Schaum College Physics.pdf
THEORY AND PROBLEMS
OF
COLLEGE PHYSICS
Ninth Edition
FREDERICK J. BUECHE, Ph.D.
EUGENE HECHT, Ph.D.
!"
SCHAUM'S OUTLINE SERIES
# $ % & %! ' ( )
! ! # ! *
" % +McGraw-Hill abc
Copyright © 1997, 1989, 1979, 1961, 1942, 1940, 1939, 1936 by The McGraw-Hill Companies, Inc All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.
0-07-1367497 The material in this eBook also appears in the print version of this title: 0-07-008941-8.
All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training pro- grams. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069.
TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.
THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.
DOI: 10.1036/0071367497
Preface
8 0 & FF ==
FF == & !) & ! ! ! ! ! FF == # ! ! ! # ! ! , ! !! & G ! ! ( & 8 ! ! 0 & # # ! ! # ! ! # ' / & ! : ! ! = G D G
! & 0 !
# & !! # !# ! H ' & ! ! 0 ! ! ! I ' . . ! 8 ! # ! # #- 0 & ' & 0 & & ! ! ! & ! 0 & & : # 0 # & !! ! . & G & ! ! & 0 ! # = ! !
: & ! #(
! FF - ( = # ! == 1 ! # FF == # ! ! ' = ! ! 8 ! . & ! # ! & # ! I & 0 !! 8 0- ! ! ' # ! G ' I # # ( FF0 & & == 0 ! ! ! # ! 0 # - & ) & = ! & & # 0 #& # ! # *
# ' ! H & 0 ! 8 # ! . ! B ' ! & !# H # - & !/ 0 3/ 4 & # & & 3
4 /
9 1 B " 18 B :9
3 4 & # ! 0 3 4 8 # ! & = &
! & # # !# & &
# 8 . . 3 ' 4
# ! ! . #
! 0 ! ! I ! ! :
& # & & !
# !! # '# ! = 0 ! :
! " 12 $$,5% " 0 $: :1: :" 8 Contents
1 Chapter
INTRODUCTION TO VECTORS
1
9 G J G 3 ! 4 ! ! 9 # 8 ! " ! " ! !
!
2 Chapter UNIFORMLY ACCELERATED MOTION
13
9 J ! ! !
J ! ( # !
3 Chapter NEWTON'S LAWS
27
9 0 ! B 1 ' 8 & 1 & = B & 1 & = 9 & 1 & = 8 & & # & ! &
8 B 1 ! " K 0 " K ! !
&
4 Chapter EQUILIBRIUM UNDER THE ACTION OF CONCURRENT FORCES
47
" #( G # ! B G # ! # ! ! 3 4 #(
8 B 1 !
5 Chapter EQUILIBRIUM OF A RIGID BODY UNDER COPLANAR FORCES
56
8 G 3 ! ! 4 8& G # ! " ' #
6 Chapter WORK, ENERGY, AND POWER
69
& 0 : L 0 ! " & L &
7 Chapter SIMPLE MACHINES
80
! & 0 :K
:B ":
8 Chapter
IMPULSE AND MOMENTUM
87
! ! ! ! ! ! ! ! " ! ! ! " '
" K " !
9 Chapter ANGULAR MOTION IN A PLANE
99
! :G ! ! # & G " "
10 Chapter RIGID-BODY ROTATION 111
8 G 3 ! ! 4 !
8 G L " !# & ! ! ! ! ' ! G
11 Chapter SIMPLE HARMONIC MOTION AND SPRINGS 126
B G # ! ! 9 ! ! ! 0 ! : : 9 9
9 9 ! 9 ! !
9
12 Chapter DENSITY; ELASTICITY 138
9 . :
9 9 : ! 2 = ! / 0 ! 9 !
13 Chapter FLUIDS AT REST 146
9 ! = ! =
14 Chapter FLUIDS IN MOTION 157
B I & :G
9 J = & 0 # 0 # / = G 8 = ! !#
15 Chapter THERMAL EXPANSION 166
8 ! ' ' J ! '
9 1 B " 18 B :9
16 Chapter
IDEAL GASES
171
3 4 ; ! # &
9 # H 9 ! 39 8 4 = & & # !
17 Chapter KINETIC THEORY 179
L = !# ! ! G # !
18 Chapter HEAT QUANTITIES 185
8 ! 9 . 3 4 H # ! " ! # ! # ! ! &
19 Chapter TRANSFER OF HEAT ENERGY 193
: # " 8 ! "
20 Chapter FIRST LAW OF THERMODYNAMICS 198
0 # ! B & 8 ! ! # ! ! # 9 . 9 .
:K
21 Chapter ENTROPY AND THE SECOND LAW 209
9 & 8 ! ! : : ! # #
22 Chapter WAVE MOTION 213
& ! #
9 & 9 & " 3 ! 4 &
23 Chapter SOUND 223
9 & :G
9 3 4 / ) )
";18:189
24 Chapter COULOMB'S LAW AND ELECTRIC FIELDS 232
" !#= & " G H "
8 : . 9 . : .
9
25 Chapter POTENTIAL; CAPACITANCE 243
) # : 1 : " " :
26 Chapter CURRENT, RESISTANCE, AND OHM'S LAW 256
" / ; != & ! # !! ! 8 ! ) & !
27 Chapter ELECTRICAL POWER 265
: & 0 : & & 8 ! "
28 Chapter EQUIVALENT RESISTANCE; SIMPLE CIRCUITS 270
29 Chapter KIRCHHOFF'S LAWS 283
L )= 3 ( 4 L )= 3 4
9 G #
30 Chapter FORCES IN MAGNETIC FIELDS 289
. . " ! ! . . B ! .
8 G I
31 Chapter SOURCES OF MAGNETIC FIELDS 299
. ! . B ! ! ! ! . !
32 Chapter
INDUCED EMF; MAGNETIC FLUX 305
) ! . I ' ! B = & ! H= & !
9 1 B " 18 B :9
'
33 Chapter ELECTRIC GENERATORS AND MOTORS 315
: : !
34 Chapter
INDUCTANCE; R-C AND R-L TIME CONSTANTS . . . . . . . . . . . . . 321
9 : 23 ! 23 ! :'
35 Chapter ALTERNATING CURRENT 329
:! # 8 ! & B ! ; != & !
& 8 !
36 Chapter REFLECTION OF LIGHT 338
1 & I ! 9 ! G
9 H !
37 Chapter REFRACTION OF LIGHT 346
9 ' 9 = & " I !
38 Chapter THIN LENSES 353
8 ;#( ! ! 0 = G &
39 Chapter OPTICAL INSTRUMENTS 359
" !#
8
8
40 Chapter
INTERFERENCE AND DIFFRACTION OF LIGHT 366
" & ) ) 9 ) ! ) G ) M ;
41 Chapter RELATIVITY
374
! 9 ! ! ! ! 8 ! 9 !
J ! Chapter
42 QUANTUM PHYSICS AND WAVE MECHANICS 382
46 APPLIED NUCLEAR PHYSICS 409
INDEX 433 '
429 Appendix H TABLE OF THE ELEMENTS 430
Appendix G PHYSICAL CONSTANTS
427 Appendix F FACTORS FOR CONVERSIONS TO SI UNITS 428
E
PREFIXES FOR MULTIPLES OF SI UNITS; THE GREEK
ALPHABETD LOGARITHMS 424 Appendix
C EXPONENTS 422 Appendix
B TRIGONOMETRY NEEDED FOR COLLEGE PHYSICS 419 Appendix
Appendix A SIGNIFICANT FIGURES 417 Appendix
1 # B B ! :) ! !
Chapter
E ) ! ! " ! ) / & / & E H
1 G
1 1 ! !# ! ! !# /
45 NUCLEI AND RADIOACTIVITY 399
Chapter
1 ! E ! !# '
44 MULTIELECTRON ATOMS 396
Chapter
! : # : ! :! 9 ; #
43 THE HYDROGEN ATOM 390
Chapter
";18:189
Chapter 1 Introduction to Vectors
! & A SCALAR QUANTITY, ! ! ! ! - H # 8 !# G ( ! G
9 . # !# # & 8&
# ' A VECTOR QUANTITY # . ! & # !3 H 4 ! ! ! ! G B ' ! "! , ! # ! 6 ! & x ! . ' ! & 6% & 314 & ; & % 66, 3$ %% 1 %:66, #4 9 ! ! @% 0!7 ! @% 0!7 9; 8
G # # & & 8 &
! G 36 ! 6% 1 @% 0!7 # ' ! 4 8 & G
! # # F & #
~ F !! ! . & # ! # ! !# 3 ' ! 4 THE RESULTANT, & ! ) 08 ! . GRAPHICAL ADDITION OF VECTORS (POLYGON METHOD): ~ R 3~ A ~ B ~ C 4 # & 3 4 & 8 ! # 0 A ~ A B C C A B R 8 &
~ ~ ~ ~ ~ ~ & B $ $
Fig. 1-1
$
18 ; "8 ;1 8; J:"8; 9 N" $
6 8 # & & ~ R R R j~ j H ,
PARALLELOGRAM METHOD & A 8 &
! # # ! 8 & &
! & B $ 6 8
& ! &Fig. 1-2
8 # ~ B ! ~ A SUBTRACTION OF VECTORS: ~ ~ B ~ A ~ A B A B
~ ~ :
THE TRIGONOMETRIC FUNCTIONS . B
& B $ 5 # .B ( A B
; ;
(C C A ! B A B
C C A
Fig. 1-3
A COMPONENT OF A VECTOR ) B ' ! x
! ! ! x ' #
! ! ! # !
, !! " " ! 9 ! & !
" $O 18 ; "8 ;1 8; J:"8; 9
5 Fig. 1-4
! # & ! & !
B $ @ & ~ R x y ! ~ R ~ R &
x y!
R R R R
x y
j~ j j~ j j~ j j~ j
GR R x y
R R
COMPONENT METHOD FOR ADDING VECTORS: : x y
z ! & ! 0 8 x !
~ R # ! x ! 8 y z R x! ! & ! 0 & !
# q 6
6
6 R R
x R y R z
& ! & x ' # !
R y
R x
UNIT VECTORS ! # # !#
& 8 ^i ^j ^ k x y z '
5^i ,^ k .
x & z ~ R x y z ! R x R y ^ R z # & ~ R x y z k
R ^i R ^j R #( ! ! THE DISPLACEMENT:
! ! .
18 ; "8 ;1 8; J:"8; 9 N" $
@
Solved Problems
1.1 ! . & & ! A 6 % ! @%8
@ % ! $6?8 # 0 x ' ! & & . . 39 ' . . 4" x y ' & B $ , ! ! 1 ! ! R ! x ' 8 ~
& ! ! . ! @ + ! & ! # $%$8 8 ! @ + ! $%$8:
Fig. 1-5 Fig. 1-6
B x y ! 6, % ! ! 6$%
1.2 :%8:
8 ! ! & B $ + 8 ! x ! 6,:% ! 5%:%8 6$:? ! y ! 6,:% ! 5%:%8 $6:, ! 1 ! ! #
9 # ! $ $ # !
1.3
! & B $ ?3a4 3b4 3 !# & # ! 4 8 !
6 R :@$ ! R
x $:,5 ! %:<< ! y $:6* ! 5:$* ! @:@< !
1 ! ! # 8 & B $ ?3c4- & q @
:@< !
6
6 R
%:<< ! @:@< ! @:+ ! %
:<< ! R B ;
4 M 9 - ! !#
?*8 ! & $<%8 $%$8 ~ @:+ ! Ð $%$8 ! '
" $O 18 ; "8 ;1 8; J:"8; 9
,
Fig. 1-7
1.4 & & # ! ! A 5% 1 5%8 6% 1
$@%8 ! !# !# 0 5% 1 6% 1 & . .8 & B $ <3a4 ! ! & B $ <3b4 8 ~ R # / ! ! & . ~ R 5% 1 ?68 :
Fig. 1-8
1.5 B # O & B $ *3a4 B
9 ! O & B $ *3b4 8 & ! O Fig. 1-9
- 18 ; "8 ;1 8; J:"8; 9 N" $
- :,5 1
~ R
6
x R 6 y q +:, 1 3@4 B & 0 & B $ $%3b4 .
5 :6 1
, :? 1
%:,+ ! &
6*8 8 5+%8 6*8
55$8 8 + , 1 55$8 3 6*84
+:, 1 Ð 55$8
5:6 1 354 8 ! R
B ;
B x " ! y " ! $* % 1 $* % 1 % 1 $, % 1
$,:% 14 +%:%8 ?:,% 1 $,:% 14 +%:%8 $5:% 1 $+ % 1
$+:% 14 @,:%8 $$:5 1 $+:% 14 @,:%8 $$:5 1 $$ % 1
$$:% 14 5%:%8 *:,5 1 $$:% 14 5%:%8 ,:,% 1 66 % 1 % 1
66 :% 1
Fig. 1-10
R
66 :% 1
! R ! & B $ *3b4 . # $$* 1 ! #
R
# 5?8 ! 0 $<%8
5?8 $@58 & x ' 8 $$* 1 $@58
:
1.6 8 . & B $ $%3a4 #( B
3$4 B & . x y ! 8 ! & A
1 364 8 ~ R ! R
x F x
y F y
, :,% 1
& & F
x
FF ! x ! ==
R
x $*:% 1 ?:,% 1
$$ :5 1
% 1 ,:? 1 R
y % 1 $5:% 1 $$:5 1
4 M 9
" $O 18 ; "8 ;1 8; J:"8; 9
?
1.7 9 # ! $ , # ! ! & ! &
. .8 ! A B x " ! y " !
<% 1 <% 1 % $%% 1 3$%% 14 @, 8 3$%% 14 @,8
?$ 1 ?$ 1 $$% 1
3$$% 14 5%8 $$% 14 5%8 *, 1 ,, 1
$+% 1 $+% 14 6% 8 $,% 1 $+% 14 6%8 ,, 1 1 ! 8 . &
R *, 1 $,% 1
x F x <% 1 ?$ 1 *@ 1
R ,, 1
y F y % ?$ 1 ,, 1 ?$ 1
8 & B $ $$- & q
6
6
6 R
1 *@ 1 ?$ 1 $:6 $%
B 5?8
?$ 1= *@ 1 ! & 5?8 8 $$< 1 $<%8 $@58 ~ R B ;
4 M 9
$$< 1 Ð $@58 Fig. 1-11 Fig. 1-12
1.8 $%% 1 ! 0 & x ' y ! 5% 1 B # x ! 3 ! !# !# $%% 1 . . & 5% 1 & 4
8 0 B $ $6 & . F 0 &
x
5% 1 %:5%
$%% 1 $?:@+8 & . . $?8: 8 &
F
x $%% 1 $?:@+8 *, 1 & +% 1 8 ! 0 @%8
1.9 3a4 " ! ) ! 3b4 " !
18 ; "8 ;1 8; J:"8; 9 N" $
<
& B $ $5 ! +% 1 5* 1 @+ 1 3a4 8 H ! @+ 1 3b4 8 ! 5* 1
Fig. 1-13 Fig. 1-14
1.10 & & F ! & ! 0 H &
W
! ! & # 0 = & P
& B $ $@ = & ~ F & 0
W
! ~ F 8 ! ! # ! F
!
W ^
1.11 :' & B $ ?3c4 $ $%3b4 $ $$ $ $5 ! ~ R k
x y z R ^i R ^j R 3 4
! !# ! ! # & ' & & ~
B B $ ?3c4A R %:<< ^i @:@<^j
~ B B $ $%3b4A R ^i 5:6^j
,:? ~
B B $ $$A R *@
^i ?$^j ~
B B $ $5A R @+
^i 5*^j
~
8 # F
1.12 6%
$ ^i 5+^j ?5^k 1
^
~F F
k
$? $6 1 B . ! 6 ^i 6$^j @+^k 1 ~5 & . .
0 & R $? 1
x F x 6% 1 % 1 5 1
R
y F y 5+ 1 6$ 1 % 1 $, 1
R @+ 1 $6 1
z F z ?5 1 $, 1
^ 9 ~ R & . k
R x y z ^i R ^j R
R ~ 5
^i $,^j $,^k 8 & . . ! ! q p
6
6
6 R R @,*
x R y R z 6$ 1
- " $O 18 ; "8 ;1 8; J:"8; 9
1.13 ! & # & ~ A ~ B ~ C ~ ~ & B $ $,A 3a4 ~ A B - 3b4 ~ A B C - 3c4 ~ A B - 3d 4 ~ A B C :
~ ~ ~ ~
9 B $ $,3a4 3d 4 3c4 ~ A B ~ A B B ! ~ A ~ ~ - # ~
~ ~ B ~ A 9 ! 3d 4 ~ A B C A B C C G
~ ~ ~ ~ & ~ ! # ~ C
: Fig. 1-15
~ A B A # ! ~ B
1.14 : $6 5
^i 6,^j $5^k ~ ^j ?^k . & ~
B ! ! ! & B ~ ~ A
5 ^j ?^k $6^i 6,^j $5^k
5 ^j ?^k $6^i 6,^j $5^k $6^i 6<^j +^k 1 $6^i 6,^j $5^ k ! ~ A 8 & ~ A
~ B
# < 0!7 & 0 I & & !
1.15 ! < 0!7 & ! ! 5 0!7 & # ! & 3a4 ! 3b4 & !P
3a4 & & # = & # < 0!7 / ! 5 0!7 8 # = < 0! 5 0!
= = , 0!= :
3b4 ! # ! # ! < 0!
= 5 0!= $$ 0!= :
1.16 & ,%% 0!7 / *% 0!7 & # &
& P8 = ! & ,%% 0!7 Ð : 98 *% 0!7 Ð 9; 8 8 ! & B $ $+ 8 = q
6
6 R
,%% 0!= *% 0!= ,%< 0!=
18 ; "8 ;1 8; J:"8; 9 N" $
$%
Fig. 1-16 Fig. 1-17
8 #
- % 0!
= %:$<
,%% 0! =
! & $%8: 8 = ,%< 0!7 $%8
1.17 ! # ! $ $+ & !
! : P8 ! = & & # : 8 & ! B $ $? 1 G & L ! & & . .
*% 0!= ,%% 0!= ! & $%8 8 $%8 ! & :
,
8 . = & & . R ! = :
,%% 0!= @:* $%
Supplementary Problems
1.18 9 ! & <% % 0! $*6 0! & ! ! ! & & 6%< 0! Ð +? 9; 8 ;B : 98
:@8 1.19 xy & : # ' $ % ! #
$ % ! 8 & 0 & . 36@ $%4 6@ # ' x ' $% # ' y ' ! ! ! & 6+ ! Ð 658 /;J: 4 M 9
# A & < % ! , % ! 5 % ! & @ % ! B
1.20 3a4 & B ! AP 3b4 B ! ! A B # # & 3a4 , % ! Ð : 98 $ 1; 8 - 3b4 , $% ! Ð $$ 9; 8 ;B : 98
:% ! Ð :58
1.21 B x y ! & ! xy A 3a4 5%% ! $6?8 3b4 ,%% ! 66%8 & 3a4 $<% ! 6@% !- 3b4 5<5 ! 56$ !
1.22 8& #( & A $%% 1 $?% :%8 $%% 1 ,%:%8 B
& $%% 1 $$%8 1.23 9 & ! ! xy 3
! 4A +% !! y 5% !! x @% !! $,%8
,% !! 6@%8 B ! # # & *? !! $,<8
" $O 18 ; "8 ;1 8; J:"8; 9
$$
" ! # & A $%% 1 5%8 $@$ @ 1 @,8
1.24 $%% 1 6@%8 " 0 & % $, 01 6,8
1.25 " ! # & ! A 6% % ! 5% :%8 @% % !
$6% :%8 6, % ! $<%:%8 @6 % ! 6?%:%8 $6 % ! 5$,:%8 " 0 & &
& 6% $ ! $*?8 1.26 8& <% 1 $%% 1 +%8 & #( 3a4
& & P 3b4 3 5 ! ) 4 & # & R ~ R
P 9 # & 3a4 ~ A % $+ 01 5@8 & <% 1 - 3b4 A % $+ 01 6$@8 & <% 1 B # 3a4 3b4 G # 3 # ! $ 6+4 & A
1.27 5%% 1 ' %8 @%% 1 5%8 @%% 1 $,%8 & 3a4 % ,% 01 ,58- 3b4 % ,% 01 6558
1.28 ! ?%8 x ! @,% !P y ! P & $ 5 0! $ 6 0!
1.29 ! ! # ,% ! ! x
! <, ! 6,8P & @, ! ,58 B $ $< ! ~ A ~ B ' 3a4 ~ P 3b4 ~ R 3c4 ~ S 3d 4 ~ Q
1.30 ~
& 3a4 ~ A B - 3b4 ~ B - 3c4 A - 3d 4 ~ A ~ B ~
Fig. 1-18 Fig. 1-19 A B E D C ~
1.31 B $ $* ! ~ ~ ' 3a4 ~ 3b4 ~ 3c4 ~ E D C ~ A ~ ~ B A B A B ~
& 3a4 - 3c4 ~ ~ ~ - 3b4 ~
1.32 & ! # 0 & & 6%8 H & & $,% 1 & & ! P & ,$ 1
1.33 # ! $ 56 5%8 # & ,* 1 ~ ~
1.34 B 3a4 ~ A B C 3b4 ~ A B 3c4 ~ A C ~ A B ^i +^j ~
~ ~ ? 5 ^i $6^j ~C @^i @^j
& 3a4 <^i ^j- 3b4 $%^i $<^j- 3c4 5^i 6^j 6
1.35 B ! ~ R ~ R & $@ +%8 ^i $6^j
?:%
18 ; "8 ;1 8; J:"8; 9 N" $
$6
! ! ! # !
1.36 6,
^i $+^j ! ! ? % ! &
x P $< ^i $+^j !
1.37 $,
^i $+^j 6?^k 1 65^j @%^k 1 ! P & 6$ 1
1.38 0 ! ?% 0!7 8 ' # 0 # ! 0 ! 0 6%8 # 0 & # & & & & P & 6, 0!7
1.39 $% 0!7 ! # 5%8 & . P & 6% 0!7
1.40 # & % ,% !7 & !
- % ! & 8 I & & % 5% !7 3a4 & ! # # P 3b4 & 0 # P
6
& 3a4 5?8 !- 3b4 $ :, $%
1.41 0 0 & ,%% 0!7 8 0 8 # $%%% 0!7 ! : & # ! 0 & P
6+ & :+8
Chapter 2 Uniformly Accelerated Motion G #( 0 ! t l SPEED
" ! 0
l
v av
t
3 4 8 & = ! G #( ! s !VELOCITY ~ t
! ! ! 0
s
~
v
~ av
t
8 ! ! 83 4 # ! !7 0!7 ! ! A ACCELERATION !
! 0
v v
~ f ~ i
a
~ av
t
& v v . t ! &~ i ~ f 8 # ! 8 ' ! 3!7 47 3
6 !7 4 30!7 47 3 0!7 4 1 G
v v !! 0 !
~ f ~ i ( !# UNIFORMLY ACCELERATED MOTION ALONG A STRAIGHT LINE ! ! !
~ v ~ a # . & ! & ! # s 3 4 ! # # & 6 5 ! ! A
$5
1 B; 2 "": : 8: ;8 ;1 N" 6
$@ s t v av v f i
v v av
6
v v
f i a t6
6
v f i
v 6as
6 $
s t at
v i
6 ; s # x y ! ! v v & v v
f i
%
DIRECTION IS IMPORTANT, ! # & H !
: ! # !
! # 0 !INSTANTANEOUS VELOCITY
H 8 #( ! s ! t #(
~s
~
v
~ ! t!% t
& ! ~ s = t # ! t
HGRAPHICAL INTERPRETATIONS ! 3 x ' 4 & A
. 8 ! #( ! ! !
! # H
. 8 ! #( ! !
!. B ! x t B
! v t 3 & ! ! 4 ! !.
! ACCELERATION DUE TO GRAVITY g: 8 # !
g 3 4 & &
6
6
& ; : g 4- ! ;
*:<$ !7 : :; 56:6 76 $ + !7
VELOCITY COMPONENTS: 9 #( ! & ~ v !
! x ' & # & # & 8
x y ! 3 B $ @4 ~ v x ~ v y 8 !
v v x y v v
# !# ~ v .
G v x6 !
2.3 #( ! & < %% !7
6 B 3a4 , %% 3b4 , 3c4 , %%
! . , %% 8 0 ! # x 3 s
x4 0 & v i % t ,:%% a <:%% !7
6
/ ! ! . ! G v
fx v ix at % <:%% !=
6
,:%% @%:% != a v
av
v
ix v fx
6
% @%:%
= 6%:% != b x
j % !
<:%% !=
1 B; 2 "": : 8: ;8 ;1
" 6O
$%% ! x v av t 6%:% != ,:%% $%% ! c
6
,:%%
6
6
v ix t
$
%
6
at
6
$
6, % !=
av
> % v y
< % /
G ! 0 & ' !! !
8 & . ! ' # & &# 0
& ! FF == # G 3&
# & & # 4 & ' 8 #( ! &
! v i
% v f
3 & 4 " v $%% !7
PROJECTILE PROBLEMS # # ; !
! & A H ! & a $%% !7 Ð
:98 ! ! ! ! *3 * v
x $%% !7 -v
~
x > % v y
3 4 ! & a g *:<$ !7
v G v
< %- . ~
< % v y
> %- ~ v G v x
< % v y
> %- ~ v G v x
v av
6 & &
j~v
2.2 ! 0 6%% ! 0 ! 6, & = 3a4 3b4 P 3a4 B ! .
av ~s=t
~ v
3b4 / ! ! H 9
6, <:% !=
6%% !
! 0
0!
Solved Problems
2.1 " % 6%% !7 0 !5+%% 6@ 5+, +5:$
0! !
,
$%
%:6%% !
% :6%% !
$,
1 B; 2 "": : 8: ;8 ;1 N" 6
$+
2.4 0= ! ! $, 0!7 +% 0!7 6% ! 3a4
3b4 3c4 !B 6% 0 x # ! &
0! ! $ v $%%%
ix $, @:$? !=
0! 5+%% v
fx +% 0!= $+:? != $ $
v a av v ix v fx @:$? $+:? != $% !=
6
6
v v @
fx ix :$?
$+:? !=
6
a b %:+5 != t 6% x t c v $%:@ != 6% 6%< ! %:6$ 0!
av
2.5 ! ! ! B 6 $ B
A B = PP
Fig. 2-1 / # x
= t & 0 A 8 B & A &
@ x :% ! %:,% !=
< t :%
8 B & a % v
:
x %:,% != v av
2.6 #( = ! ! x ' B 6 6 # !
8 #( G ! Q ! / H ! ' t
% t 6:% #( ! t
6:% #( # ! x & 3 4 B t 6:% t @:%
" 6O
1 B; 2 "": : 8: ;8 ;1
$?
x x 5 % !
5 :% ! :% !
f i
v
av $:, !=
t t @
6
6 :% :% :%
f i
8 v ;9 8 J: 4 :"8 ;1 ~
av $:, !7 Ð
t @:% t +:% #( - H x
B ! t x
- x x 6 :% !
+:% t $% # #( !
5 :% ! , :% !
f i
v
av $:5 !=
- t t $% @ :% :% :%
f i
8 v 1: 8 J: 4 :"8 ;1 ~
av $:5 !7 Ð
2.7 8 ! #( B 6 5 # ! G .
A B C :
Fig. 2-2 Fig. 2-3
# & #( ! t
% & . B 38 H 4 8 # # 0 & &
A &
5 * $6 y :% ! :% ! :% ! v
A 6:5 !=
@ % @ t :% :%
8 A B C y A ~v A 6:5 !7 Ð v
B % !=
, $5 ? y :, ! :% ! :, ! v
C $:6 !=
- $, < t :% :, :,
/ C A v ; 1 ! !# y ~
C $:6 !7 Ð
G ! # . '
# ! ,% ! # 3a4 ( #
2.8 P 3b4 & 0 P
1 B; 2 "": : 8: ;8 ;1 N" 6
$<
& # !
6
& & * <$ !7 8 0 # & A
6
y a v ,%:% ! *:<$ != i %
6
6
6
6
6
v = a fy v iy 6ay % 6 *:<$ != ,%:% ! *<$ ! v
f 5$:5 !7
3b4 B ! a v v fy iy =t v v
%
fy iy
5$:5 != t 5:$*
6
a :<$ !=
- 3 ( & 0 " & & # P4
2.9 0 ! * % ! & 5 % & ! &
0 G 6@ !7 P !
! . 0 = ! 5 % 8 0
6 $
! t at
x & t 5:% v ix % x *:% ! 8 x v ix
6
6x $< !
6
a 6:% !=
6
6
t 5:%
& a ! &
6
v 8 ! v
fx 6@ !7 B v ix % v fx 6@ !7 a 6:% !7 f v i at
v v 6@ !
fx ix =
t $6
6
a 6 :% !=
2.10 # ! 6% !7 # & 5 % !7 B
& #8 0 ! # x B v i 6% !7
6
v 1 # !
f % !7 a 5:% !7
& 3 4
6
6
v
fx v ix 6ax
6
6% != x +? !
6
6 5:% !=
! 5% !7 & ! $% !7 ! , % ! 3a4
2.11 3b4 !
0 ! # x
3a4 B , % & t ,:% v ix 5% !7 v f $% !7 v fx v ix
5% $% !=
6
a @:% !=
, :% x 3 6
:% b 3 5:%
6
6 $ $
x t at t at v ix
5 5 v ix
6
6 6
6
6
6
$x t a t v ix t
5 6 t
5
6
6
6
v t
ix 5% !7 a @:% !7 6 6:% t 5 5:%
6
6
x 5% != $:% 6:% != ,:% 6:% !
" 6O
1 B; 2 "": : 8: ;8 ;1
$*
2.12 8 ! ! $, !7 ? % !7 &
- % ! 3a4 " ! 3b4 & ! & # ! ! P
0 ! # x
6
6
3a4 v
ix $, !7 v fx ?:% !7 x *% ! 8 v fx v ix 6ax
6
a %:*< !=
6
3b4 & & v
8
ix ?:% !7 v f % a %:*< !7
6
6
v
fx v ix 6ax
6
% ?:% != x
6, !
6
$ :*+ !=
2.13 & & 6% ! & &
& P0 " y 8 = H 8 v
fy %
6
38 ! # & & y 6% ! a *:<$ !7
6
6
& & 0 " # 4 v q fy v iy 6ay .
6
v
6
iy *:<$ != 6% ! 6% != & & & 6% !7 & &
2.14 , % ! # & & & 3a4 & & & & P 3b4 &
0 P
8 & B 6 @ 0 " 8 ! & # v
iy 6% !7 y ,:% ! 3 &
6
! 4 a :
*:<$ !7 Fig. 2-4
1 B; 2 "": : 8: ;8 ;1 N" 6
6%
6
6
3a4 v fy v iy 6ay .
6
6
6
6
6