the treatment of the waste water

ieraal

of Biological, Ecological and Environmental Sciences (IJBEES) Vol. 2, No. 1, 2012 ISSN 2271

-

4gg4.

tment of the Waste Water of urea Fertilizer
t with a Combined Process of Advanced
tion and Microalge chlorella pyrenoidosa,
hloropsis sp. and Pseudomonas fluorescens
Bacteria
Marhaini, M. Fatzal, M. HattaDahlan, Arinafril, and Marsi

IL

rtivir;,- of urea fertilizer industry with potential
pollutiou is the activity of wastewater
=rys. The main by product of the fertilizer urea
cmtaining mostly liquid ammonia. According to

afuisdy of Environmental Affairs No. I22 of the
a *E Decnee of the Govemoor of South Sumaha
L €a&e 1'ear 2005, the maximum pollution load for
i*su1 b liquid amrnonia level of 0.75 kg/ton (50
dn0 - 9.0. The treatnetrt of the wastewater of urea

ria. bi'means of combining chemical and bilogical
-dc{og, of wastervater heatnett by advanced
Bsing strcng oxidizing agents. The process

abined with or followed

trri

-fr

of

by biological Foc€ss€s
such as microglae Chlorella pyrenoidoso,


m

dre treannent of the wastenater of the urea

-iB Feilton reagent and advanced oxidation
r itms: the c4acity to degrade NH3 is 95yo and
a ab of l: l0 and the use Pse xdomonos
fluorescens

rb rdtue and nitrite as much as 92,630/o microalgae
a muclr as 9Y/o and Nannochloropsls sp. as

Oxidation Proccss (AOP), Chlorella

\Eociloropsis

sp, Pseudomonas fluorescens

ofDoctoral Program in the Environmental Science of

bdxesia, pltone Olll-354222. fux 07t l-3203t0

H

ahm,co.id

Engineering, Faculty

of

+aail faizat sa@ahm.coi.id

Cb*i:at

Engineering Srirvijaya

Engineering Faculty of Engineering Sriw-ijaya

- :-EaiI halogeneted@hotmail.com
P*-rs and Diseases, Faculty of Agriculturg Sriwijaya

:-.,reil arinafril@S. unsri.ac.ad
=a =LTrcs, FBculty ofAgriculture, Sriwijaya University

=rs=::e

I

950@yahoo.com

I.

INTRODUCTION

rf'tHERE are six ura fertilizer plants in

Indonesia whose
wastewater is characterized with high levels of urea and
ammonia-nitrogen. The treafinent of wastewater with high
levels of urea and ammonia-nitrogen is one of the problems
faced by urea fertilizer plants in Indonesia- Although the waste

water of urea fertilizer plants is not considered as hazardous
materials compound, it may cause serious damage to the

I

ecosystem of water bodies. Industrial activities of urea
fertilizer plants with the potential impact of causing
environmental pollution is the disposal activities of

'vyastewatcr

into the watcrs. The cfforts to improve wastewater
treatrnent by separating ammonia have been done by using
variety of me&ods such as: Ion Exchange l2ol, breafooint
chlorination [12], aerobic-nitrification and anaerobic-

denitrification electron Ul, water striping Pel, fluidized-bed
reactor t'q, anammox (Anaerobic Ammonium Oxidationl l2r1lBl, c ombined nitrification-deryllrificotion
and microalgae l4l,
membrane reactors (Mtpl txl. These ammonia separation

methods have limitations, such as not being able to reduce the
arnount of ammonia up to safe concentration level, needing

huge cost and tlre application of some of these methods in
practice still encounters obstacles. This constraint is mainly
due to the specific capacity of NH3-N removal is still so low
that the output process is still higher dran the quality standards
that have been set,

Joumal of Biological, Ecological and Environmental Sciences (UBEES) Vot. 2, No. 1, 2012 ISSN ZZTT

dg

6 ltol

biological waste treatment
notrun optimally or will be impaired
H mmpounds are found in the wastewater
Frfrrrnance of a waste treatment facility. In
of the wastewatsr of the urea fertilizer

W combining chemical and biological

rill

-

processing technolory applied in this

&idation Proces (AOP) or advanced
of wastewater treahent which is a
techlogl with advanced oxidation
oxidator. This process of oxidation can

r flosred by biologicat pnccesses involving
d e microalgae Chlorella pyrenoidosa,
tp. and the bacterium Pseudomonas
l- Lf,rrmws

fFB
tt*


-

-

4394

Waste water from in vitro reagen! flowed into aguarium /
botolaerasi (aguarium microalgaq bacten1 bacteria +
microalgae), the aerobic process. Later on leave for 7-9
dayr, because the growth of microorganisms reach
stationary phase at 4-6 days- So that microorganisms

(bacteria

and microalgae) cill

decompose organic

substances contained in waste water


Water processe{ the water that comes from aguarium /
aeration bottle, then analyzed OIH3-N, ure4 nitratg nitritq
TKN, pH, COD, TSS), which is usefirl to know t}e quality
of the waste water from some of the previous pro6s .

C. Circuit

Researeh Tool

AND METHoDs

eis shrdy are volumetric flask, pH metel
Spechophotometer, scales, aerator,

tubing measures % diameters,
ft,oscope, fluorescent lamp and the culture
Prni dishes, transparent millimeter paper.
ueeded are water, distilled rvater, Nessler
deaveo liom W-ettand area ofnihogen

rzenoidosa and Nannochloropsis sp,
cultures
the uncontaminated

:
*= =-re
in
--ei:--* or other organisms. Water

used is
sea *'ater and fresh water) as the main
=€ \-zrxxloropsis sp with 3% salinity, while
I 7 csFIr+OsN +

9.75 0u

i4)

TABLEV
TREATMENT WASTEWATER UREA FERTILIZER

REAGENT AND MICROALGE C}/Z ORELLA
XEUDOMONAS FLUOREK ENS BACTERIA 2500,
I5OO PPM

Initial

23
la56
o,9?
0,g16

t51,83

tor

t,3

73.12
1620
o-57
0,767
7"16.13
93

J9

0,3?5

o.7l
0-062

2r1,99t

t*

7:'
0,ox
205

o:6
0-056

9t,
l3E

FeSOr (gram)

li00,0l

r,r2l

4lJ3

0230

1,761

&1,56

76i-90

59

59

Im

83

5})

tt5

ll5

0.0
6ff).6i
2t.21
q7?9
30tr0
ll9
69

0,0(!1

0,61

0,729
439,274

0ffi

99
({)

l05

0,003
59
o,t6
0J97
2.309
I0l
50

103.89

0J6

8-0
0,07E

t,:-:0

9,7

%J3

2?6)'

IZ!,78
182323

ror,E9
,62

100

0,0
0-0

319E
0,97
0,0

lt4

62

E,}
0.001

q0.

q?J

0,0

o.o

o,o

0,9t

I

0.074

q346

llt

6,tlE

[1]

o,o

1f,5

It4

|r

Science

[3]
[4J
[5]

[7]

I :4,

of 1500 and 2000 ppm.
of rvaste water of urea fertilizer plants by

at a concentration

&anced oxidation using microalgae Chlorella
Nanncrchloropsis

ad

d

sp.

PseruJomonas

the syners/ between microalgae Chlorella
and bacteria Pseudomonas fl uore sce n results
of pH, NHrN, Urea, TKN, Nitrate and
an increase of levels of TSS and COD. And
tEatrnent was using Pseudomonas Jluorescen

l8 :195-2M

hydrogen

http://wuJuJ.h202.comlaoolications/ind ustrialwastewater/Fentonsreae
ent.html. (10 Desember20l l)
tl0l Liang Li and Yan Liu, 2009 Ammonia Removal in Electruhemical
Oxidotion: lL{echanism and pseudo-kinetics, Joumal of }Iazardous
Materials, 2009, vol t61 hal. 1010-1016
il l l Liu F, Han W. 2004. Reuse strategy of r+astewater in pra$,n nursery by
microbial remediation Aquculture 230 : 281-296
[12] Matsko, T. N. 1984. Breakpoint Chlorinarion Control System, U.S. patent
4,43s,91.

tl6l

&e Minister of Environmental Affairs of the
Indonesia No.l22 of the year 2004 and the
South Sumatra Governor No.l8 of of the year

986;5 I :93&-945

peroxide.

and ammonia-N. The bacteria utilize the
produced by or derived from dead microalgae
Ece for the synthesis of new cells and to
Gg/ to form the final product such as CO2,

d

1

[9] Indurial Wastswater, 20O7. Feaion's reagent: iron-catalyzed

srurc€ of nitrogen that can be used by the

between FeSOa: H2O: in teating waste water

4394

Anderson I C, LevineJ S. Relative rates ofnitric oxide and nitrous oxide
prodwtion by niEifiers, denitrifiers, aad nitrate respirers. Appl Environ

Microbiol.

irate

frflizer plant using traditional Fenton rBagent
!--ts the quality standards of waste water quality

-

Agustina, et al, 201I, Pengola]nn Air Limbah pewarna Sintetis Dengan
mengguukan Reagent Fento{L prosiding Seminar NasionatAvoER k;_3
Palembang 26.27 Oktober 201I
t3] Avnimelech Y. 1999. Carbon/nitrogen ratio as a control element in
aquacuJture system. Aquaculture l7 6, 227 -235
t41 Boyd CE 1982. Watex quality ztanagernent for pond fish culrure.
Arnsterdam : ElsevicrScientific publ. Co
[5] Colq G"A. Textbook of Limnology, Waveland press Inc., Illinois. i 994
[6] Coombs, J, and Hall, D,o. 1982. Techniques in Bioproductivity and photosynthesis, Perganron Press Ltd, Oxford.
L'l'l Danks, S,IvI-, Evans, E,H, and Whittaker, p,ar 1983, phoosynthetic
Systems, Structure, Funciion and Assembly,John Wiley and Sons Ltd
Chicests.
i8l Erler, Dirk.,Putth songsangjinda Teeyaporn Kearvtarvee, Kanit
Chaiyakum. 2005. F.elimimny investigation into the elfect of carbon
addition on growt\ water quality and nutrien dynamics in zero
exchange shnmp (Pemeusmotdon\ culture system. Asian Fisheries

62

Se process of respiration and synthesis.
@ as a carbon source for photoqynthesis.

2012 ISSN ZzTt

[2]

3?-98
0.97

t.597
o,0

,

REFERENCES

6,O16

9

1

Metcalf daa Eddy. 1991. Wasrewaler engineering: trearm€or, disposal,

and reuse. McGraw-Hill, New york
Masser MP, James R. Thomas ML. 1999. Recirculating Aquaculture
Tank Production Systems, Management of Recirculating Systems.
Southern Regional Aquaculture Center. No. 452
Mulder, A., A. A. van de Graat, L. A. Robertson, and J. G. Kuenen. 1995.

Anaerobic Ammonium Oxidation Discovered

in a

DenitriSing

Fluidized bed Reactor. FEMS Microbiol. Ecol. l6177-18r'.
Mclntosh RP. 2001. Changing paradigms in shLrimp farming :
establishrnent of h€torofophic bacterial communities. Global
Aquaculture Alliance
Novotny V dan Olem H. 1994. Warer quality, prevenrio4 identificatio4
and management ol diffuse pollution. Van Nostrasns Reinhold. New

York

[8]
[l9]

Peavy H.S, D.R Rorve and G. Tchobanoglous. 1986. Environmental
Engineering. Ivlc. Graw Hill-Book Company, Nerv york.

Polle, J,, S, Kanakagiri, J,& Benemann, A, Melis. 1999, Marimizing
Photosyntlrctic Eficiencies and Hydrogenproductiofl by microalgal
culturcs, Proceadings of thc 1999 U,S DOE Hydrogcn prog, Rcview
NREI-/CP-57G26938.
[20] Reexra, N., Ion Exchange, U.S. Patent 3,793 ,193,1974
[21] Srous, M., E. van Gervan, J. G. Kuererq and M. JetterL 1992. EftecB of
Aerobic and Microaerobic Conditions on Anaerobic AmmoniumOxidizing (Anammox) Sludge. Appl. Environ. Microbiol. 63:244$-2448

[22] CambridgeUniv, Press
f23l Savnr, J,R. 1173. lroriJt^rut uf r}ryuutugucl fifcdruus, €.rd(us
and Growthllleasurernent

r)/rrrrrurA

Van de Graaf, A.A., de Bruijn, P., Robertson,

L.A., Jeflen, M.S.M., Kuenen, J.G.t996. Aurorrophic Growrh of
NnaerobicAmmonium-Oxidizing Micl+organisms in a Fluidized Bod

Ractor Micrcbiologt

I 4 2,

S.

21871196

[2a] Van Wyk P, Scarpa J. 1999. Water Quality

Requirements and
Management. Di dalam: Van \ilyk P, Davis-Hodghins R, l_aramore KL,
Main J, Mountain, Scarpa J. Farming Marine Shrimp in Recirculating
fteshwaler systems. http://www.hboi.edr/aoua./trainins pubs.html
September 201

l).

(I

[25] Wardhany, D.K dan F. Ayuningtyas. 2008. Pengolahan Limbah Cair
Pabrik Pupuk Urea dengan Menggurnkan Proses Gabungan Nitrihkasidenitrifrkasidan Microalgae. JunrsanTeknik Kimia Fakultas Teknik,
Universitas Diponegoro.

.b1;.nal of Biologhat, Ecological arx, Environmential Scbnces (UBEES) Vol. 2, No. 1, 2012 ISSN 2277

Catarin4 Brazil. tAuthor for

C. 2006. Using mlasse to control imrganic

io

aquaculture

Ponds.

tr{ 20O3, Fenton and ?hoto-Fe{ton oxidation
. Oeparamento de EngenhariaQulmica e

IJnivcrsi&& Federal dc Sarrta Catarina,
Trisdade- 8eXe900, Floriandpolis, Santa

t2El

-

/+3S4

correspondence.e-mail:

regin@nq.ufsc.br
TkrR f,-Cndn, Z; Naq J. Lnmg It, li. G. 2010. Inte€rative Membran
Coagulation Adsorption Biorealitor (MCABR) for Enhanced Organic
Matter Rernoval i8 Drinking TreaEnant,

2l

l.

Membn Sci 2010, 352' 205'

t29I Zibrid4 J.1987. Removal of Armoia from Wastewatcr, U.S. Patcnt 4