Si h 2002

  • – Com m unit y w ells
  • – Farm ponds
  • – Duct s Duct s
Rainwat er Harvest ing Rainwat er Harvest ing – – Pot ent ial 

  Wat er y ield from a cat chm ent depends on am ount of rainfall, w at ershed slope, t ypes of soil and veget at ion and t he evapot ranspirat ion rat io. p p

  Veget at ion Managem ent : 

  I m proved m anagem ent of veget at ion are m ainly applicable t o large areas g 

  Wat er yield from a grass cover is m ore t han t hat from a forest cover Land alt erat ion: 

  Alt erat ion of land surface of a cat chm ent ( pervious t o im pervious) 

  Laying of paved surfaces on sloping cat chm ent s along w it h y g p p g g drains at t heir sides 

  Collect ion of cat chm ent runoff in st orage t anks 

  Met hod is Preferable w here t he land surface is undulat ing . od ab a d u a u du a g

H ydr ologica l Aspe ct s of RW H

    Hydrology Hydrology - st udy of wat er. Alt hough t here is plent y of st udy of wat er Alt hough t here is plent y of

  wat er on eart h, it is not always in t he right place, at t he right t im e, and of t he right qualit y.

   Hydrology - t o underst and t he com plex wat er syst em s of t he Eart h and help t o solve wat er problem s.

    Rainfall Rainfall – m ain source of wat er m ain source of wat er

   

  Hydrological Cycle -- Change in phase in Hydrological Cycle Change in phase in Hydrosphere Hydrosphere

  

  Balance of wat er on Eart h rem ains fairly const ant over t im e.

  Watershed Concept p Rainfall Overland I nfiltration Condensation

  Land Hydrology a d yd o ogy Evaporation p R i f ll Rainfall

RW H – Ra in fa ll t o Ru n off

  

  Various process and pat hways det erm ine how m uch and how fast precipit at ion becom es st ream flow.

   

  Fact ors effect ing runoff response: Fact ors effect ing runoff response:

  • – Precipit at ion form , int ensit y, durat ion, dist ribut ion
  • – St orage ( soil m oist ure, sat urat ed areas)
  • – Flow pat hway ( e.g., shallow soil layer vs. deeper soil layer, or overland surfaces or subsurface)
  • – Spat ial dist ribut ion & geom orphic feat ures Spat ial dist ribut ion & geom orphic feat ures

   Met eorological fact ors: Type of precipit at ion ( rain,

  snow, et c.) : Rainfall int ensit y - am ount , durat ion; Dist ribut ion of rainfall over t he drainage basin, Direct ion of st orm m ovem ent , Precipit at ion t hat occu ed ea occurred earlier and result ing soil m oist ure. e a d esu g so o s u e How Much Wat er can be Harvest ed? 

  The t ot al am ount of wat er t hat is received in t he form of rainfall over an area is called t he rainw at er

  endow m ent endow m ent of t hat area. of t hat area.

  

  Out of t his, t he am ount t hat can be effect ively harvest ed is called t he w at er harvest ing pot ent ial .

   Wat er harvest ing pot ent ial = Rainfall ( m m ) x h l f ll ( ) Collect ion efficiency .

  

  The The collect ion efficiency collect ion efficiency account s for t he fact t hat all account s for t he fact t hat all rainwat er falling over an area cannot be effect ively harvest ed, because of evaporat ion, spillage et c.

  

  Fact ors like runoff coefficient is t o be considered. Fact ors like runoff coefficient is t o be considered How Much Wat er can be Harvest ed? 

  

Runoff coefficient - fact or account s t hat all t he rainfall falling

on a cat chm ent cannot be collect ed. Som e rainfall will be lost from t he cat chm ent by evaporat ion & ret ent ion on t he surface it self.

   Ru n off coe fficie n t s for va r iou s su r fa ce s

   Type of Ca t ch m e n t Coe fficie n t s

   Roof Cat chm ent s: Tiles 0.8 – 0.9; - Corrugat ed m et al sheet s 0.7 – 0.9

   Ground surface coverings- Concret e 0.6–0.8; Brick pavem ent 0.5–0.6

  

Unt reat ed ground cat chm ent s - Soil on slopes less t han 10 per cent

0.0 – 0.3; Rocky nat ural cat chm ent s 0.2 – 0.5

  Source: Pacey, Arnold and Cullis, Adrian 1989, Rainw at er Harvest ing: The collect ion of rainfall and runoff in rural areas, I nt erm ediat e Technology Publicat ions, London, pg. 55 How Much Wat er can be Harvest ed? ) 160 120 140 Demand curve Runoff curve Surplus  www.cseindia.org o ff (M.c u.m run d n d a n 100 80 Deficit M o nt hl y de ma 40 60

  20 RWH – RWH – Calculat ion? Calculat ion? 

  Consider a building w it h a flat t errace area of 100 sq. C id b ildi i h fl f 100 m . The average annual rainfall be approxim at ely 900 m m . I t m eans t hat if t he t errace floor is assum ed t o be im perm eable, and all t he rain t hat falls on it is ret ained, t hen, in one year, t here will be rainwat er on t he t errace floor t o a height of 900 m m . g

  Area of plot = 100 sq. m . Height of rainfall = 0.9 m ( 900 m m )

  Volum e of rainfall = Area of plot x Height of rainfall = 100 sq. m . x 0.9 m = 90 cu. m . ( 90,000 lit ers)

  Assum ing t hat only 70% of t he t ot al rainfall is effect ively Assum ing t hat only 70% of t he t ot al rainfall is effect ively harvest ed, Volum e of wat er harvest ed = 63,000 lit ers ( 90,000 lit res x 0.7) . lit 0 7) How Much Wat er Can be Collect ed ? How Much Wat er Can be Collect ed ? Colle ct ion Efficie n cy

  How efficient ly t he rainfall can be collect ed depends on several considerat ions. Collect ion efficiencies of 80% several considerat ions. Collect ion efficiencies of 80% are oft en used depending on t he specific design.

  • – Rainfall Reliabilit y.

  The m ain st ep is t o det erm ine how m uch wat er would The m ain st ep is t o det erm ine how m uch wat er would be generat ed from t he roof area. Average m onsoon rainfall is used for t his purpose.

  • – Form ula:
  • – Tot al quant it y of wat er t o be collect ed ( cu.m .) = Roof Top Area ( Sq.m .) t o be collect ed ( cu m ) = Roof Top Area ( Sq m ) x Average Monsoon Rainfall ( m ) x Collect ion efficiency
Rainfall Dist ribut ion in I ndia 

  Because of dist inct ive clim at e

  • – I nt ense m onsoons followed by prot ract ed drought s - st orage of rainwat er at st orage of rainwat er at appropriat e sit es becom es im perat ive.

  

  Eight y percent of annual Eight y percent of annual rainfall of 1170 m m is received during t hree m ont hs period.

  

  During rainy season all t he ll h rain falls in about 200 hours and half of it in 30 – 40 hours.

  

  Consequent ly runoff is very Consequent ly runoff is very high. I f it is capt ured and st ored, it can be used effect ively lat er on. effect ively lat er on.

  . . Rainfall in Mum bai

  • Average t ot al annual rainfall is 2335 m m . g
  • Average annual t em perat ure is 27.2oC Based on 25 years dat a ( 1982- 2006) . Months o s Rainy Days y ys Av. Annual Rainfall ( (mm) )

  Jan

  1.0

  0.0 Feb

  0.5

  0.1 Mar

  0.7

  0.1 Apr

  0.4

  0.0 May

  29.6

  1.0 Jun 475.1

  13.5 Jul 815.9

  22.8 Aug 579.3

  21.7 Sep 328.4

  13.8 Oct

  93.7

  3.4 Nov Nov

  8.2

  8.2

  0.4

  0.4 Hydro- geological Aspect s of RWH 

  Hydrogeology of t he area - nat ure H d l f h & ext ent of aquifer, soil cover, t opography, dept h t o wat er levels & chem ical qualit y of ground w at er.

   

  Eg. Geology of I ndia is as diverse Eg Geology of I ndia is as diverse as it s geography and people. I t cont ains rocks covering alm ost t he ent ire spect rum of t he t he ent ire spect rum of t he Geological Tim e Scale.

  

  Eg: Archean, Deccan Trap, Gondwana Super group, Vindhyan Super group , The

  ht t p: / / cgwb.gov.in

  Tert iary group et c. y g p

H ydr o- ge ology & W a t e r Re sou r ce s

  

  Wat er resources- as a result of Hydrogeology – I m port ant

  param et ers  

  soil t hickness soil t hickness

  

  dist ribut ion of rock exposures

  

  pore net works in t he rocks

  

  wat er recharge areas, discharge locat ions, and general flow direct ions of groundwat er direct ions of groundwat er

  

  fluid- flow charact erist ics of m ain aquifer t ypes, including yield

  

  ground feat ures ( eg. lineam ent )

  ht t p: / / cgwb.gov.in

  22

  22 Groundwat er & Recharge 

  Groundw at er - m aj or sources for wat er supply in m any part s of t he w orld.

    Ground wat er collect s in aquifers over Ground wat er collect s in aquifers over t housands of years t hrough infilt rat ion & ground w at er flow recharge.

   A part icular am ount of groundw at er is replenished regularly t hrough rainw at er replenished regularly t hrough rainw at er infilt rat ion.

   Sust ainable use of groundw at er m eans w it hdraw al of ground w at er at a rat e at g w hich it is replenished t hrough ht t p: / / cgwb.gov.in recharge.

   Fast er w it hdraw al rat es w ould lead t o fall in wat er t able & finally deplet ion of fall in wat er t able & finally deplet ion of ground w at er.

  Soil Zone Unsat -

  The ground w at er recharge areas need Zone urat ed t o be ident ified so t hat m ax. recharge can be achie ed can be achieved.

Gr ou n dw a t e r Re ch a r ge

   Groundw at er availabilit y depends on recharge. 

  Groundw at er - cont rolled by t he hydro- geological sit uat ion charact erized by alluvial form at ion & quart zit ic hard rocks.

   Groundw at er quant it y depends- Pot ent ial Areas & availabilit y of Groundw at er quant it y depends Pot ent ial Areas & availabilit y of unsat urat ed zone for recharge.

   Pre- requisit es for art ificial recharge:

  • – 1 Favorable hydrological set - up 1. Favorable hydrological set up.

  2. Developed aquifers.

  3. Availabilit y of unpollut ed surface wat er.

  4. Ground wat er dependent com m unit y.

   Nat ural Recharge Nat urally occurring wat er added t o an aquifer

   Nat ural recharge com es from precipit at ion or st orm runoff

    Art ificial Recharge A t ifi i l R h St ore surplus surface wat er underground

   Put t ing surface wat er in basins, furrows, dit ches, or ot her facilit ies 

  Artificial Recharge Techniques Artificial Recharge Techniques 

   I n dir e ct Te ch n iqu e s

  

  Dug well recharge

  

  Recharge pit s and shaft s

   Aquifer m odificat ion. 

  I nduced recharge from surface wat er source.

  

  Recharge pit s and shaft s

  

  I nj ect ion wells or recharge wells

  

  I nduced recharge from

  

   D ir e ct su b su r fa ce t e ch n iqu e s w ells.

  D ir e ct su r fa ce t e ch n iqu e s q

  Over irrigat ion

  

  Basin or percolat ion t anks wit h pit shaft or ll

  t e ch n iqu e s

  Over irrigat ion

  

  Dit ch and furrow syst em

  

  St ream augm ent at ion

  

   Com bin a t ion su r fa ce – su b- su r fa ce t e ch n iqu e s

  Basins or percolat ion t anks

  

  Flooding

  Bore hole flooding g

Rainwat er Harvest ing St ruct ures

  • St orage of rain wat er on surface for fut ure use
  • Recharge t o groundwat er
  • Pit s
  • Trenches • Dug wells
  • Hand pum ps
  • Recharge wells • Recharge wells
  • Recharge shaft s
  • Lat eral shaft s wit h bore wells
  • Spreading t echniques • Spreading t echniques

  ( ( Source: ht t p: / / rainwat erharvest ing.org) p / / g

  g) Est im at ion of Groundw at er Est im at ion of Groundw at er Est im at ion of Groundw at er Est im at ion of Groundw at er Recharge Recharge  

  Soil wat er balance m et hod Soil wat er balance m et hod Ground wat er level fluct uat ion m et hod

   Ground wat er balance m et hod

  

  Design Considerat ions of RWH  

  Requirem ent – Direct use – St orage & needs Requirem ent Direct use St orage & needs 

  Recharge t o im prove groundw at er availabilit y 

  Hydrogeology of t he area - nat ure & ext ent of aquifer, soil cover, t opography, dept h t o w at er levels & chem ical qualit y t h d t h t t l l & h i l lit of ground w at er

   Area cont ribut ing for runoff i.e. how m uch area & land use pat t ern, w het her indust rial, resident ial or green belt s and general built up pat t ern of t he area

   Hydro- m et eorological charact ers viz. rainfall durat ion, general pat t ern & int ensit y of rainfall

  • Recharge st ruct ures should be designed based on availabilit y of space, availabilit y of runoff, dept h t o wat er t able & lit hology of t he area.

   Runoff should be accurat ely est im at ed.

  I nt egrat ed RWH Met hodology ( Source: ht t p: / / rainwat erharvest ing.org)

   Based on: Geology, Topography, dem and, w at er availabilit y, infilt rat ion rat e, econom ic st at us of t he users. infilt rat ion rat e econom ic st at us of t he users

   I nt egrat ed Rainw at er harvest ing syst em designed

   Com binat ion of Rainw at er Harvest ing st ruct ures like recharge t renches, sum p, percolat ion pond et c. t renches sum p percolat ion pond et c

   Rainw at er harvest ing in t he st udy area m ay be div ided int o t w o

  • – ( i) from built up areas
  • – ( ii) from non- built up areas
  • – ( iii) w at ershed based approach. ( ) pp

Flow ch a r t for I n t e gr a t e d RW H in a n Ar e a

  

Rainwater

Harvesting

Non Built up Areas Built up Areas

  Check dam/ To recharge the Direct use Percolation pond aquifer Recharge Sumps Excess Trenches Pit/ G Groundwater d t

  

Case St udy: RWH in Jhabua Wat ershed

mm) 300 Soil Moisture Variationn 250

  Madhya Pradesh ( I NDI A ) , ~ alt it ude of (i 200 380 m t o 540 m . Area – 1800 sq.km 100 150

  Highly undulat ing, sparsely dist ribut ed 50 forest cover. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecPE AE P

  57% arable land including cult ivable fallow & 18% not ified as forest land. f ll & 18% t ifi d f t l d  Average rainfall ~ 750 m m per annum . 

  20- 30 event s during June- Sept em ber 

  Classified as drought prone region. Cl ifi d d ht i Photo, A.K. Singh, 2002

   Moist ure deficit during January t o May 0,00 m ont hs each year. 4,00 2,00 6,00

  Ref: Singh, A.K., T.I. Eldho, D. Prinz (2002) Well distance from 8,00 the alluvium 250m 240m 178m Case St udy: RWH in Jhabua Wat ershed 

  Tot al num ber of reservoirs = 144

  RWH Measures - 6

   St orage capacit y = 81.3 x 10 m 3

  

Wat er conservat ion and groundw at er recharge t echniques Wat er conservat ion and groundw at er recharge t echniques

  

Wat er harvest ing cum supplem ent ary irrigat ion t echniques

   Rainw at er harvest ing int ervent ions includes cont our t renches, gully plugging, veget at ive and field bunding, check dam s, percolat ion t anks et c. l l e e n n n n a a h h c c in in a a a a m m n n i i ir ir o o rv rv Photo, A.K. Singh, 2002 e e s s s s

  Photo, A.K. Singh, 2002 Photo A K Singh 2002 e e R R Case St udy: RWH - I m pact s

  About 2- 4 m et er wat er level increase is observed in • select ed wells. select ed wells. Sufficient wat er for dom est ic and agricult ural purposes • One farm ing per year 2 t o 3 farm ing of various crops •

  

  No wat er scarcit y even in drought period. No wat er scarcit y even in drought period

  

  Agricult ural yield increased by 30- 60%

  

  I m provem ent in % of forest land I m provem ent in % of forest land

  

  Overall econom ic & social uplift m ent of t he people

   People part icipat ion in t he RWH schem es.

Re fe r e n ce s Re fe r e n ce s

   CGWB, ht t p: / / cgwb.gov.in/ groundwat er J.V.S Murt hy ( 1991) , Wat ershed Managem ent , New Age y ( ) , g , g

  • int ernat ional Publicat ions Ghanshyam Das ( 2000) , Hydrology and soil conservat ion
  • engineering, Prent ice Hall of I ndia g

  g, Pat el and Shah ( 2008) , Wat er Managem ent , New Age

  • int ernat ional Publicat ions

    w w w .rainwat erharvest ing.org www rainwat erharvest ing org

   w w w .cseindia.org

   www.fao.org

   ht t p: / / forest .m t u.edu/

Tu t or ia ls - Qu e st ion !.?

  

D e scr ibe t h e t r a dit ion a l w a t e r h a r ve st in g syst e m a dopt e d in I n dia

   ht t p: / / cgw b.gov.in ; ( Ref: w w w .rainwat erharvest ing.org ; www.cseindia.org)

   

  I llust rat e t he syst em s used for roof rain wat er I llust rat e t he syst em s used for roof rain wat er harvest ing. harvest ing.

     

  I llust rat e t he various schem es used for Groundwat er I llust rat e t he various schem es used for Groundwat er I llust rat e t he various schem es used for Groundwat er I llust rat e t he various schem es used for Groundwat er recharge schem es recharge schem es

   

  Discuss various t echniques adopt ed at various Discuss various t echniques adopt ed at various l l locat ions. locat ions. t i t i

   

  Discuss t he m erit s and dem erit s of each syst em s Discuss t he m erit s and dem erit s of each syst em s ..

  Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

Se lf Eva lu a t ion - Qu e st ion s!. Q

   Discuss t he necessit y & purposes of RWH. 

  What are t he advant ages of RWH?. Wh t t h d t f RWH?  Discuss t he hydrological aspect s of RWH. 

  I ll I llust rat e t he im port ance of hydro- geological h i f h d l i l aspect s of RWH.

  

What are t he im port ant design What are t he im port ant design considerat ions of RWH?

  P Prof. T I Eldho, Department of Civil Engineering, IIT Bombay f T I Eldh D t t f Ci il E i i

  IIT B b

Assign m e n t - Qu e st ion s?. g Q

   I llust rat e various RWH m et hodologies for various locat ions. various locat ions

   How t o assess RWH pot ent ial for an area?. 

  Discuss various t echniques of art ificial Discuss various t echniques of art ificial groundw at er recharge.

    What is int egrat ed RWH m et hodology?. What is int egrat ed RWH m et hodology?

Un solve d Pr oble m !. Un solve d Pr oble m !

   

  For your Wat ershed area, prepare an int egrat ed plan For your Wat ershed area, prepare an int egrat ed plan of Rainwat er Harvest ing Schem e considering wat er of Rainwat er Harvest ing Schem e considering wat er st orage & recharge. st orage & recharge. st orage & recharge. st orage & recharge.

    I dent ify t he present supply & dem and of wat er. I dent ify t he present supply & dem and of wat er.  

  I dent ify built -- up area, non I dent ify built up area, non-- built built -- up area up ar ea  

  Check t he possibilit y of direct RWH in t anks & Check t he possibilit y of direct RWH in t anks & recharge. recharge.

  • – Collect dat a Collect dat a – – Collect dat a Collect dat a – rainfall soil dat a et c rainfall, soil dat a et c. rainfall, soil dat a et c. rainfall soil dat a et c
  • – Design an int egrat ed RWH schem e including Design an int egrat ed RWH schem e including – groundw at er recharge. groundw at er recharge.

  Dr. T. I. Eldho Dr. T. I. Eldho Professor, Professor, Department of Civil Engineering, Department of Civil Engineering, p p g g g g Indian Institute of Technology Bombay, Indian Institute of Technology Bombay, Mumbai, India, 400 076. Mumbai, India, 400 076. Email: Email: Email: Email: [email protected] [email protected] [email protected] [email protected]