Staff Site Universitas Negeri Yogyakarta 12 pers garis lurus

12. PERSAMAAN GARIS LURUS
A Persamaan Garis Lurus
Persamaan garis lurus merupakan sebuah persamaan linier dua variabel (PLDV) dengan dua
variabel yang tidak diketahui.
Ilustrasi:

Dari persamaan garis

, maka:

Jadi:

Sehingga:

Ini disebut gradien atau slope atau koefisien arah dari garis

, yang merupakan

nilai perbandingan antara selisih komponen y dan x dari dua titik sembarang pada garis tersebut.
Jika persamaan garisnya


maka gradiennya adalah a dan melalui titik (0, b).

1. Bentuk Persamaan Garis Lurus
Persamaan garis lurus mempunyai 2 bentuk umum, yaitu:
a. Eksplisit:

b. Implisit:
yang ekivalen dengan
dengan gradien

Matematika: PERSAMAAN GARIS LURUS - Sugiyono | 1

2. Menentukan Persamaan Garis Lurus
a. Untuk bentuk Eksplisit

dimana m adalah gradien (koefisien arah) garis yang menunjukkan kecondongan garis.


Garisnya condong ke kanan jika dan hanya jika




Garisnya condong ke kiri jika dan hanya jika

dengan gradien m, persamaan garisnya:

1) Persamaan garis lurus melalui titik
Garis

melalui

, dan

, maka dipenuhi

yaitu persamaan garis melalui

, diperoleh:

dengan gradien


Contoh (garis melalui 1 titik):
Tentukan persamaan garis melalui titik (2, 3) dengan gradien 4.
Penyelesaian:



dengan gradien m adalah:

dan

2) Persamaan garis lurus melalui dua titik
maka:

Jika garis melalui titik

, diperoleh:




Jika garis itu juga melalui titik

, maka:

, diperoleh:



Kemudian dilakukan substitusi nilai

, maka:

Ini merupakan persamaan garis melalui titik

dan

, dengan gradien

adalah:


Matematika: PERSAMAAN GARIS LURUS - Sugiyono | 2

Contoh (garis melalui 2 titik):
Tentukan persamaan garis yang melalui titik (3, 5) dan titik (-1, -2).
Penyelesaian:

b. Untuk bentuk Implisit
Persamaan garis lurus juga dapat dinyatakan dalam bentuk
ekivalen dengan

dengan gradien

yang

.

Untuk setiap pasang garis:

Maka:
1)


dan

berpotongan pada sebuah titik:

2)

dan

sejajar, tidak ada titik persekutuan:

3)

dan

berimpit, ada titik persekutuan tak terhingga banyaknya:

3. Hal-hal Khusus Persamaan Garis
a. Misalkan persamaan garis



Bila C = 0, maka garis

melalui titi (0, 0)



Bila A = 0, maka garis

sejajar sumbu



Bila B = 0, maka garis

sejajar sumbu

Matematika: PERSAMAAN GARIS LURUS - Sugiyono | 3

b. Misalkan garis


melalui titik

dan

, maka gradiennya adalah:

B Contoh Persamaan Garis Lurus

(1)

Tentukan persamaan garis melalui titik (0, 0) dan tegak lurus garis
Penyelesaian:
Persamaan garis
Gradiennya/slope/koefisien arahnya:
Misalkan:

Gradien garis

adalah:


Garis

tegak lurus dengan garis

Garis

melalui (0, 0) artinya

, maka:

, dan

Jadi persamaan garis yang melalui (0, 0) dengan gradien

(2)

adalah:

Jumlah dari dua bilangan adalah 28 dan perbedaannya adalah 12. Carilah bilanganbilangan itu !

Penyelesaian:
Misalkan bilangan yang dicari adalah x dan y.

Matematika: PERSAMAAN GARIS LURUS - Sugiyono | 4

Maka:


Dengan cara eliminasi terhadap y, maka diperoleh:

Substitusi ke dalam persamaan

, diperoleh:

Jadi HP = {20, 8}

(3)

Dua tahun yang lalu seorang laki-laki umurnya 6 kali umur anaknya. Delapan belas
tahun kemudian umurnya akan menjadi dua kali umur anaknya. Tentukan umur mereka

sekarang !
Penyelesaian:
Misalkan umum ayah sekarang x dan umur anak sekarang y, maka:
Keadaan umur 2 tahun yang lalu adalah:
(1)
Keadaan umur 18 tahun yang akan datang adalah:
(2)
Untuk persamaan 1:

Untuk persamaan 2:

Lakukan eliminasi terhadap x untuk kedua persamaan itu, diperoleh:

Substitusikan nilai y ke dalam salah satu persamaan tersebut, hasilnya:

Matematika: PERSAMAAN GARIS LURUS - Sugiyono | 5

Jadi umur sekarang:

(4)



Ayah = x = 32 tahun



Anak = y = 7 tahun

Lima meja dan delapan kursi berharga Rp. 115.000,00. Tiga meja dan lima kursi
berharga Rp. 70.000,00. Tentukan harga masing-masing meja dan masing kursi !
Penyelesaian:
Misalkan harga meja = x, dan harga kursi = y, maka diperoleh persamaan:
(1)
(2)
Lakukan eliminasi:
3 



5 



Eliminasi terhadap x (dengan cara persamaan 1 dikurangi persamaan 2), hasilnya:

Substitusikan nilai y ke dalam persamaan 2, diperoleh:

Jadi harga untuk masing-masing:

(5)



Meja = x = 15000 rupiah



Kursi = y = 5000 rupiah

Sebuah tangki A berisi campuran 10 gallon air dan 5 galon alkohol murni. Tangki B
berisi 12 gallon air dan 3 gallon alkohol. Berapa gallon yang harus diambil dari tiap-tiap
tangki agar bila digabungkan menghasilkan 8 gallon larutan dan berkadar alkohol 25%.
Penyelesaian:
8 gallon larutan berkadar 25%, memerlukan alkohol sebanyak:

Matematika: PERSAMAAN GARIS LURUS - Sugiyono | 6

(0.25)(8) gallon = 2 gallon alkohol.
Misalkan dari masing-masing tangki A diambil sebanyak x gallon, dan tangki B diambil
sebanyak y gallon.
Maka:
(1)


Tangki A berisi 10 gallon air dan 5 gallon alkohol, maka proporsinya:

Jadi dalam x gallon campuran yang diambil dari tangki A mengandung

gallon

alkohol.


Tangki B berisi 12 gallon air dan 3 gallon alkohol, maka proporsinya:

Jadi dalam y gallon campuran yang diambil dari tangki B mengandung

gallon

alkohol.
Maka dapat disusun persamaan:

(2)
Dari persamaan (1) dan (2) dilakukan eliminasi:
 5 



 1 



Eliminasi x dengan cara persamaan (1) dikurangi persamaan (2), hasilnya:

gallon alkohol
Substitusikan nilai y ke dalam salah satu persamaan, hasilnya:

gallon alkohol
Jadi HP = {3, 5}

SOAL LATIHAN:
1. Suatu garis

jika digeser ke kanan sejauh 1 satuan persamaannya menjadi ?

2. Diketahui segitiga ABC dengan titik-titik sudutnya A(1, 1); B(5, 2) dan C(3, 3). Tentukan
persamaan garis tinggi yang ditarik dari titik C. Kemudian carilah luas segitiga tersebut.

Matematika: PERSAMAAN GARIS LURUS - Sugiyono | 7

3. Seorang penanam modal setiap tahun memperoleh hasil 1100 dolar dari surat-surat obligasi yang
berbunga 4% dan 5%. Apabila jumlah uang yang berbunga 4% ditukar dengan jumlah uang yang
berbunga 5% maka ia akan berpenghasilan 1150 dolar tiap tahun. Carilah total uang yang
ditanamkan.
4. Sebuah campuran terdiri dari 20% tembaga dan 5% timah. Berapa lb tembaga dan timah harus
dicairkan dari 100 lb campuran untuk menghasilkan campuran lain yang terdiri dari 30% tembaga
dan 10% timah. Semua persen dalam berat.
5. Jika 3 gallon minyak berkualitas A dicampur dengan 7 gallon minyak berkualitas B, maka hasil
campuran itu akan berharga Rp. 4.300,00. Tetapi jika 3 gallon minyak berkualitas A dicampur
dengan 2gallon minyak berkualitas B, maka hasil campuran akan berharga Rp. 4.600,00 pergallon. Carilah harga per gallon untuk tiap minyak.
6. Apabila bilangan pertama dari dua bilangan ditambahkan dengan dua kali bilangan kedua, maka
hasilnya adalah 21. Tetapi apabila bilangan kedua ditambah dengan dua kali bilangan pertama
maka hasilnya adalah 18. Carilah kedua bilangan tersebut.

Matematika: PERSAMAAN GARIS LURUS - Sugiyono | 8