I1.4 Given that C is a root of the equation kx

  9 I1 a

1 I2 R

  

I3 S

  10 I4 k

  1

  25

  1

  b S

  1 R 30 r

  2

  2

  1

  2 C

  10 T

  1 T 6 s (= )

  2

  2

  9

  5

  7

  2 Group Events

  • D –2 W P w

  G1 k

  1 G2 w

  45 G3 r 2006 G4 R 12 3

  16

  7 B z –13 x (=1.75) S

  8

  15

  4

  1

  1

  1 C s z

  30 T

  4

  4

  2

  15

  a

  1 t

  14 R (= 3.75) W 2013021

  4 Individual Event 1 I1.1 If a is a real number satisfying log ( x + 3) – log ( x + 1) = 1, find the value of a .

  2

  2

  3 log = log

  • x

  2

  2

  2

  1

  • x

  x + 3 = 2x + 2 ⇒ x = 1 a = 1

  I1.2 In Figure 1, O is the centre of the circle with radius 1 cm. If the A

  length of the arc AB is equal to a cm and the area of the shaded 1 cm

  2

  sector OAB is equal to b cm , find the value of b. (Take = 3)

  π O a cm

  1

  1

  1 1 cm

  b = rs =

  1 1 =

  ⋅

  2

  2

  2 B

  Figure 1 I1.3 An interior angle of a regular C-sided polygon is 288b , find the value of C.

  °

  Each interior angle = 288b = 144

  ° ° o

  360 Each exterior angle = 36 =

  ° C C = 10

2 I1.4 Given that C is a root of the equation kx + 2x + 5 = 0, where k is a constant.

  If D is another root, find the value of D.

  1

  ⇒

  100k + 20 + 5 = 0 k =

  −

  4

  2 C + D = sum of roots =

  − k

  ⇒

  10 + D = 8 D = –2

  I2.1 Given that a, b and c are three numbers not equal to 0 and a : b : c = 6 : 3 : 1.

  2 b

3 If R = , find the value of R.

  2

  • 2 a bc
  • 2

      3 3 k

      9

      ( ) Let a = 6k, b = 3k, c = k, then R = = 2 +

      2 6 k 3 k k

      25

      ( ) ( ) k R k

    2 R

    • I2.2 Given that . If S = , find the value of S.

      =

      2 k R

    • R

      9

      9

      ⇒

    • k = 0 k = –

      25

      25

      9

      18

    2 R

    • k

      25

      25 S = = = 1

      18

      9

      2

    • k R

      25

      25 I2.3 Given that T = sin 50 (S + 3 tan 10 ), find the value of T.

      °× × ° o

      sin

      10 T = sin 50 (1 + 3 )

      °× ⋅ o o cos

      10 sin

      5 o o

      10 3 sin

      10 o ⋅ cos

    • = cos

      ( )

      10 o   2 sin

      5

      1

      3   o o +

      = cos o   10 sin

      10 cos

      10

      2

      2 o   2 sin 5 o o o o

      = cos 60 cos 10 sin 60 sin

      10 o ⋅ ⋅

    • cos

      ( )

      10 o o o 2 sin 5 cos 50 sin 100

      =

      1 o o = = cos 10 cos

      10

       T

       y

      = I2.4 Given that x and y are real numbers satisfying the system of equations  . x

      =  If W = x + y , find the value of W.

    • y x T

      

      1 

      y =

      

      x

      1

      =

    • y x

      

      1

      1 ..........(*)

      = x

    • x

      1

      1 = x + 1 or = –x + 1

      x x

      2

      2

      1 = x + x or 1 = –x + x

      2

      2 x

    • x – 1 = 0 or xx + 1 = 0

      − 1 ±

      5 x

      = or no solution

      2 − 1 −

    5 Check: sub. x = into (*)

      2

    2 LHS = < 0, RHS > 0 (rejected)

      1

      5 − − − +

      1

      5

      2

      5

    1 −

      1

      5

      5

      1 + + +

      When x = ; LHS = = ; RHS = = (accepted)

    • 1

      2

      2

      2

      1

      5 −

    • 2

      1

      5

      1

      5

      1

      5

      = ⇒ W = x + y = = 5

    • y

      2

      2

      2

      2 x

    3 A B

      −

      2 I3.1 Given that ,where A and B are constants. If S= A + B , find the value of S =

    • 2

      2 x x

      1 x x

      −

    3 Ax B x

      1 − −

    • 2 x

      ( ) =

      2 x x

      1 x x

      − ( ) A + B = 2, –B = –3 A = –1, B = 3

      2

    2 S = (–1) + 3 = 10

      I3.2 In Figure 1, ABCD is an inscribed rectangle, AB = (S – 2) cm and D C AD = (S – 4) cm. If the circumference of the circle is R cm, find the value of R. (Take = 3)

      π AB = 8 cm, CD = 6 cm AC = 10 cm (Pythagoras’ theorem) A B

      R = 10 = 30 π

      Figure 1 R I3.3 Given that x and y are integers satisfying the equation xy = 21x + 20y – 13.

      2 If T = xy, find the value of T. 15xy = 21x + 20y – 13 (3x – 4)(5y – 7) = 15

          

      3 x

      4

      1 3 x

      4

      3 3 x

      4

      5 3 x

      4

      15 3 x

      4

      1

      − = − = − = − = − = −  or  or  or  or  or

      5 y

      7

      15 5 y

      7

      5 5 y

      7

      3 5 y

      7

      1 5 y

      7

      15

      

     − =  − =  − =  − =  − = −

      

      3 x

      4

      3 3 x

      4

      5 3 x

      4

      15

      − = − − = − − = −  or  or 

      5 y

      7

      5 5 y

      7

      3 5 y

      7

      1

       − = −  − = −  − = −

      For integral solution: 3x – 4 = 5, 5y – 7 = 3

      ⇒ x = 3, y = 2 T = 3 2 = 6

      ×

    2 I3.4 Let a be the positive root of the equation x – 2x – T = 0.

      T

    • If P = 3 , find the value of P.

      T

    • 2

      T

    • 2

      T

    • 2

      a

      2 x – 2x – 6 = 0

      1

      7

    • a =

      6

      2

      2 ⇒ ⇒ a – 2a – 6 = 0 a = 2a + 6 a = 2 + a

      T

      6 T

    6 T

      6

      ⇒ ⇒

      2 + = 2 + = a

      2 2 = a 2 = 2 + = a

    • =

      T T a a a a

      2

      2

      T a

    • 2

      a

      6

      6 P =

      3

      1 2 = 1+ a = 1 +

      1 7 =

      2

      7

      = + + + + + a a

             

      k

      1

      1

      1

      1

      1

      1

      1

      1

      1

      1        

      I4.1 Let

      1 1 , find the value of k .

      = × − + + + + × + + + +

             

      4

      2

      3

      2

      3

      4

      2

      3

      4

      2

      3 Reference: 1995 FG6.2

      k

      1

      1

      1

      1

      1

      1

      ⇒

      Let x = 1 , y = 1 , then = x(y – 1) – y(x – 1) = –x + y = k = 1

      2

      3

      2

      3

      4

      4

      4

      2 I4.2 Let x and y be real numbers satisfying the equation y + 4y + 4 + x y k = 0.

    • If r = |xy|, find the value of r.

      Reference: 2005 FI4.1, 2009 FG1.4, 2011 FI4.3, 2013 FI1.4, 2015 HG4, 2015 FI1.1

      2 x y k

      The equation is equivalent to (y + 2) = 0

    • which is a sum of two non-negative numbers.
    • + +

      ⇒

      y + 2 = 0 and x + y + 1 = 0

      y = –2 and x – 2 + 1 = 0, x = 1 r = |–2 1| = 2 × rd

      

    I4.3 In Figure 1, there are eight positive numbers in series. Starting from the 3 number, each

    th

      1 number is the product of the previous two numbers. Given that the 5 number is and the

      r

      1

      th 8 number is . If the first number is s, find the value of s.

      4 r

      1

      1

      s

      4 r r nd

      Let the 2 number be a, then other numbers are as follows:

      1

      8

      13

      1

      2

      3

      2

      3

      5

      5

      8 s a s a = s a sa sa = s a s a

      4 r r

      1

      2

      3 s a = ................. (1) r

      1

      8

      13 s a

      = .............. (2)

      4 r

      4

      (2) (1) : a = 1

      ÷

      1

      1

      1

      2 ⇒

      Sub. a = 1 into (1): s = ; s &gt; 0 s =

      = r

      2

      2 I4.4 Let [x] be the largest integer not greater than x. For example, [2.5] = 2.

      2

      4 6 2n Let w = 1 + [10 s ] + [10 s ] + [10 s ] + + [10 s ] + , find the value of w.

      × × × … × …

      1

      1

      1

      1

      w

      = 1 + [10 × ] + [10 × ] + [10 × ] + … + [10 × ] + …

      n

      2

      4

      8

      2 = 1 + 5 + 2 + 1 + 0 + 0 + = 9

      …

      2

      

    2

    G1.1 Given that k is a real number. If x + 2kx – 3k can be divisible by x – 1, find the greatest value of k.

      2

    2 By factor theorem, 1 + 2k – 3k = 0

      2 3k – 2k – 1 = 0 (3k + 1)(k – 1) = 0

      1

      k = – or 1

      3 Greatest value of k = 1

       x y

      = +

      1 

      1

      1

      3

      5

    • G1.2 Given that x = x and y = y satisfy the system of equations  . If B = , find the

      x y x y

      = +

      1 

      5

      3 value of B . x y x y x x y y

      ⇒ ⇒

    • = = 1 − = − x = y

      3

      5

      5

      3

      3

      5

      3

      5 x x

      15

      16 ⇒ ⇒

    • Sub. x = y into the first equation: = 1 x = y = B =

      3

      5

      8

      15

      2 G1.3 x 3 x x Given that = 2 + is a root of the equation – (tan + cot ) + 1 = 0.

      α α C C If = sin cos , find the value of .

      α × α ⇒ y

    3 y y

      3 Let the other root be , (2 + ) = product of roots = 1 = 2 –

      3

      

    3

      tan + cot = sum of roots = 2 + + 2 – = 4

      α α

      sin cos

      1

      α α

      1

      C =

    • ⇒ ⇒

      4 = 4 = sin α × cos α =

      4

      cos sin sin cos

      α α α α

    G1.4 Let a be an integer. If the inequality | x + 1| &lt; a – 1.5 has no integral solution, find the greatest

    value of a .

      | x + 1| 0, In order that the equation has no integral solution, it is sufficient that a – 1.5 &lt; 0

      Q ≥ a &lt; 1.5

      Greatest integral value of a = 1

      Group Event 2 G2.1 In Figure 1, PRS is a straight line, PQ = PR = QS and Q QPR = 30 . If RQS = w , find the value of w .

      ∠ ° ∠ ° QPR = QSP = 30 (base s isos. )

      ∠ ∠ ° ∠ ∆

      30 °

      PQS = 120 ( s sum of ) ∠ ° ∠ ∆ P S R

      圖圖 PQR = PRQ =(180 –30 ) 2 = 75 ( s sum of isos. )

      ∠ ∠ ° ° ÷ ° ∠ ∆ Figure 1

      ⇒ RQS = 120 – 75 = 45 w = 45

      ∠ ° ° °

      7

    3 G2.2 Let + + f ( x ) = px qx rx – 5, where p , q and r are real numbers.

      f z f z (Reference: 1995 FI1.3) If (–6) = 3 and = (6) Find the value of .

      7

      3 ⇒

    • f (–6) = 3 p

      6 – q r 6 – 6 – 5 = 3

      × ×

      7

      3

      7

      

    3

    f (6) = p

      6 q + – 6 + 6 r – 5 = –(– p 6 q 6 – 6 r – 5) – 10 = –3 – 10 = –13

      × × × × n 1  

      20   G2.3 If n 0 and s = , find the value of s .

      ≠

    • 4 2 2 2 n n +  

        2 n n 1

        2 1    

        1

        20

        20     s = =

        = 

        16

        2

        4 2   ⋅ ⋅ ⋅ +

        20 2 

        4 2 n n n 2 2 , find the value of + + + G2.4 Given that x and y are positive integers and x y xy = 54. If t = x y t .

        x y xy

        1 + = 55 +

      • (1 + x )(1 + y ) = 55 1 + x = 5, 1 + y = 11 or 1 + x = 11, 1 + y = 5

        x = 4, y = 10 or x = 10, y = 4 t = 14

        8

        2 − G3.1 Given that r = 2006 , find the value of r.

        ×

        2 It is easy to show that r = 2006. x x

      • y +5y G3.2 Given that 6 = 36 and 6 = 216, find the value of x.

        x + y = 2 ............. (1) x + 5y = 3 ........... (2)

        7

        5(1) – (2): 4x = 7 ⇒ x =

        4 Given that tan + G3.3 x + tan y + 1 = cot x + cot y = 6. If z = tan( x y ), find the value of z .

      • tan y tan x tan x + tan y + 1 =

        6

        = x y

        tan tan

        5 tan x + tan y = 5; tan x tan y =

        6

        5 tan( + x y ) = = 30

      • tan x tan y

        = 5

        1 tan x tan y

        1

        − − 6 A G3.4 In Figure 1, ABCD is a rectangle, F is the midpoint of CD and D

        2 BE : EC = 1 : 3. If the area of the rectangle ABCD is 12 cm and

        2 F the area of BEFD is R cm , find the value of R.

        2 Area of BCD = 6 cm ∆ B C E

        3

        1

        9

        2

      2 Area of CEF =

        6 cm = cm

        ∆ ⋅ ⋅ Figure 1

        4

        2

        4

        9

        15

        2

      2 Area of BEFD = (6 – ) cm = cm

        4

        4

        2 cm G4.1

        In Figure 1, ABCD is a parallelogram, BE CD , BF AD, ⊥ ⊥ 1 cm D C E CE = 2 cm, DF = 1 cm and EBF = 60 .

        ∠ °

        2 F If the area of the parallelogram ABCD is R cm , find the value of R. 60

        ° EDF = 360 – 90 – 90 – 60 = 120 ( s sum of polygon)

        ∠ ° ° ° ° ° ∠ BAD = BCD = 180 – 120 = 60 (int. s //-lines)

        ∠ ∠ ° ° ° ∠ A B Figure 1

        2 BC = cm = 4 cm = AD o cos

        60 BE = 2 tan 60 = 2 3 cm

        ° AF = (4 – 1) cm = 3 cm

        3 AB = cm = 6 cm o cos

        60

        2

        2 Area of ABCD = AB BE = 6 2 3 cm = 12 3 cm × × 2 2

           

        1

        1    

      • G4.2 Given that a and b are positive real numbers and a b = 2. If S = a b ,

         a   b  the minimum value S.

        2 ⇒ ⇒ ⇒ a b a + b – 2 ab

        1 ab 1 ab ............. (1)

        − ≥ ≥ ≥ ≥ ( )

        2

        2

        2 a + b = (a + b) – 2ab = 4 – 2ab 4 – 2 = 2 ...............(2)

        ≥

        1

        1

        ⇒ ≥

        1 ≥ 1 ......... (3) 2 2

        ab a b 2 2    

        1

        1 2 2

        1

        1 Sa   ba b = =

      • 2 2

          4

              a b a b 2 2 2 2

        • a b a b

          =

          4

        • 2 2 a b

              2 2

            1

            a b  

            =

            1

            4

            ( ) 2 2

             

            a b

            2 (1 + 1) + 4 = 8 (by (2) and (3))

            ≥ × x y

            1

            1

          • G4.3 Let 2 = 7 = 196. If T = , find the value of T.

            x y Reference: 2001 HI1, 2003 FG2.2, 2004 FG4.3, 2005 HI9 x log 2 = y log 7 = log 196

            log 196 log 196

            x = , y =

            log 2 log

            7

            1

            1 log 2 log 7 log

          • 1

            14

          • T = = =

            = 2 x y log 196 log

            14

            2 Method 2 (provided by Denny) x 1 1 y 2 = 196 , 7 = 196 1 1 1 1 x y x y +

            2 7 = 14 = 196 196 = 196

            × ×

            1

            1

            1

          • =

            x y

            2

            2

            2

            2

            2

            2

            2

            2

            2

          • G4.4 If W = 2006 – 2005 + 2004 – 2003 … + 4 – 3 + 2 – 1 , find the value of W.

            W = (2006 + 2005)(2006–2005) + (2004 + 2003)(2004–2003) + + (4+3)(4–3) + (2+1)(2–1) …

            = 2006 + 2005 + 2004 + + 4 + 3 + 2 + 1

            …

            2006

            1 = 1003 2007 = 2013021

          • = 2006

            × ( )

            2