SI.3 Given that there are C integers that satisfy the equation |x – 2| + |x + 1| = B, find the value of C

  Individual Events SI A

  15 I1 R

  30 I2 a

  16 I3 m

  3 I4 m

  3

  3

  9 B

  3 S 120 b n 9 n

  2

  4 C

  4 T 11 c 36 p 2 p

  9 D

  8 U 72 d 42 q 1141 q

  8 Group Events

  17

  3 SG z q G2 A G3 A G4 P 540 G1

  3

  5

  13

  8

  1 R 6 k

  1 B

  13 R 4018 R

  2

  4

  5

  k w C Q S

  5

  25 46 320

  5

  3

  xyz p D T Q

  1 30 –1 5 

  2

  3

  2 Sample Individual Event (2008 Final Individual Event 1) SI.1 Let A = 15tan 44tan45tan46, find the value of A.

  Similar question 2012 FG2.1

  1 A  15  tan 44  1  = 15 tan 44 n 2008 ' s

           SI.2

  

  Let n be a positive integer and 20082008 2008 15 is divisible by A. If the least possible value of n is B, find the value of B.

  The given number is divisible by 15. Therefore it is divisible by 3 and 5. The last 2 digits of the given number is 15, which is divisible by 15. n 2008 ' s

           The necessary condition is: 20082008  2008 must be divisible by 3.

  2 + 0 + 0 + 8 = 10 which is not divisible by 3. The least possible n is 3: 2+0+0+8+2+0+0+8+2+0+0+8 = 30 which is divisible by 3.

  SI.3

  Given that there are C integers that satisfy the equation |x – 2| + |x + 1| = B, find the value of C

  Reference: 1994 HG1, 2001 HG9, 2004 FG4.2, 2008 HI8, 2008 FI1.3, 2010 HG6, 2012 FG2.3

  |x – 2| + |x + 1| = 3 If x < –1, 2 – xx – 1 = 3  x = –1 (rejected) If –1  x  2, 2 – x + x + 1 = 3  3 = 3, always true

  • –1  x  2 If 2 < x, x – 2 + x + 1 = 3  x = 2 (reject)
  • –1  x  2 only  x is an integer,  x = –1, 0, 1, 2; C = 4

  SI.4 In the coordinate plane, the distance from the point (–C, 0) to the straight line y = x is D , find the value of D.

  AxByC The distance from P(x , y ) to the straight line Ax + By + C = 0 is . 2 2 A B

   4  

  4 D The distance from (–4, 0) to xy = 0 is =   2 2

  2 2  8 ; D = 8

  2   1  

  1

  Individual Event 1

  4

  2 I1.1 Let a, b, c and d be the distinct roots of the equation x – 15x + 56 = 0.

  2

  2

  2

2 If R = a + b + c + d , find the value of R.

  4

  2

  2

  2 x

  • – 15x + 56 = 0  (x – 7)(x – 8) = 0

  a = 7 , b = 

  7 , c = 8 , d = 

  8

  2

  2

  2

2 R = a + b + c + d = 7 + 7 + 8 + 8 = 30

  I1.2 In Figure 1, AD and BE are straight lines with AB = AC and AB // ED. If ABC = R and ADE = S, find the value of S.

  ABC = 30 = ACB (base  isos. ) BAC = 120 (s sum of ) ADE = 120 (alt. s AB // ED)

  S

  = 120 S log F 1 

  2

3 I1.3 Let F = 1 + 2 + 2 + 2 +  + 2 and T = , find the value of T.

  log

  2

  121

  2 

  1

  2 3 120 121 F = 1 + 2 + 2 + 2 +  + 2 = = 2 – 1

  2 

  1

  121

  log  1  F  log

  2 T =  = 11 log 2 log

  2 I1.4 Let f (x) be a function such that f (n) = (n – 1) f (n – 1) and f (n)  0 hold for all integers n  6.

  f   T If U = , find the value of U.

   T

  1   f T  3 

  Reference: 1999 FI5.4 f (n) = (n – 1) f (n – 1) = (n – 1)(n – 2)f (n – 2) =  f

   

  11 10  9  8  f  

  8 U = = = 89 = 72

  

  11  f 1   11  3  10  f  

  8

  Individual Event 2 2009

   

  I2.1 Let [x] be the largest integer not greater than x. If a =

  3  2  16 , find the value of a.

   

   

  1  3  2  

  1 3 

  2

  2009 2009

     3  2  1  a = 3  2  16 = 0 + 16 = 16

     

   

  I2.2 In the coordinate plane, if the area of the triangle formed by the x-axis, y-axis and the line 3x + ay = 12 is b square units, find the value of b.

  3 3x + 16y = 12; x-intercept = 4, y-intercept =

  4

  1

  3

  3 Area = b =  4  =

  2

  4

  2

  1

3 I2.3 1 

  Given that x  2 b and x   c , find the value of c.

  3 x x

  Reference: 1990 FI2.2

  1

  1

  2

  2 x  1 

  3  x  2   9  x  

  11

  2

  2 x x x

  1

  1

  1

  3   2  c x   x x

      1   3   11  1  = 36    

  3

  2 x x x

      I2.4 In Figure 1,  = c,  = 43,  = 59 and  = d, find the value of d.

  A

  BAC =  (s in the same seg.) ACD =  (s in the same seg.)

  D

  BAD + BCD = 180 (opp. s cyclic quad.)

  c + d + 43 + 59 = 180 d = 180 – 43 – 59 – 36 = 42 ( c = 36) B C

  Individual Event 3

  4

  1 I3.1 Given that   ab . If m = ab, find the value of m. 6 

  2 3 

  2

  4 6 

  2

  1 3 

  2

  4

  1  =    6 

  2 3 

  2 6 

  2 6 

  2 3 

  2 3 

  2  

  4

  6

  2

  3

  2

   

  =  6  2 3 

  2 = 6  2  3 

  2

   

  = 6 

  3

  a = 6, b = 3; m = 6 – 3 = 3

  I3.2 In figure 1, PQR is a right-angled triangle and RSTU is a

  rectangle. Let A, B and C be the areas of the corresponding regions. If A : B = m : 2 and A : C = n : 1, find the value of n.

  A : B = 3 : 2, A : C = n : 1  A : B : C = 3n : 2n : 3

  Let TS = UR = x, QU = yPTS ~ TQU ~ PQR (equiangular)

  Method 2 SPTS : STQU : SPQR = A : C : (A + B + C) = 3n : 3 : (5n + 3)

  2

  2

  2 x

  Let SR = x, PS = z : y : (x + y) = 3n : 3 : (5n + 3)

  Join TR which bisects the area

  y

  1 xy 5  n

  3   (1),   (2) of the rectangle.

  x y n

  3 A

  3 A

  3

     B

  x

  5 n

  3 B

  2

  1 From (2): 

  1   (3)

  

2

y

  3 S z

  3

  3

   TPS

      (4) 5 n

  3 S x

  1

  1

   TSR

  Sub. (1) into (3): n  1 

  3  PTS ~ TQU (equiangular)

  2

  3 n  3  5 n

  3

  n z n

   

      3 n

  3  5 n

  3 C 1 x

2 A  

  1

   

   

  2

n = 3 = 9 (by (4))

  3 n  6 n  3  5 n

  3 6 n1 2 nn = 9

  I3.3 Let x , x , x , x be real numbers and xx . If (x + x )(x + x ) = (x + x )(x + x ) = n – 10

  2

  3

  4

  1

  2

  1

  3

  1

  4

  

2

  3

  2

  4

  and p = (x

  1 + x 3 ) (x 2 + x 3 ) + (x 1 + x 4 ) (x 2 + x 4 ), find the value of p.

  Reference:

  2002 HI7, 2006HG6, 2014 HG7

  2

  2 xx xx xx xxx xx xx x  

  1

  1

  1

  3

  1

  4

  3

  4

  2

  2

  3

  2

  4

  3

  4

  2

  2 xxx xx xx xx x

  1

  2

  1

  3

  2

  3

  1

  4

  2

  4

  (xx )(x + x + x + x ) = 0  x + x + x + x = 0  (1)

  1

  2

  1

  2

  3

  4

  1

  2

  3

  4 p = (x 1 + x 3 ) (x 2 + x 3 ) + (x 1 + x 4 ) (x 2 + x 4 )

  = –(x

  2 + x 3 )(x 2 + x 4 ) – (x 1 + x 3 )(x 1 + x 4 ) (by (1), x 1 + x 3 = –(x 2 + x 4 ), x 2 + x 4 = –(x 1 + x 3 ))

  = 1 + 1 = 2 (given (x

  1 + x 3 )(x 1 + x 4 ) = (x

2 + x

3 )(x 2 + x 4 ) = –1)

  I3.4 The total number of students in a school is a multiple of 7 and not less than 1000. Given that

  the same remainder 1 will be obtained when the number of students is divided by p + 1, p + 2 and p + 3. Let q be the least of the possible numbers of students in the school, find q.

  p + 1 = 3, p + 2 = 4, p + 3 = 5; HCF = 1, LCM = 60 q

  = 60m + 1, where m is an integer.  q  1000 and q = 7k, k is an integer. 60m + 1 = 7k 7k – 60m = 1

  k

  = 43, m = 5 satisfies the equation

  k = 43 + 60t; 7k  1000  7(43 + 60t)  1000  t  2  Least q = 7(43 + 602) = 1141

  Individual Event 4

  2

  3

2 I4.1 Given that x  x  1  . If m = x  x 2  2 , find the value of m.

  3

  2

  3

  2

  2 m = xx 2  2 = xxxxx  1  3 

  3 I4.2 In Figure 1, BAC is a right-angled triangle, AB = AC = m cm.

  Suppose that the circle with diameter AB intersects the line BC at

  2 D

  , and the total area of the shaded region is n cm . Find the value of n.

  AB = AC = 3 cm; ADB = 90 ( in semi-circle)

  1

  1

  1

  2 Shaded area = area of ACD = area of ABC =  

  3  3 cm

  2

  2

  2

  9

  n =

  4

  log

  1  

  1  

  I4.3 Given that p = 4 n , find the value of p.

   

  2009

  2  

   1 

  9

  p =

  4 n  4  = 9  

  2009

  4

  2  

  2

  2 I4.4 Let x and y be real numbers satisfying the equation xpyp  1 .

      y

  2 If k  and q is the least possible values of k , find the value of q. x

  3

  2

  2

  (x – 3) + (y – 3) = 1  (1)

  2

  2 Sub. y = k(x – 3) into (1): (x – 3) + [k(x – 3) – 3] = 1

  2

  2

  2

  (x – 3) + k (x – 3) – 6k(x – 3) + 9 = 1

  2

  2

  2

  2

  (1 + k )(x – 3) – 6k(x – 3) + 8 = 0  (1 + k )t – 6kt + 8 = 0; where t = x – 3 For real values of t:  = 4[3 k – 8(1 + k )]  0

  2 k  8

2 The least possible value of k = q = 8.

  Method 2 4

  2

2 The circle (x – 3) + (y – 3) = 1 intersects with

  the variable line y = k(x – 3) which passes 3.5 through a fixed point (3, 0), where k is the 3 H slope of the line.

  From the graph, the extreme points when the 2.5 C B variable line touches the circle at B and C.

  H (3, 3) is the centre of the circle. 2 In ABH, ABH = 90 ( in semi-circle) 1.5 Let HAB = , AH = 3, HB = 1, AB = 8 

  2 2 (Pythagoras' theorem) 1

  1 tan  = 0.5

  8 Slope of AB = tan (90 – ) = 8 O 1 2 3 A(3, 0) 4

2 Least possible k = q = 8

  Sample Group Event (2008 Final Group Event 2) GS.1 In Figure 1, BD, FC, GC and FE are straight lines.

  If z = a + b + c + d + e + f + g, find the value of z.

  a  + b + g + BHG = 360 ( s sum of polygon ABHG ) c  + f = CJE (ext.  of CFJ) c  + f + e + d +JHD = 360 ( s sum of polygon JHDE )

  H a  + b+ g + BHG + c+f+e+d + JHD = 720

  J a

   + b + c + d + e + f + g + 180 = 720

  z = 540

  6

  6

  6

  6

  6

  6 GS.2 If R is the remainder of 1 + 2 + 3 + 4 + 5 + 6 divided by 7, find the value of R.

  6

  6

  5

  4

  3

  2

  2

  3

  4

  5

  6 x + y = (x + y)(xx y + x yx y + xyy ) + 2y

  6

  6

  6

  6

  6

  6

  6

  6

  6 + 1 = 7Q

  1 + 2; 5 + 2 = 7Q 2 + 22 ; 4 + 3 = 7Q 3 + 23

  6

  6

  2 + 22 + 23 = 2(1 + 64 + 729) = 1588 = 7226 + 6; R = 6

  6

  6

  6

  6

  6

  6

  6

  6

  6

  6

  6

  6 Method 2

  1 + 2 + 3 + 4 + 5 + 6  1 + 2 + 3 +(–3) + (–2) + (–1) mod 7

  6

  6

  6

   2(1 + 2 + 3 )  2(1 + 64 + 729) mod 7 k  2(1 + 1 + 1) mod 7  6 mod 7 GS.3 If 14! is divisible by 6 , where k is an integer, find the largest possible value of k. We count the number of factors of 3 in 14!. They are 3, 6, 9, 12. So there are 5 factors of 3.

  k = 5

  1

  1

  1

  7 GS.4 Let x, y and z be real numbers that satisfy x + = 4, y + = 1 and z + = . y z x

  3 Find the value of xyz. (Reference 2010 FG2.2) Method 1 Method 2

  1 4  y

  1 

  1 From (1), x = 4 – = x    

   

  4

  1  

   y y y

   1 y

  

  1 

    (4)

  y    

  1

  2    x 4 y

  1 z

   y

  7 

  1

  7 

    

  4 y

  1

  3 x

  3  7 y x

  1  z =  (5) xy    

  (1)(2):

  1

  

4

  3 4 y

  1 z yz

  1

  1

  1 

  From (2): = 1 – y

  x y      

  3 z z yz

   

  1 x z =  (6)

x  

  Sub. (2) into the eqt.:

  3 1  y xyz

  1 7 yx

  (5) = (6): =

  x    

  Let a = xyz, then

  

3

  4 1  y 3 4 y

  1   a

  1 28 y  7  3 y 7 y

  4

  

7

  1

  =

  4   

  y   y   

  (2)(3):         

  5 1  y

  3 4 y

  1  

  3 a

  3 3 a

  3    

  3(4y – 1) = (1 – y)(25y – 7)

  z

  25

  1

  25 

  2 z   z   

  (1)(3):  

  4     4   

  6

  12y – 3 = –25y – 7 + 32y

  a 3 a

  3  

  2

  25y – 20y + 4 = 0

  1

  7

  2

a

  

1

1 100   

  (4)(5)(6):   

  1         4 

  (5y – 2) = 0

  

a a a

   3   

  3

  2 y = a

  1 7 a

  3 4 a  1 100    

  

  5 2 a

  3

  3

  2

  1

  5

  3

  2 Sub. y = into (6): z = = 2 which reduces to 28a – 53a + 22a + 3 = 0 

  5

  1 5

  3

  2

   (a – 1) (28a + 3) = 0

  2

  5

3 Sub. y = into (1): x + = 4  x =

  a = 1

  5

  2

  2

  2

  5

  3   xyz = = 1

  5

  3

2 Method 3 (1)(2)(3) – (1) – (2) – (3):

   

  1

  1

  1

  1

  1

  1

  1

  28

  22

  xyzxyz      xyz       xyz  1 

  2  

  x y z xyz x y z

  3 3 xyz  

  xyz = 1

  Group Event 1 G1.1 Given some triangles with side lengths a cm, 2 cm and b cm, where a and b are integers and a  2  b. If there are q non-congruent classes of triangles satisfying the above conditions, find the value of q.

  When a = 1, possible b = 2 When a = 2, possible b = 2 or 3  q = 3 3 x

  4  G1.2 Given that the equation x  has k distinct real root(s), find the value of k.

  x x

  2

  2 When x > 0: x – 4 = 3xx – 3x – 4 = 0  (x + 1)(x – 4) = 0  x = 4

  2

  2 When x < 0: –x – 4 = –3xx – 3x + 4 = 0; D = 9 – 16 < 0  no real roots. k = 1 (There is only one real root.) y x

  7 G1.3

  Given that x and y are non-zero real numbers satisfying the equations   and

  12 y x xy = 7. If w = x + y, find the value of w. xy

  7

   xy   xy = 144 The first equation is equivalent to 

  12 xy

  12

  144

  2 x  144   x

  Sub. y = into xy = 7: 7 – 7x – 144 = 0  (x + 9)(x – 16) = 0

  x x x

  = –9 or 16; when x = –9, y = –16 (rejected  x is undefined); when x = 16; y = 9

  w

  = 16 + 9 = 25

  xy

  7 Method 2 The first equation is equivalent to   xy  12  xy = 144  (1) xy

  12

   xy = 7 and x + y = w

  ww

  7

  7  x = , y =

  2

  2

  w w

    7    7  Sub. these equations into (1): = 144

     

  2

  2    

  2 w – 49 = 576  w =25 y x

  7

   From the given equation   , we know that both x > 0 and y > 0

  12 y x

   w = x + y = 25 only

  1

  2 G1.4 Given that x and y are real numbers and x   y  1  .

  2 Let p = |x| + |y|, find the value of p.

  Reference: 2005 FI4.1, 2006 FI4.2, 2011 FI4.3, 2013 FI1.4, 2015 HG4, 2015 FI1.1

  1

  2 x y

  Both  and  1 are non-negative numbers.

  2 The sum of two non-negative numbers = 0 means each of them is zero

  1

  1

  3

  x = , y = 1; p = + 1 =

  2

  2

  2

  Group Event 2

  5 G2.1 Given tan  = , where 180    270. If A = cos  + sin , find the value of A.

  12

  12

  5 cos  =  , sin  = 

  13

  13

  5

  17 A =  12  = 

  13

  13

  13 G2.2 Let [x] be the largest integer not greater than x.  

   If B = 10  10  10  10  , find the value of B.

   

  Reference:

  2007 FG2.2x

  3  3  3  3  3  3  

  Let y =

  10  10  10 

  2 y

  = 10 + 10  10  10  = 10 + y

  2 y

  • y – 10 = 0 1 

  41 1 

  41

  y = or (rejected)

  2

  2

  7 1 

  41

  6  41  7   

  4

  2

  2 13 .

  5  10  10  10  10    14 ; B = 13 G2.3 Let ab = ab + 10. If C = (12)  3, find the value of C.

  12 = 2 + 10 = 12; C = 123 = 36 + 10 = 46

  G2.4 In the coordinate plane, the area of the region bounded by the following lines is D square units, find the value of D.

  L 1 : y – 2 = 0 L 2 : y + 2 = 0

  L 3 : 4x + 7y – 10 = 0

  L : 4x + 7y + 20 = 0

4 C(-1, 2)

  D(-8.5, 2) y = 2 2 4x + 7y - 10 = 0 4x + 7y + 20 = 0

  • -5
  • 5 O -2 y = -2 A(-1.5, -2)

    B(6, -2)

      It is easy to show that the bounded region is a parallelogram ABCD with vertices A(–1.5, –2),

      B (6, –2), C(–1, 2), C(–8.5, 2).

      The area D = |6 – (–1.5)||2 – (–2)| = 7.54 = 30

      Group Event 3 G3.1 Let [x] be the largest integer not greater than x.

      2008  80  2009  130  2010  180   If A = , find the value of A.

      2008  15  2009  25  2010 

      35   3 3

      2008  4015 Reference: 2008 FGS.4 Calculate the value of . 3 3 2007  4015

      Let a = 2009, b = 130, c = 25 2008  80  2009  130  2010  180  a  1  b  50   ab   a  1  b  50 

       2008  15  2009  25  2010  35  a  1  c  10   ac   a  1  c  10 

      abb

      50 a  50  ababb  50 a

      50 =

      acc

      10 a  10  acacc  10 a

      10 3 ab  100 3  2009  130  100 783610

      =    5  d 3 ac  20 3  2009  25  20 150695 where 0 < d < 1; A = 5

      G3.2  

      There are R zeros at the end of

      99

      9

      99

      9

      1

      99 9 , find the value of R.         

      2009 of 9 ' s 2009 of 9 ' s 2009 of 9 ' s      

          

      99

      9

      99

      9

      1

      99 9 =

      1  1  1  1  2 

      1   

               s s s 2009 of ' 2009 of ' 2009 of '       s s s

      2009 of 9 ' 2009 of 9 ' 2009 of 9 '       2009 2009 2009

      = (10 – 1) (10 – 1) + 210 – 1

      4018 2009 2009 4018

      = 10 – 210 + 1 + 210 – 1 = 10

      R = 4018 G3.3 In Figure 1, a square of side length Q cm is inscribed in a semi-circle of radius 2 cm. Find the value of Q.

      2

      2 2  Q

      Q

       + Q 4 (Pythagoras’ Theorem)  

      2  

      2

      5Q = 16

      4

      5 Q = 4 

      5

      5 G3.4 In Figure 2, the sector OAB has radius 4 cm and AOB is a right angle. Let the semi-circle with diameter OB be centred at I with IJ // OA, and IJ intersects the semi-circle at K. If

      2 the area of the shaded region is T cm , find the value of T.

      (Take  = 3)

      OI = 2 cm, OJ = 4 cm OI

      1 cos IOJ = 

      OJ

      2 IOJ = 60

      S BIJ = SS OIJ sector OBJ

      1  1 

      2

      2

      = (  4    2  4 sin 60 )cm

      2

      3

      2 

      2

      = ( 8 

      2 3 ) cm

      3 Shaded area = S BIJS BIK 8 

      1  2 

      2

      = 

      2 3    2 cm  

      3

      4   5   

      2

      = 

      2 3 cm  

      3  

      T = 5 

      2

      3

      Group Event 4 G4.1 Let P be a real number. If

      3 

      2 P  1 

      2 P  2 , find the value of P.

      2

      2

      3 

      2 P  2  1 

      2 P

          3 

      2 P  4 

      4 1 

      2 P  1 

    2 P

      4 1  P 2 

      2

      4(1 – 2P) = 1

      3 P =

      8 G4.2 In Figure 1, let AB, AC and BC be the diameters of the corresponding three semi-circles. If AC = BC = 1 cm

      2

      and the area of the shaded region is R cm . Find the value of R.

      Reference: 1994 HI9 AB =

      2

    2 Shaded area = R cm = S circle with diameter AC – 2 S segment AC

      2

      2

         

      1

      1

      2

      1

      1  

      2

       

      R =      

      1 =  

       

      2

      2

      2

      2

      2    

         

      G4.3

      In Figure 2, AC, AD, BD, BE and CF are straight lines. If A +B +C +D = 140 and a+b + c = S, find the value of S. CFD = A + C (ext.  of ) AEB = B + D (ext.  of )

      a  = A + AEB = A + B + D (ext.  of ) c  = D + CFD = D + A + C (ext.  of ) b

       + A + D = 180 (s sum of )

      a  + b + c = A + B + D + 180 – (A + D)

      D + A + C + = A + B + C + D + 180

      S = a + b + c = 140 +180 = 320

    2 G4.4 Let Q = log

      2 2  2  1 , find the value of Q.

        2  2 

      1

      log 2 

      3

        Q =

      log 2 

      3

        log 2 

      3  

      =

       2  3  log 2  3 

        2 

      3  

      log 2 

      3

       

      =

      1 log 2 

      3 log 2 

      3

       

      = = –1  log 2 

      3

       

      2 

      3

       Method 2 Q = log

      2  3 

         2 

      3

      

      2

      3

       

      1 = log

      2 

      3

      

      2

      3

        

      1

      = log

      2  3 = –1  

      2 

      3