Calculus, Applications and Theory

  Calculus, Applications and Theory Kenneth Kuttler April 30, 2009

  Contents

  . . . . . . . . . . . . . . . . . . 59

  . . . . . . . . . . . . . . . . . . . . 45

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

  

  59

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

  . . . . . . . . . . . . . . . . . . . . 62

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

  . . . . . . . . . . . . . . . . . 65

  . . . . . . . . . . . . . . . . . . . . 68

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

  . . . . . . . . . . . . . . . . . 78

  . . . . . . . . . . . . . . . . . . . . . . 79

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

  . . . . . . . . . . . . . . . . . . . . . . 37

  

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

  15

  17

  

  19

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

  . . . . . . . . . . . . . 19

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

  

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

  

  

  . . . . . . . . . . . . . . . . . . . 31

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

  

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

  CONTENTS

   143

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

  . . . . . . . . . . . . . . . . 131

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

  

  

  . . . . . . . . . . . . . . . . . . . . . 137

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

  . . . . . . . . . . . . . . . . . . . . . . . 128

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

  

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

  

  91

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

  

  97

  99

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

  . . . . . . . . . . . . . . . . . . . . . . . 111

  . . . . . . . . . . . . . . . . . . . . . . . . . 112

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

  . . . . . . . . . . . . . . . . . . . . . . . 114

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 CONTENTS

   165

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

  . . . . . . . . . . . . . . . . . . . . . . . . . 204

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

   213

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

   . . . . . . . . . . . . . . . . . . . 198

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

  . . . . . . . . . . . . . . . . . . . . . . 237

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

  . . . . . . . . . . . . . . . . . . . . . . . 169

  . . . . . . . . . . . . . . . . . . . . . . . . . . 169

  . . . . . . . . . . . . 170

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

   179

  . . . . . . . . . . . . . 179

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

  . . . . . 180

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

  

  

  . . . . . . . . . . . . . . . . . . . . . . 185

  . . . . . . . . . . . . . . . . . . . . . . . . 185

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

  . . . . . . . . . . . . . . . . . . . . . . . 188

  . . . . . . . . . . . . . . . 191

  . . . . . . . . . . . . . . . . . . . . . . 244

  CONTENTS

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

  . . . . . . . . . . . . . . . . . . . . . . . 252

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

  . . . . . . . . . . . 258

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

  

  . . . . . . . . . . . . . . . . . . . . . . 264

  . . . . . . . . . . . . . . . . . . . . . 266

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

  . . . . . . . . . . . . . 273

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

   279

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

  . . . . . . . . . . . . . . . . . . . 284

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

  . . . . . . . . . . . . . . . . . . . . . . . . 290

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

  . . . . . . . . . . . . . . . . . . . . . . . . . 298

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

  . . . . . . . . . . . . . . . . . . . . . . . 303

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

   319

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

  . . . . . . . . . . . . . . . . . . . . . . 319

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

  . . . . . . . . . . . . . . . . . . 331

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

  

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 CONTENTS

  . . . . . . . . . . . . . . . . . . . . . . . . 344

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

   359

   361

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

  

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

  

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

  

   . . . . . . . . . . . . . . . . . . 364

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

  

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

  

   . . . . . . . . . . . . . . . 372

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

   377

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

  . . . . . . . . . . . . 377

  . . . . . . . . . . . . . . . . . . . . . . . . 380

  

  . . . . . . . . . . . . . . . . . . . . . . . 383

  . . . . . . . . . . . . . . . . . . . 385

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

  . . . . . . . . . . . . . . . . . . . . . . . . . 387

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

  . . . . . . . . . . . . . 390

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

   401

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

  . . . . . . . . . . . . . . . . . . . . . . . . . 401

   . . . . . . . . . . . . . . . . . . . . 401

  . . . . . . . . . . . . . . . . 404

  . . . . . . . . . . . . . . . . . . . . . . . . 406

  . . . . . . . . . . . . . . 407

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

  . . . . . . . . . . . . . . . . . . . . . . . . 409

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

  

   . . . . . . . . . . . . . . . . . . 423

  

   . . . . . . . . . . . . . . . . . . . . . . . . . 435

  CONTENTS

  

   439

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

  . . . . . . . . . . . . . . . . . . . 439

  . . . . . . . . . . . . . . . 439

  . . . . . . . . . . . . . . . . . . 441

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

  

   449

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

  . . . . . . . . . . . . . . . . . . . . . . . 463

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

  

   469

   471

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

   483

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

  . . . . . . . . . . . . . . . . 486

  . . . . . . . . . . . . . . . . . . . . . 486

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

  . . . . . . . . . . . . . . . . . . 490

  

   . . . . . . . . . . . . . . . . . . 492

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

   . . . . . . . . . . . . . 501

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

  . . . . . . . . . . . . . . . . . . . . . . . . . . 507

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 CONTENTS

  

   519

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

  . . . . . . . . . . . . . . . . . . . . 522

  . . . . . . . . . . . . . . . . . . . . . . . . . 523

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

  . . . . . . . . . . . . . . . . 531

  . . . . . . . . . . . . . . . . 532

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

  

   . . . . . . . . . . . . . . . . . . . . . . . . 537

  

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

  

   545

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

   555

   557

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

  . . . . . . . . . . . . . . . . . . . 560

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

  . . . . . . . . . . . . . . . . . . . . . . . 564

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

  . . . . . . . . . . . . . . . . . . . . . . . . 570

  . . . . . . . . . . . . . . . . . . . . . . . 571

  . . . . . . . . . . . . . . . . . . . . . . . 572

  . . . . . . . . . . . . . . . . 575

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

   579

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

  . . . . . . . . . . . . . 579

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

  . . . . . . . . 582

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

  

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

  

   . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

  CONTENTS

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

   635

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

  . . . . . . . . . . . . . . . . . . . . . . . 636

  . . . . . . . . . . . . . . . . . . . . . . . . . . 638

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

  . . . . . . . . . . . . . . . . . . . . . . 642

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

  . . . . . . . . . . . . . 646

  

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649

  . . . . . . . . . . . . . . . . . . . . . . 650

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

  

657

   659

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

  . . . . . . . . . . . . . . . . . . . 659

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

  

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

  . . . . . . . . . . . . . . . . . . . . . . . 610

  . . . . . . . . . . . . . . . . . . . . . 597

  . . . . . . . . . . . . . . . . . . . . . . . . . 599

  

  

  . . . . . . . . . . 600

  . . . . . . . . . . . . . . . . . . . . . . . . . 600

  . . . . . . . . . . . 602

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

   . . . . . . . . . . . . . . . . . . . . . . . . . 613

  . . . . . . . . . . . . . . . . . . . . . . . . . . 628

  . . . . . . . . . . . . . . . . . . . 616

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

  

  

  . . . . . . . . . . . . . . . . . . . . . . . 619

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

  . . . . . . . . . . . . . . . . . . . . 622

   625

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

  . . . . . . . . . . . . . . . 662 CONTENTS

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

   673

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

  . . . . . . . . . . . . . . . . . . 673

  . . . . . . . . . . . . . . . . . 675

1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

  . . . . . . . . . . . . . . . . . . 681

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

   717

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720

  . . . . . . . . . . . . . . . . . . . . . . . 723

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

  

  

  741

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749

  . . . . . . . . . . . . . . . . . . . . . . . . . . . 750

   711

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682

  

  . . . . . . . . . . . . . 682

  . . . . . . . . . . . 682

  . . . . . . . . . . . . . . . . . . . . . . . . . . 687

  . . . . . . . . . . . . . . . . . 688

  

  

  . . . . . . . . . . . . . . . . . . 689

  . . . . . . . . . . . . . . . . . . . . . . . . . 692

  

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

  . . . . . . . . . . . . . . . . . . . . . . . 705

  

  

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

  . . . . . . . . . . . . 698

  . . . . . . . . . . . . . . . . 699

  

  

  

  . . . . . . . . . . . . . . . . . . . . . . . . . . 702

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

  CONTENTS

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758

   763

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780

  . . . . . . . . . 781

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783

  

   785

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

  

   . . . . . . . . . . . . . . . . . . . . . . . . . 785

  . . . . . . . . . . . . . . . . . . . . 790

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793

  

   799

  

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799

  

   . . . . . . . . . . . . . . . . . . . 803

   807

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807

  . . . . . . . . . . . . . . . . . . . . . 807

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

  . . . . . . . . . . . . . . . . . . . . . . 811

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812

  . . . . . . . . . . . . . . . . . 816

  . . . . . . . . . . . . . . . . . 817

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817

   . . . . . . . . . . . . . . . . . . . . . . 818

  . . . . . . . . . . . . . . . . . . . . . 818

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819

  . . . . . . . . . . . . . . . . . . . . . . . . . . 820

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827

  . . . . . . . . . . . . . . . . . . . . . . . . . . 827

  

   . . . . . . . . . . . . . . . . . . . . . . . . . . 828

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 CONTENTS

   835

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

  . . . . . . . . . . . . . . . . . . . . . 840

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843

  . . . . . . . . . . . . . . . . . . . . . . . . 844

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

  . . . . . . . . . . . . . 847

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849

   853

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856

  . . . . . . . . . . . . . . . . . . . . . . . . . . 859

  . . . . . . . . . . . . . . . . . . . . . 860

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865

  

   869

  . . . . . . . . . . . . . . . . . . . . . . . 873

  

  . . . . . . . . . . . . . . . . . . . . . . 874

  

   877

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893

  . . . . . . . . . . . . . . . . . . . . . . . . 896

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903 905

  Copyright c ° 2004,

  CONTENTS Introduction

  Calculus consists of the study of limits of various sorts and the systematic exploitation of the completeness axiom. It was developed by physicists and engineers over a period of several hundred years in order to solve problems from the physical sciences. It is the language by which precision and quantitative predictions for many complicated problems are obtained. It is used to find lengths of curves, areas and volumes of regions which are not bounded by straight lines. It is used to predict and account for the motion of satellites. It is essential in order to solve many maximization problems and it is prerequisite material in order to understand models based on differential equations. These and other applications are discussed to some extent in this book.

  It is assumed the reader has a good understanding of algebra on the level of college algebra or what used to be called algebra II along with some exposure to geometry and trigonometry although the book does contain an extensive review of these things.

  If the optional sections and non standard sections are not included, this book is fairly short. However, there is a lot of non standard material, including the big theorems of advanced calculus.

  I have also tried to give complete proofs of all theorems in one variable calculus and to at least give plausibility arguments for those in multiple dimensions with complete proofs given in appendices or optional sections. I have done this because I am sick and tired of books which do not bother to present proofs of the theorems stated and either pretend there is nothing to prove, state that the proof is “beyond the scope of this book” say they will omit the proof, or worse yet give a specious explanation. For a serious student, mathematics is not about accepting on faith unproved assertions presumably understood by someone else but “beyond the scope of this book”. Nevertheless, it has become fashionable to care nothing about such serious students and to write books for the convenience of those who care nothing for explanations, those people who are forced to take the course to get general education credit for example. It is my intent that this should not be one of those books.

  Physical models are derived in the usual way through the use of differentials leading to differential equations which are introduced early and used throughout the book as the basis for physical models.

  I expect the reader to be able to use a calculator whenever it would be helpful to do so. Some introduction to the use of computer algebra systems is also presented and there are exercises which require the use of some form of technology. Having said this, calculus is not about using calculators or any other form of technology. I believe that when the syntax and arcane notation associated with technology are presented too prominently, these things become the topic of study rather than the concepts of calculus. This is a book on calculus.

  Pictures are often helpful in seeing what is going on and there are many pictures in this book for this reason. However, calculus is not about drawing pictures and ultimately rests

  INTRODUCTION

  which generalizes to higher dimensions where pictures are not available. Therefore, I have emphasized the algebraic aspects of this subject far more than is usual, especially those parts of linear algebra which are essential to understand in order to do multi-variable calculus. I have also featured the repeated index summation convention and the usual reduction identities which allow one to discover vector identities.

  

Part I

Preliminaries

  The Real Numbers

2.0.1 Outcomes 1. Understand the geometric and algebraic significance of a real number.

  2. Understand and solve inequalities and be able to use set notation.

  3. Understand the absolute value algebraically and geometrically and be able to solve inequalities involving the absolute value. Understand the triangle inequality.

  4. Understand well ordering of the natural numbers and the relation to mathematical induction. Be able to prove theorems using math induction.

  5. Solve systems of linear equations using row operations.

  6. Understand completeness of the real line and its significance.

  An understanding of the properties of the real numbers is essential in order to understand calculus. This section contains a review of the algebraic properties of real numbers.

  

2.1 The Number Line And Algebra Of The Real Num-

bers

  To begin with, consider the real numbers, denoted by R, as a line extending infinitely far in both directions. In this book, the notation, ≡ indicates something is being defined. Thus the integers are defined as

  Z ≡ {· · · − 1, 0, 1, · · ·} , the natural numbers, N ≡ {1, 2, · · ·} and the rational numbers, defined as the numbers which are the quotient of two integers. o n m such that m, n

  Q ≡ ∈ Z, n 6= 0 n are each subsets of R as indicated in the following picture.

  1

  2

  3

  4 −4 −3 −2 −1

THE REAL NUMBERS

1 As shown in the picture, is half way between the number 0 and the number, 1. By

  2

  analogy, you can see where to place all the other rational numbers. It is assumed that R has the following algebra properties, listed here as a collection of assertions called axioms. These properties will not be proved which is why they are called axioms rather than theorems. In general, axioms are statements which are regarded as true. Often these are things which are “self evident” either from experience or from some sort of intuition but this does not have to be the case.

  Axiom 2.1.1 x + y = y + x, (commutative law for addition) Axiom 2.1.2 x + 0 = x, (additive identity). Axiom 2.1.3

  For each x ∈ R, there exists −x ∈ R such that x + (−x) = 0, (existence of additive inverse).

  Axiom 2.1.4 (x + y) + z = x + (y + z) , (associative law for addition). Axiom 2.1.5 xy = yx, (commutative law for multiplication). Axiom 2.1.6 (xy) z = x (yz) , (associative law for multiplication). Axiom 2.1.7 1x = x, (multiplicative identity).

  −1 −1

  Axiom 2.1.8 For each x such that xx = 1.(existence of multiplica- 6= 0, there exists x tive inverse).

  Axiom 2.1.9 x (y + z) = xy + xz.(distributive law).

  These axioms are known as the field axioms and any set (there are many others besides R) which has two such operations satisfying the above axioms is called a field. Division and

  ¡ ¢

  −1

  subtraction are defined in the usual way by x y . It is assumed −y ≡ x+(−y) and x/y ≡ x that the reader is completely familiar with these axioms in the sense that he or she can do the usual algebraic manipulations taught in high school and junior high algebra courses. The axioms listed above are just a careful statement of exactly what is necessary to make the usual algebraic manipulations valid. A word of advice regarding division and subtraction is in order here. Whenever you feel a little confused about an algebraic expression which involves division or subtraction, think of division as multiplication by the multiplicative inverse as just indicated and think of subtraction as addition of the additive inverse. Thus,

  ¡ ¢

  −1

  when you see x/y, think x y and when you see x − y, think x + (−y) . In many cases the source of confusion will disappear almost magically. The reason for this is that subtraction and division do not satisfy the associative law. This means there is a natural ambiguity in an expression like 6

  − 3 − 4. Do you mean (6 − 3) − 4 = −1 or 6 − (3 − 4) = 6 − (−1) = 7? It makes a difference doesn’t it? However, the so called binary operations of addition and multiplication are associative and so no such confusion will occur. It is conventional to simply do the operations in order of appearance reading from left to right. Thus, if you see

  6 − 3 − 4, you would normally interpret it as the first of the above alternatives.

  In doing algebra, the following theorem is important and follows from the above axioms. The reasoning which demonstrates this assertion is called a proof. Proofs and definitions are very important in mathematics because they are the means by which “truth” is deter- mined. In mathematics, something is “true” if it follows from axioms using a correct logical argument. Truth is not determined on the basis of experiment or opinions and it is this

  2.1. THE NUMBER LINE AND ALGEBRA OF THE REAL NUMBERS

  

  precise manner. It is also the definitions and proofs which make the subject of mathemat- ics intellectually worth while. Take these away and it becomes a gray wasteland filled with endless tedium and meaningless manipulations.

  In the first part of the following theorem, the claim is made that the additive inverse and the multiplicative inverse are unique. This means that for a given number, only one number has the property that it is an additive inverse and that, given a nonzero number, only one number has the property that it is a multiplicative inverse. The significance of this is that if you are wondering if a given number is the additive inverse of a given number, all you have to do is to check and see if it acts like one.

  Theorem 2.1.10 The above axioms imply the following.

  1. The multiplicative inverse and additive inverses are unique. 2. 0x = 0,

  − (−x) = x, 3. (

  −1) (−1) = 1, (−1) x = −x 4. If xy = 0 then either x = 0 or y = 0. Proof:

  Suppose then that x is a real number and that x + y = 0 = x + z. It is necessary to verify y = z. From the above axioms, there exists an additive inverse, −x for x. Therefore,

  −x + 0 = (−x) + (x + y) = (−x) + (x + z) and so by the associative law for addition, ((

  −x) + x) + y = ((−x) + x) + z which implies 0 + y = 0 + z. Now by the definition of the additive identity, this implies y = z. You should prove the multiplicative inverse is unique.

  Consider 2. It is desired to verify 0x = 0. From the definition of the additive identity and the distributive law it follows that 0x = (0 + 0) x = 0x + 0x. From the existence of the additive inverse and the associative law it follows 0 = (

  −0x) + 0x = (−0x) + (0x + 0x) = ((

  −0x) + 0x) + 0x = 0 + 0x = 0x To verify the second claim in 2., it suffices to show x acts like the additive inverse of

  −x in order to conclude that − (−x) = x. This is because it has just been shown that additive inverses are unique. By the definition of additive inverse, x + (

  −x) = 0 and so x = − (−x) as claimed. To demonstrate 3.,

  ( 1 −1) (1 + (−1)) = (−1) 0 = 0

  There are certainly real and important things which should not be described using mathematics because

it has nothing to do with these things. For example, feelings and emotions have nothing to do with math.

THE REAL NUMBERS

  and so using the definition of the multiplicative identity, and the distributive law, ( −1) + (−1) (−1) = 0. It follows from 1. and 2. that 1 =

  − (−1) = (−1) (−1) . To verify (−1) x = −x, use 2. and the distributive law to write x + ( −1) x = x (1 + (−1)) = x0 = 0. Therefore, by the uniqueness of the additive inverse proved in 1., it follows (

  −1) x = −x as claimed.

  −1

  To verify 4., suppose x exists by the axiom about the existence of 6= 0. Then x multiplicative inverses. Therefore, by 2. and the associative law for multiplication,

  ¡ ¢

  

−1 −1 −1

y = x x y = x (xy) = x 0 = 0.

  This proves 4. and completes the proof of this theorem.

  2

  1 −3

  Recall the notion of something raised to an integer power. Thus y = y = 3 ×y and b

  b etc.

  Also, there are a few conventions related to the order in which operations are performed.

  ¡ ¢

  2

  2 Exponents are always done before multiplication. Thus xy = x y and is not equal

  2