TAP.COM - PENGARUH KUALITAS AIR HUJAN PADA KONSENTRASI METANA - JURNAL UNS 11972 28700 1 PB

JKPK (JURNAL KIMIA DAN PENDIDIKAN KIMIA), Vol. 2, No. 2, Tahun 2017
Program Studi Pendidikan Kimia Universitas Sebelas Maret
https://jurnal.uns.ac.id/jkpk

Hal. 103-109
ISSN 2503-4146
ISSN 2503-4154 (online)

PENGARUH KUALITAS AIR HUJAN PADA KONSENTRASI METANA
The Effect of Rainwater Quality on The Methane Concentration
Lilik S. Supriatin1*, Waluyo E. Cahyono1, dan Syafrizon2
1Pusat

Sains dan Teknologi Atmosfer, LAPAN
Jl. dr. Djundjunan 133 Bandung 40173 Jawa Barat
2Balai Pengamat Atmosfer dan Antariksa Agam, LAPAN
Bukit Kototabang, Kabupaten Agam, Sumatera Barat
* Untuk Korespondensi, email: lilik_lapan@yahoo.com
Received: June 30, 2017

Accepted: August 31, 2017


Online Published: September 7, 2017

DOI : 10.20961/jkpk.v2i2.11972

ABSTRAK
Penelitian tentang pengaruh pH air hujan pada emisi metana (CH 4) sudah banyak
dilakukan. Lalu bagaimana dengan pengaruh pH air hujan pada konsentrasi CH4?. Pertanyaan
tersebut akan dijawab melalui penelitian ini. Permasalahan dalam penelitian ini adalah belum
diketahuinya pengaruh dan interaksi dari kualitas air hujan dalam hal ini pH (derajat kemasaman)
air hujan terhadap konsentrasi CH4 (metana). Tujuan dari penelitian adalah pertama mengetahui
penyebab hujan asam di lokasi penelitian. Ke dua adalah mengetahui dan menganalisis
pengaruh pH air hujan pada konsentrasi CH4. Lokasi penelitian di Balai Pengamat Atmosfer dan
Antariksa LAPAN di bukit Kototabang, Sumatera Barat. Data yang dipergunakan pada penelitian
ini adalah pH air hujan dan konsentrasi CH4. Metode analisis yang dipergunakan adalah analisis
statistik dan analisis deskriftif. Hasil menunjukkan koefisien korelasi antara pH air hujan dengan
konsentrasi CH4 sebesar 0,87. Nilai koefisien korelasi ini menunjukkan bahwa pengaruh pH air
hujan berbanding lurus dengan konsentrasi CH4. Artinya semakin pH air hujan semakin tinggi,
maka konsentrasi CH4 akan semakin tinggi juga.
Kata kunci: pengaruh, pH, curah hujan, konsentrasi, metana


ABSTRACT
Research on the effect of pH of rainfall on the emission of methane (CH 4) has been made.
And what about the influence of the pH of rainfall at a concentration of CH 4? That question will be
answered through this research. The problem in this research is not yet known and the effect of
the interaction of water quality in these clouds pH (degree of acidity) of rain on the concentration
of CH4. The purpose of the study was the first object to determine acid rain in research location
and to determine and analyze the influence of the pH of rainfall on the CH 4 concentration. The
research location is at Balai Pengamat Atmosfer dan Antariksa LAPAN in Kototabang hills, West
Sumatra. The data used in this study is the pH of rainfall and CH4 concentrations. The analytical
method used is the analysis of statistical and descriptive analysis. The results showed a
correlation coefficient between the pH of rainfall with CH 4 concentration of 0,87. The correlation
coefficient indicates that the effect of the pH of rainfall is linearly proportional to the concentration
of CH4. This means that the pH of rainfall is higher, then the CH4 concentration will increase.
Keywords: effect, pH, rainfall, concentration, methane

103

104


Supriatin dkk, Pengaruh Kualitas Air Hujan ...........

Erupsi gunung api salah satunya melepaskan

PENDAHULUAN
Curah hujan atau hujan dapat ditinjau
dari dua aspek yaitu kuantitas dan kualitas.
Aspek kuantitas curah hujan mencakup tinggi
hujan dan durasi hujan. Sedangkan aspek
kualitas curah hujan meliputi intensitas hujan,
energi kinetik air hujan, ukuran butir hujan,
kandungan mikroorganisme air hujan, dan
kandungan kimia air hujan. Pada makalah ini
hanya khusus mengkaji kandungan kimia air
hujan

(derajat

kemasaman


atau

pH)

pengaruhnya pada konsentrasi metana (CH4).
Secara alami derajat kemasaman (pH)
air hujan normal adalah 5,6 [1]. Berdasarkan
kandungan kimia air hujan dikenal istilah hujan
asam dan hujan basa. Hujan asam adalah air
hujan dengan pH lebih kecil dari 5,6. Adalah
Robert Angus Smith, seorang berkebangsaan
Inggris yang untuk pertama kali pada 1852
menghubungkan antara pencemaran udara
dengan dampaknya berupa hujan asam. Dua
puluh tahun kemudian (1872), Robert Angus
Smith menemukan untuk pertama kalinya
hujan asam di kota Manchester (Inggris) yang
disebabkan industrialisasi pada masa revolusi
industri [2]. Sedangkan hujan basa, jika pH air
hujan di atas 5,6.

Hujan asam ini berdampak negatif pada
lingkungan. Air hujan dengan pH lebih kecil dari
5,1 akan berakibat buruk bagi lingkungan dan
kesehatan. Sementara pH kurang dari 5,6
berdampak pada properti, monumen, dan
ekosistem terutama lingkungan badan air dan
tanah/lahan [3].
Hujan asam dapat terjadi baik alami
maupun

antropogenik

(hasil

kegiatan

manusia). Secara alami hujan asam dapat
terjadi akibat erupsi (letusan) gunung api,
proses biologis tanah, rawa dan laut [2, 4].


gas nitrogen dioksida (NO2) dan sulfur dioksida
(SO2) yang merupakan gas-gas pembentuk air
hujan asam [5]. Hujan asam terjadi jika di
atmosfer terdapat bahan polutan udara berupa
SO2 dan NOx yang bereaksi dengan H2O (titiktitik air dalam awan) membentuk H2SO4 (asam
sulfat) dan HNO3 (asam nitrat) dan turun
sebagai hujan asam. Asam nitrat (HNO3)
berasal dari NOx yang terjadi pada suhu tinggi
di

dalam

Sementara

mesin
SO2

kendaraan
berasal


bermotor.

dari

industri,

kendaraan bermotor, dan erupsi gunung api.
Berdasarkan karakteristiknya, komposisi
udara di atmosfer dapat dikelompokkan menjadi
gas rumah kaca dan polutan (pencemar udara).
Sulfur dioksida (SO2)

dan NOx

adalah

termasuk polutan udara yang mengakibatkan
hujan asam, sedangkan CH4 adalah golongan
gas rumah kaca.
Penelitian


tentang

interaksi

antara

polutan udara (SO2 dan NOx) dengan gas
rumah kaca (CH4) saat ini baru terbatas pada
pengaruh konsentrasi sulfat yang terlarut
dalam air hujan pada emisi CH4. Watson dan
Nedwel [6] dari hasil penelitian menunjukkan
bahwa adanya konsentrasi sulfat yang terlarut
dalam air hujan dan jatuh ke tanah akan
menurunkan emisi CH4 dengan hubungan
yang berbanding terbalik. Artinya semakin
tinggi konsentrasi sulfat terlarut dalam air hujan,
maka emisi CH4 semakin kecil. Hasil yang
sama diperoleh dari penelitian Gauci et al. [7]
yang menyatakan bahwa semakin tinggi

konsentrasi sulfat terlarut dalam air hujan,
maka semakin kecil emisi CH4. Lalu bagaimana
reaksi dari hujan asam (sulfat terlarut dalam air
hujan) dengan konsentrasi CH4? Pertanyaan
ini akan dijawab melalui penelitian ini. Tujuan

JKPK (JURNAL KIMIA DAN PENDIDIKAN KIMIA), Vol. 2, No. 2, Tahun 2017, hal. 103-109

105

dan

Berdasarkan Gambar 1 dapat diketahui

menganalisis pengaruh pH air hujan pada

bahwa hujan di lokasi penelitian sudah

konsentrasi CH4.


tergolong hujan asam untuk semua bulan. Hal

penelitian

ini

adalah

mengetahui

ini disebabkan pH air hujan lebih kecil dari 5,6
untuk semua hujan rata-rata bulanan. Derajat

METODE PENELITIAN
Data yang digunakan pada penelitian
ini adalah data bulanan kimia air hujan (KAH)
dari

Balai


Pengamatan

Antariksa Agam

Atmosfer

yang terletak

dan

di bukit

Kototabang Sumatera Barat. Data kimia air
hujan meliputi data pH, konsentrasi SO42(sulfat) dan NO3- (nitrat), dan CH4 serta data
curah hujan sendiri. Metode spektrofotometrik
digunakan untuk mengukur konsentrasi ion
SO42- dan NO3- dari air hujan. Air hujan
ditampung dalam suatu alat ukur rain gauge,
lalu diukur pH nya dengan pH meter. Air hujan
dianalisis kandungan kimianya dengan alat
spektrofotometer. Sementara konsentrasi CH4
diukur dengan Infrared gas detector.
Metode yang digunakan untuk analisis
data

adalah

analisis

statistik

kemasaman (pH) air hujan lokasi penelitian
yang lebih kecil dari 5,6 disebabkan pertama
adanya gunung Marapi yang berstatus aktif
normal. Artinya selalu mengeluarkan asap
yang bercampur belerang (sulfur). Gunung
Marapi terletak pada ketinggian 2891 m dari
permukaan laut. Sedangkan lokasi penelitian
juga berada pada dataran tinggi yaitu pada
ketinggian 865 m dari permukaan laut.
Bukti kedua bahwa hujan asam di
lokasi penelitian disebabkan gunung Marapi
adalah dari kandungan kimia air hujan. Tabel
1 menunjukkan konsentrasi kandungan kimia
air hujan yang jatuh di lokasi penelitian.
Tabel 1. Kontribusi SO42- (mg/l), NO3- (mg/l),
dan pH

ukuran

Sulfat

Nitrat

pH air hujan

pemusatan (mean), analisis korelasi, dan

0.647
0.724
0.492
0.408
0.524
0.542
0.805
0.398
0.428
0.323

0.021
0.000
0.004
0.134
0.083
0.077
0.767
0.000
0.224
0.257

4.93
5.09
4.77
4.91
4.72
4.95
5.38
5.11
5.02
4.84

analisis deskriftif.

HASIL DAN PEMBAHASAN
Data pH air hujan rata-rata bulanan
lokasi penelitian disajikan pada Gambar 1.

Konsentrasi SO42- (Tabel 1) berasal
dari gunung api Marapi. Padatan debu yang
mengandung belerang (S;sulfur) diemisikan
oleh gunung api Marapi dan bereaksi dengan
oksigen di atmosfer membentuk SO2. Sulfur
Gambar 1. pH air hujan bulanan

dioksida

(SO2)

teroksidasi

di

atmosfer

membentuk SO3. Gas SO3 bersifat mudah

106

Supriatin dkk, Pengaruh Kualitas Air Hujan ...........

larut dalam air sehingga pada udara lembab

Berdasarkan Gambar 2 dapat di-

(udara yang banyak mengandung uap air)

ketahui curah hujan bulanan klimatologis di 2

menghasilkan asam sulfat (H2SO4). Uap air

lokasi

yang

ini

dari 100 mm. Artinya lokasi penelitian adalah

merupakan bagian dari awan dan selanjutnya

daerah yang basah yang seharusnya pH air

akan berkondensasi, lalu turun sebagai hujan

hujannya normal (pH= 5,6) atau lebih besar

asam. Reaksi kimianya:

dari 5,6 tetapi kenyataan di lapangan air

S (s) + O2 (g) → SO2 (g)

hujan lokasi penelitian untuk setiap bulan

2SO2 (g) + O2 (g) → 2SO3 (g)

dalam setahun adalah bersifat hujan asam.

SO3 (g) + H2O (l) → H2SO4 (aq)

Hal ini menunjukkan sumber sulfat yang

telah

mengandung

H2SO4

sebagian besar adalah lebih besar

dinyatakan

menjadi penyumbang hujan asam berasal

dengan pH sebagai nilai logaritma dari

dari sumber yang mengemisikan belerang

konsentrasi ion [H+] atau dengan formulasi:

secara terus-menerus yaitu dalam hal ini

Derajat

pH = -log

kemasaman

[H+]

adalah gunung api Marapi.

Semakin besar konsentrasi H2SO4

Jika sumber asam yaitu sulfat dan

yang terkandung dalam air hujan, maka akan

nitrat berasal dari industri atau transportasi,

semakin kecil nilai pH nya yang berarti

maka terdapat kecenderungan saat musim

semakin asam hujannya.

penghujan pH air hujan lebih besar dari 5,6.

Faktor pendukung atau bukti lain yang

Saat musim kemaraulah pH air hujan bersifat

mendukung kalau penyebab hujan asam di

asam. Hal ini disebabkan hujan berfungsi

lokasi penelitian adalah faktor alami (karena

mencuci polutan udara (wash out) [8].

adanya gunung api) berasal dari data curah

Ditambahkan oleh Budiwati et al [8] bahwa

hujan klimatologis (30 tahun) di dua lokasi

hujan dengan intensitas tinggi akan lebih

(kota Solok dan Padang) yang berdekatan

sedikit

dengan

melarutkan

lokasi

penelitian.

Gambar

2

membersihkan,
polutan

mencuci,

udara

dan

dibandingkan

menyajikan siklus curah hujan klimatologis

dengan hujan intensitas kecil (gerimis).

dari dua lokasi yang berdekatan dengan

Gambar 2 menunjukkan fungsi dari curah

lokasi penelitian.

hujan sebagai pembasuh polutan udara
(wash-out).

Gambar 2. Curah hujan klimatologis (19732002) lokasi penelitian

Gambar 3. Hubungan antara hujan dengan
pH air hujan

107

JKPK (JURNAL KIMIA DAN PENDIDIKAN KIMIA), Vol. 2, No. 2, Tahun 2017, hal. 103-109

Berdasarkan Gambar 3 dapat di-

belum ramai dan terletak pada ketinggian

ketahui pertama bahwa hubungan korelasi

yang cukup tinggi. Oleh karena itu hujan

antara curah hujan (tinggi hujan) dengan pH

asam

air hujan adalah berbanding terbalik. Hal ini

lingkungan [10]. Karena bisa saja seperti di

dapat ditunjukkan oleh nilai koefisien korelasi

lokasi penelitian hujannya sudah tergolong

(r) yang besarnya -0,79. Ke dua, Gambar 2

asam,

juga menyatakan bahwa semakin besar

lingkungan (kemacetan atau industrialisasi)

curah hujan, maka akan semakin kecil pH air

tetapi faktor alami adanya gunung api aktif

hujan. Kondisi ini disebabkan pada curah

normal.

bukan

tetapi

ukuran

bukan

indikator

karena

kualitas

kerusakan

hujan yang besar, maka banyak sulfat akan

Implikasi dari ini adalah bahwa hujan

tercuci sehingga akan berpengaruh pada

asam yang berasal dari sumber alami jangan

besar nilai pH yang akan semakin kecil.

menjadi masalah. Hal ini dapat dimanfaatkan

Hujan asam disebabkan oleh sulfat

untuk

menanam

tanaman

yang

tahan

dan nitrat yang terlarut dalam air hujan.

terhadap sulfur yang tinggi seperti tanaman

Belerang atau sulfur adalah sumber sulfat di

kacang-kacangan dan tanaman bawang

atmosfer. Atmosfer mendapatkan sulfat dari

merah dan bawang putih [11].
Interaksi dan pengaruh pH air hujan

3 sumber yaitu industri, transportasi, dan
erupsi

gunung

api.

Sementara

nitrat

diperoleh atmosfer dari atmosfer sendiri,

pada

konsentrasi

CH4

disajikan

pada

Gambar 4.

industri, transportasi, dan kegiatan pertanian.
Komposisi atmosfer terdiri dari 78%
nya adalah gas nitrogen [9]. Adalah tidak
mungkin

gas

N2

bereaksi

dengan

O2

membentuk NO2 disebabkan lokasi penelitian yang terletak pada dataran tinggi yang
memiliki kerapatan udara yang renggang
sehingga reaksi fotokimia dengan bantuan
sinar matahari adalah tidak mungkin terjadi.
NO2 yang terbentuk akan menjadi nitrat di

Gambar 4. Hubungan antara pH air hujan
dengan konsentrasi CH4.

atmosfer dengan bantuan intensitas radiasi
matahari yang lebih besar dari 50 watt/m 2.

Berdasarkan Gambar 4 dapat dike-

Jadi untuk kasus lokasi penelitian

tahui pertama hubungan antara pH air hujan

dimana air hujan rata-rata bulanan selama

dengan konsentrasi CH4 berbanding lurus.

setahun termasuk hujan asam lebih banyak

Artinya semakin tinggi pH yang berarti

disebabkan oleh sumber alami yaitu gunung

semakin rendah konsentrasi sulfat, maka

Marapi yang aktif normal. Adalah tidak

semakin tinggi konsentrasi CH4. Hal ini

mungkin juga sulfat dan nitrat diperoleh dari

disebabkan ketika air hujan asam yang jatuh

transportasi dan industri mengingat lokasi

di tanah dengan membawa ion sulfat akan

penelitian adalah daerah terpencil yang

mengubah pH tanah menjadi lebih asam.

108

Supriatin dkk, Pengaruh Kualitas Air Hujan ...........

Bakteri metanogen sebagai penghasil CH4

0,87. Menurut Gordon jika koefisien korelasi

akan bekerja menghasilkan emisi CH4 pada

lebih besar dari 0,5 adalah termasuk korelasi

kisaran pH mendekati 6-8 dan pH optimum

atau hubungan yang kuat sehingga korelasi

untuk pembentukan gas metana adalah 7.

ini bersifat signifikan [16].

Pada tanah dengan kemasaman tinggi,
aktivitas bakteri metanogen berkurang yang

KESIMPULAN

berpengaruh terhadap penurunan produksi
metana dalam tanah [12].
Adanya hujan asam akan mengurangi
konsentrasi CH4 sebesar 30-40% dari kondisi
tanpa hujan asam [2]. Adanya hujan asam
berarti mengurangi gas rumah kaca jenis CH4
di atmosfer sebagai penyebab pemanasan
global. Metana memiliki potensi pemanasan
global 21 kali lebih besar daripada CO2 [13].
Tetapi bukan berarti industri atau transportasi
dengan bebasnya dapat mencemari ling-

Berdasarkan penelitian ini dihasilkan
kesimpulan bahwa hujan asam yang terjadi di
lokasi penelitian disebabkan oleh SO2 yang
selalu kontinu dilepaskan oleh

gunung

Marapi yang aktif normal. Interaksi antara pH
air hujan dengan konsentrasi CH4 adalah
berbanding lurus sama halnya dengan pola
pengaruh pH air hujan pada emisi CH4.

UCAPAN TERIMA KASIH
Ucapan terima kasih penulis ucapkan

kungan dengan tujuan mengurangi CH4 dan

kepada Ir. Tuti Budiwati, M.Eng yang telah

pemanasan global.
Tidak hanya dalam tanah, di atmosfer

banyak berdiskusi dengan penulis.

sendiri CH4 mendapat saingan dari SO2 yang
dilepaskan oleh erupsi gunung api [14]. Hal
ini disebabkan oleh reaksi kimia reduksi

DAFTAR RUJUKAN
[1]

Susanta, G dan H. Sutjahjo., 2008,
Akankah Indonesia Tenggelam Akibat
Pemanasan Global?, Penebar Plus.
Jakarta.

[2]

Mehta, Prashant. (2010). Science
behind acid rain: Analysis of Its Impact
and advantages on Life and Heritage
Structure. South Asian Journal of
Tourism and Heritage. Vol. 3. No. 2:
123-132.

[3]

Wardhana,
W.,1995.
Dampak
Pencemaran Lingkungan. Penerbit Andi
Offset, Yogyakarta.

[4]

Agustiarni, Y., 2008. Pengaruh Hutan
Kota dalam Mengurangi Hujan Asam Di
Kawasan Industri: Studi Kasus di
Kawasan Industri Medan, Kelurahan
Malabar, Kecamatan Medan Deli,
Medan. Skripsi Departemen Kehutanan,
Fakultas
Pertanian,
Universitas
Sumatera Utara, Medan.

sejumlah radikal OH oleh CH4 dan SO2 yang
bersaing. Radikal OH diperebutkan antara
CH4 dan SO2. Jika CH4 berhasil bereaksi
dengan OH, maka konsentrasi CH4 berkurang,

sementara

konsentrasi

SO2

meningkat. Destruksi metana terjadi jika
metana bereaksi dengan O.H dan membentuk radikal methil C.H3 dan uap air (H2O)
[15].
Baik di darat (tanah) maupun udara
konsentrasi CH4 mendapat saingan dari
senyawa sulfur baik sulfat maupun sulfur
dioksida.
Berdasarkan Gambar 4 juga dapat
diketahui koefisien korelasi (r) antara pH air
hujan dengan konsentrasi CH4 dengan r =

JKPK (JURNAL KIMIA DAN PENDIDIKAN KIMIA), Vol. 2, No. 2, Tahun 2017, hal. 103-109

[5] Sumaryati, (2014). Mixing Height di Atas
Gunung Api di Sumatera Terkait dengan
Penyebaran SO2 Vertikal , Jurnal
Lingkungan Tropis, vol. 8, No.1, Maret
2014: 39-47.
[6]

[7]

Watson, A and Nedwel, D. B. (1998),
Methane Production and Emission From
Peat: The Influence of Anions (Sulphate,
Nitrate) from Acid Rain, Atmospheric
Environment Journal, vol. 32, No. 19:
3239-3245.
Gauci, V., N. Dise and D. Fowler. (2002).
Controls on suppression of methane flux
from a peat bog subjected to simulated
acid rain sulfate. Journal of Global
Biogeochemical Cycles. Vol. 16. No.
1:4-1 – 4-12.

[8]

Budiwati, T., A. Budiyono, W. Setyawati,
A. Indrawati. (2010). Analisis Korelasi
Pearson untuk Unsur-Unsur Kimia Air
Hujan Di Bandung. Jurnal Sains
Dirgantara. Vol. 7. No. 2: 100-112.

[9]

Pawitan, H,. 1989. Termodinamika
Atmosfer. Departemen Pendidikan Dan
Kebudayaan, DIKTI, PAU Ilmu Hayat,
IPB Press, Bogor.

[10] Soedomo, M., 2001. Kumpulan Karya
Ilmiah Mengenai Pencemaran Udara.
Penerbit ITB. Bandung.
[11] Sutejo, M. M., 1995. Pupuk dan Cara
Pemupukan. Penerbit Rineka Cipta.
Jakarta.
[12] Setyanto, P dan Suharsih., 1995,
Mitigasi Gas Metan Dari Lahan Sawah.
Laporan Tahunan Loka Penelitian
Tanaman Pangan, Jakenan, Pati. Balai
Penelitian
Lingkungan
Pertanian,
Kementerian Pertanian.

109

[13] IPCC, 1996. Climate Change 1995: The
Science
of
Climate
Change,
Contribution of Working Group I to the
second Assessment Report of The
IPCC, Cambridge Univ Press, New
York.
[14] Quirk, T., 2010, Twentieth Century
Sources of Methane In The Atmosphere,
Document of 43rd Seminar on Planetary
Emergencies, World Federation the of
Scientists, 19-24 August, 2010, Institute
of Public Affairs, Melbourne, Australia,
pp 365-374.
[15] Mazi`ere1, M.D., C. Vigouroux, P. F.
Bernath, P. Baron, T. Blumenstock, C.
Boone, C. Brogniez, V. Catoire,M.
Coffey, P. Duchatelet, D. Griffith, J.
Hannigan, Y. Kasai, I. Kramer, N. Jones,
E. Mahieu,G. L. Manney, C. Piccolo, C.
Randall, C. Robert, C. Senten, K.
Strong, J. Taylor, C. T´etard,K. A.
Walker, and S. Wood, 2008.Validation of
ACE-FTS v2.2 methane profiles from
the uppertroposphere to the lower
mesosphere. Atmos. Chem. Phys., 8,
2421–2435.
[16] Gordon, N. D., T. A. Mc. Mahon, and B.
L. Finlayson., 1992. Stream Hydrology:
An Introduction for Ecologist. John Wiley
& Sons, New York. Pp 526.