Ceramic Nanotechnology Lecture 4 Characterization of Nano and Micro Particles

  Ceramic Nanotechnology Ceramic Nanotechnology Lecture 4 Lecture 4

  Characterization of Characterization of Nano and Micro Particles Nano and Micro Particles Prof.Dr. Prof.Dr. Ing - - Ing . .

  Kurosch Rezwan Kurosch Rezwan krezwan@uni - bremen.de

  • krezwan@uni bremen.de

  Bioceramics, FB4 Bioceramics, FB4 Universit Universit ä ä t Bremen t Bremen Am Biologischen Garten 2, IW3 Am Biologischen Garten 2, IW3 D - 28359 Bremen D 28359 Bremen - Tel: +49 421 218 4507 Tel: +49 421 218 4507 Fax: +49 421 218 7404 Fax: +49 421 218 7404 bremen.de - http://www.bioceramics.uni / bremen.de - http://www.bioceramics.uni / 1 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de ¾ ¾ Outline Course Outline Course „ „ Ceramic Nanotechnology Ceramic Nanotechnology “ “

  1. Introduction: Applications, Goals and Challenges

  2. Powder Synthesis and Conditioning

  3. Particle Interactions in Colloidal Systems

  4. Characterization of Nano- and Micro Particles

  5. Properties of Suspensions

  6. Stabilization of Suspensions and Additives I

  7. Stabilization of Suspensions and Additives II

  8. Colloidal Processing and Rheology

  9. Shaping Ceramics I: Bulk Materials

  10. Shaping Ceramics II: Foams

  11. Shaping Ceramics III: Thin Films

  12. Sol – Gel Technology: From Molecules to Advanced Ceramics

  13. Selected Applications of Ceramic Nanotechnology

  14. Summary 2 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de

  ¾ ¾ From Powder to Advanced Ceramics From Powder to Advanced Ceramics ? ?

  Bulk Materials

  ? ? ? ?

  Surface Micro Patterning Surface Coatings

  Colloid Crystals 3 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de ¾ ¾ Requirements for Ceramic Powder Synthesis Requirements for Ceramic Powder Synthesis

  Exact fixation of chemical composition • Production of specific particle sizes and particle size distributions • High sintering activity •

  • Economic synthesis: broad application/usability of powders
  • Environment-friendly and energy saving processes

  Properties / Requirements Impact on finished part Remarks

  particle size microstructure → < 1 μm particle size distribution homogeneity → narrow ± 10 % particle shape

  → uniform low impurity level in powder particles microstructure composition → low ppm range phase composition

  → defined absence of large size secondary phases crack formation/crack absence of agglomerates/aggregates propagation Processing properties surface properties e.g. of colloid surface 4 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de

  • Den
  • Morphology • Diameter & Size Distribution • Specific Surface Area • Surface & Bulk Composition • Crystal Phase

  5 Universität Bremen

  krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾ How to Characterize Nano and Micro Particles? How to Characterize Nano and Micro Particles?

  • Particle Morphology and Size Density Definition Particle Size Methods
  • Other Particle Properties Crystal Phase Zetapotential / IEP Elemental Composition Interfacial Tension

  6 Universität Bremen

  krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾ Outline Lecture Outline Lecture

  7 Universität Bremen

  krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾ Overview Methods Particle Size Measurements Overview Methods Particle Size Measurements

  8 Universität Bremen

  krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾ Overview Methods Particle Size Measurements Overview Methods Particle Size Measurements

  Resolution

  > 20 μm 1 nm - 5 μm

  50 nm – 1000 μm

  > 1 μm 1 nm – 100 μm

  10 nm – 1000 μm 50 nm – 1000 μm

  Method

  Sieving Light Scattering Laser Diffraction Coulter – Counter („Electrozone Sensing“) Microscope (Optical / SEM / TEM) Centrifuge Sedigraph with X-Ray Detection Acoustic Spectroscopy

  ¾ ¾ What is Porosity / Density? What is Porosity / Density? 9 krezwan@uni-bremen.de Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de ¾ ¾ Measuring the Density: Liquid or Gas Measuring the Density: Liquid or Gas Pycnometery Pycnometery 10 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de

  ¾ ¾ What is What is “ “ Particle Size Particle Size ” ” ? ? d : equivalent diameter eq 2-dimensional: circle with equivalent area as projection area of particle d eq

  3-dimensional: sphere with similar total volume as particle

  

X F : Feret diameter

Distance between 2 tangents

  X Fmin

to the particle contour

  X Fmax X : smallest feret diameter

  Fmin X : largest feret diameter

  Fmax 11 krezwan@uni-bremen.de Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de ¾ ¾ Particle Size Distribution Modes Particle Size Distribution Modes 12 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de

  ¾ ¾ Cumulative and Differential Particle Size Distribution Cumulative and Differential Particle Size Distribution cumulative volume distribution differential distribution d 50 Particle Diameter D Particle Diameter D The MEDIAN Diameter is called D .

  50 13 krezwan@uni-bremen.de Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de ¾ ¾ Example Bimodal Distribution Example Bimodal Distribution

  D ≈ 30 µm

  Median

  D ≈ 27 µm

  Mean 14 krezwan@uni-bremen.de Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de

  15 Universität Bremen

  krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾ Different Particle Size Definitions Different Particle Size Definitions volume distribution:

  the contribution to the mass is mostly caused by the bigger particles

  numerical distribution

  (each particle contributes) Different Measurement methods can result in different results!

  16 Universität Bremen

  krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾ Comparison number/volume distribution Comparison number/volume distribution

  volume distribution number distribution Emphasis on small particles due to their large number.

  Particles are weighted according to their volume

  ¾ ¾ Light Microscope / SEM / TEM Light Microscope / SEM / TEM Size Range

  > 1 µm > 10 nm SEM > 1 nm TEM

  Advantage

  Morphology directly observable No assumptions need to be made

  Disadvantage

  SEM/TEM expensive Poor Statistics

  The National Bureau of Standards has stated that at least 10,000 separate images (not Size Agglomerate: 5 µm particles) need to be measured for statistical

  Size Particle : 37 nm ! accuracy in image analysis 17 krezwan@uni-bremen.de Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de ¾ ¾ Sieving Sieving

  Size range > 20 µm Advantage very cheap

  “Sieving Towers” on a Disadvantage vibrating device Not suitable for submicron and nano particles

  Low resolution 18 krezwan@uni-bremen.de Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de

  19 Universität Bremen

  

2. They interfere mutually.

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾ Coulter Counter ( Coulter Counter ( “ “ Electro sensing Zone Electro sensing Zone ” ” ) ) Particles suspended in a weak electrolyte solution are drawn through a small aperture, separating two electrodes between which an electric current flows. The voltage applied across the aperture creates a "sensing zone". As particles pass through the aperture (or "sensing zone"), they displace their own volume of electrolyte, momentarily increasing the impedance of the aperture. the pulse is directly proportional to the 3-dimensional volume of the particle that produced it.

  krezwan@uni-bremen.de

  20 Universität Bremen

  Size Range 1 nm – 5 µm (Light Scattering) 50 nm - 5 µm (Laser Scattering) Advantage Small particles measurable Disadvantage Expensive, small particles may be concealed

  D et ec to r

  Scattered Light

  Strenghtened Position

  3. As the particles move, the intensity of the scattered lights are changed with time.

  1. The scattered lights from each particle reach to the to detector together

  krezwan@uni-bremen.de

  ¾ ¾ Particle Size: Light/Laser Scattering Particle Size: Light/Laser Scattering

  is calculated.

  hydrodynamic radius R H

  moving particles is obtained from the fluctuating scattering pattern. From the diffusion coefficient the

  diffusion coefficient D of the

  The

  Scattering of light by particles. Detector, shown in red, measures angles and light intensities.

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de

  Size range 1 - 100 µm Advantage In situ usable Disadvantage Small particle range

  ¾ ¾ Particle Size: X - Ray - Particle Size: X Ray Sedigraphy Sedigraphy

  Particles falling in a liquid medium. Yellow line coming from the left represents the X-ray source. Not all the X-rays reach the detector. Amount of X-rays adsorbed by the sample represents the mass of particles at specific size.

  Size Range

  10 nm – 100 µm

  Advantage

  Wide size range, Particle Size and Distribution are measured

  Disadvantage

  Particles to be measured should not be X- ray transparent 21 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de ¾ -

  X Ray Disc Centrifuge (XDC) ¾ X - Ray Disc Centrifuge (XDC)

  Spinning Disc

  Detector X – Ray Source 22 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de

  ¾ ¾ - -

  X X Ray Disc Centrifuge (XDC) Ray Disc Centrifuge (XDC)

  Spinning Disc

  Detector X – Ray Source intensity

  l signa

  I I exp( BC ( t )) = − t i

  time

  18 ln r / S η ( ) f i

  2 D = m

  2 − ⋅ t

  ω ( ρ ρ ) p f i percentage

  diameter 23 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de ¾ ¾ Acoustic Spectroscopy: Ultrasound Acoustic Spectroscopy: Ultrasound

  Size Range

  10 nm - 1000 µm

  Advantage

  Fast technique that can be applied in situ without altering the system.

  Disadvantage

  Only mono – and bimodal characterization possible.

  Sound Absorption as a function of Frequency is measured.

  [Adapted from Meier L., Zürich] 24 krezwan@uni-bremen.de Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de

  ¾ ¾ BET Measurement: Specific Surface Area BET Measurement: Specific Surface Area

  From the amount of gas adsorbed on the surface the surface area is calculated. Assumption: Monolayer Formation (Langmuir type of adsorption). 25 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de ¾ ¾ BET Apparatus BET Apparatus

  Gas Adsorption Method: Mostly N used

  2 Calculation Particle Diameter:

  6 D = A ⋅ ρ

  BET Particle Detection Range

  2

> 0.2 m /g

Advantage Best technique to determine the Specific Surface Area Disadvantage Particle Size Distribution not measurable 26 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de

  ¾ ¾ BET Surface BET Surface vs vs Particle Diameter for SiO Particle Diameter for SiO

  2 10000

  2

  6 ]

  D = m n

  A ⋅ ρ

  BET Particle 1000

   [ eter m 100 ia D icle

  10 rt a P

  1

  1 10 100 1000

2 A [m /g] BET

  27 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de ¾ General Note: Repeatability/reproducibility of Particle Size Me General Note: Repeatability/reproducibility of Particle Size Me asurements asurements ¾

  Relevance of Factors in repeatability and reproducibility

Dispersion

  “Novices in the size-measurement field must understand that most errors in size measurement arise through poor sampling and dispersion and not through

  Sampling instrument inadequacies.” Error

  Instrumentation [Advances in Ceramics, Vol 21: Ceramic Powder Science, page 721, The American Ceramic Society Inc. (1987)]

  0.01

  0.1

  1 10 100 1000 Particle Size ( μm) 28 krezwan@uni-bremen.de Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de

  • Particle Morphology and Size Density Definition Particle Size Met
  • Other Particle Properties Crystal Phase Zetapotential / IEP Elemental Composition Interfacial Tension

  29 Universität Bremen

  krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾ Outline Lecture Outline Lecture

  30 Universität Bremen

  krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾ Characterization of other Particle Properties Characterization of other Particle Properties

  Output

  Crystal Phase Elemental Composition Zetapotential / Isoelectric Point Interfacial Tension (Hydrophilicity / Hydrophobicity)

  Method

  X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) Colloidal Vibration Potential (CVP) Pendant Drop Method (PDM)

  31 Universität Bremen

  krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾

  X X - - Ray Diffraction (XRD): Determination of Crystal Phase Ray Diffraction (XRD): Determination of Crystal Phase Outputs

  Detection of crystal structure Crystallite size from peak broadening with Scherrer Equation

  2 Θ Counts/s

  32 Universität Bremen

  krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾

  X X - - Ray Fluorescence (XRF): Determination of Elemental Composition Ray Fluorescence (XRF): Determination of Elemental Composition Outputs

  Detection of Single Elements and their Ratio

  Typical XRF Spectra

  ¾ ¾ Principle X Principle X - Ray Fluorescence (XRF) Ray Fluorescence (XRF) -

1. An electron in the K shell is

  ejected from the atom by an external primary excitation x- ray, creating a vacancy.

  2. An electron from the L or M shell “jumps in” to fill the vacancy. In the process, it emits a characteristic x-ray unique to this element and in turn, produces a vacancy in the L or M shell. 33 krezwan@uni-bremen.de

  Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de The Colloidal Vibration Potential (CVP) Technique: Zetapotential and IEP ¾ ¾ The Colloidal Vibration Potential (CVP) Technique: Zetapotential and IEP

  CVP

  particle deflection ultra sound electrode electrode frequency

  ≈ 3 MHz ' ' C’: calibration constant

  ρ p − ρ m Z gZ s

  ϕ: volume fraction

  e CVP = C ' ⋅ ϕ ⋅ μ ⋅ ⋅ ' ' +

  μ : dynamic electrophoretic mobility e

  ⋅ m g s κ ρ Z * Z

  κ*: complex conductivity of dispersed system ρ : density particle p ρ m : density medium

  Information about:

  Z , Z : acoustic impedances of g s Zetapotential and the sound transducer and the

  Ø

  Isoelectric point (IEP) dispersed system

  Accuracy: ± 0.15 pH [Dukhin, Langmuir, 1999]

  ± 1 mV 34 krezwan@uni-bremen.de Ceramic Nanotechnology – L4

  Universität Bremen

  www.bioceramics.uni-bremen.de

  ¾ ¾ Zeta Potential of selected Oxides and the IEP Zeta Potential of selected Oxides and the IEP

  85 Silica

  75 Titania

  IEP towards

  65 Zirconia

  55 basic pH

  45 Alumina

  35

  25 V]

  15

  5 ial [m -5

  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

  11

  12 -15 tent -25 -35 Zetapo -45 -55 -65 -75 -85

  Definition Isoelectric Point (IEP):

  • -95
  • -105 pH where the Zetapotential equals pH Zero.
  • 35 krezwan@uni-bremen.de

      Ceramic Nanotechnology – L4

      Universität Bremen

      www.bioceramics.uni-bremen.de ¾ ¾ Pendent Drop Method: Pendent Drop Method: Hydrophilicity Hydrophilicity / / phobicity - phobicity -

      Task

      Determination of the interface and surface tension of liquids

      Output

      Measurement of the static interfacial or surface tension as a function of time or of temperature Measurement of the adsorption/diffusion

      ⎛ ⎞

      1

      1

    • p + Δ ρ gz = γ coefficients of surfactant molecules in

      O ⎜ ⎟

      oscillating/relaxing drops

      R R

      1

      2 ⎝ ⎠

      

    Typical measuring range

    where is the fitting parameter γ

      0,05 ... 1000 mN/m

      and the resulting surface tension 36 krezwan@uni-bremen.de Ceramic Nanotechnology – L4

      Universität Bremen

      www.bioceramics.uni-bremen.de

    • Δ = + ⎜ ⎟ ⎝ ⎠

      ” ”

      74 100 200 300 400 500 600 700 Time [s] S u rf ace Ten s io n [mNm -1 ] Water, Silica Alumina

      73

      72

      71

      70

      69

      68

      67

      66

      65

      64

      ) )

      “ “ pendant drop method pendant drop method

      37 Universität Bremen

      Surface Tension measured for Oxide Particle Suspensions (at pH 7 in water/air, (at pH 7 in water/air,

      Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de ¾ ¾ Surface Tension measured for Oxide Particle Suspensions

      krezwan@uni-bremen.de

      38 Universität Bremen

      where γ is the fitting parameter and the resulting surface tension t equilibrium

      ρ γ ⎛ ⎞

      1 O p gz R R

      1

      2

      1

      ¾ ¾ Interfacial tension measurement Interfacial tension measurement

      Ceramic Nanotechnology – L4 www.bioceramics.uni-bremen.de t

      krezwan@uni-bremen.de

      Titania Zirconia [Rezwan K., Diss. ETH 2005]

      ¾ ¾ Surface Tension measured for Oxide Particle Suspensions Surface Tension measured for Oxide Particle Suspensions Interpretation Interpretation

      75

      Ö Surface tension decreases in the following order

    70 SiO >TiO >Al O >>ZrO

      2

      2

      2

      3

      2 ion [mN/m] hydrophobicity Tens e c a

      65

      rf u S

      60 Water Silica Titania Alumina Zirconia

      decrease surface decrease surface tension tension 39 krezwan@uni-bremen.de

      Ceramic Nanotechnology – L4

      Universität Bremen

      www.bioceramics.uni-bremen.de ¾ ¾ Outline Course Outline Course „ „ Ceramic Nanotechnology Ceramic Nanotechnology “ “

      1. Introduction: Applications, Goals and Challenges

      2. Powder Synthesis and Conditioning

      3. Particle Interactions in Colloidal Systems

      4. Characterization of Nano- and Micro Particles

      5. Properties of Suspensions

      6. Stabilization of Suspensions and Additives I

      7. Stabilization of Suspensions and Additives II

      8. Colloidal Processing and Rheology

      9. Shaping Ceramics I: Bulk Materials

      10. Shaping Ceramics II: Foams

      11. Shaping Ceramics III: Thin Films

      12. Sol – Gel Technology: From Molecules to Advanced Ceramics

      13. Selected Applications of Ceramic Nanotechnology

      14. Summary 40 krezwan@uni-bremen.de

      Ceramic Nanotechnology – L4

      Universität Bremen

      www.bioceramics.uni-bremen.de