Quantum Mechanics Mathematical Structure and Physical Structure Problems and Solutions

  

Quantum Mechanics

Mathematical Structure

and

Physical Structure

  

Problems and Solutions

John R. Boccio

Professor of Physics

  

Swarthmore College

April 9, 2012

  Contents

  33 4.22.8 Functions of Operators . . . . . . . . . . . . . . . . . . . .

  27 4.22.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . .

  28 4.22.3 Orthogonal Basis Vectors . . . . . . . . . . . . . . . . . .

  29 4.22.4 Operator Matrix Representation . . . . . . . . . . . . . .

  30 4.22.5 Matrix Representation and Expectation Value . . . . . .

  31 4.22.6 Projection Operator Representation . . . . . . . . . . . .

  32 4.22.7 Operator Algebra . . . . . . . . . . . . . . . . . . . . . . .

  34 4.22.9 A Symmetric Matrix . . . . . . . . . . . . . . . . . . . . .

  27 4.22 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  34 4.22.10 Determinants and Traces . . . . . . . . . . . . . . . . . .

  35 4.22.11 Function of a Matrix . . . . . . . . . . . . . . . . . . . . .

  36 4.22.12 More Gram-Schmidt . . . . . . . . . . . . . . . . . . . . .

  37 4.22.13 Infinite Dimensions . . . . . . . . . . . . . . . . . . . . . .

  38 4.22.14 Spectral Decomposition . . . . . . . . . . . . . . . . . . .

  39 4.22.15 Measurement Results . . . . . . . . . . . . . . . . . . . .

  27 4.22.1 Simple Basis Vectors . . . . . . . . . . . . . . . . . . . . .

  Dirac Language

  3 Formulation of Wave Mechanics - Part 2

  7 3.11.6 Uncertain Dart . . . . . . . . . . . . . . . . . . . . . . . .

  1 3.11 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  1 3.11.1 Free Particle in One-Dimension - Wave Functions . . . . .

  1 3.11.2 Free Particle in One-Dimension - Expectation Values . . .

  3 3.11.3 Time Dependence . . . . . . . . . . . . . . . . . . . . . .

  5 3.11.4 Continuous Probability . . . . . . . . . . . . . . . . . . .

  6 3.11.5 Square Wave Packet . . . . . . . . . . . . . . . . . . . . .

  10 3.11.7 Find the Potential and the Energy . . . . . . . . . . . . .

  4 The Mathematics of Quantum Physics:

  11 3.11.8 Harmonic Oscillator wave Function . . . . . . . . . . . . .

  12 3.11.9 Spreading of a Wave Packet . . . . . . . . . . . . . . . . .

  13 3.11.10 The Uncertainty Principle says ... . . . . . . . . . . . . . .

  18 3.11.11 Free Particle Schrodinger Equation . . . . . . . . . . . . .

  19 3.11.12 Double Pinhole Experiment . . . . . . . . . . . . . . . . .

  19 3.11.13 A Falling Pencil . . . . . . . . . . . . . . . . . . . . . . .

  24

  40 ii CONTENTS 4.22.16 Expectation Values . . . . . . . . . . . . . . . . . . . . . .

  40 4.22.17 Eigenket Properties . . . . . . . . . . . . . . . . . . . . .

  96 6.19.5 Is it a Density Matrix? . . . . . . . . . . . . . . . . . . . .

  87 5.6.14 Matrix Observables for Classical Probability . . . . . . . .

  88

  6 The Formulation of Quantum Mechanics

  91 6.19 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  91 6.19.1 Can It Be Written? . . . . . . . . . . . . . . . . . . . . . .

  91 6.19.2 Pure and Nonpure States . . . . . . . . . . . . . . . . . .

  92 6.19.3 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . .

  94 6.19.4 Acceptable Density Operators . . . . . . . . . . . . . . . .

  97 6.19.6 Unitary Operators . . . . . . . . . . . . . . . . . . . . . .

  79 5.6.12 Modeling Dice: Observables and Expectation Values . . .

  97 6.19.7 More Density Matrices . . . . . . . . . . . . . . . . . . . .

  99

  6.19.8 Scale Transformation . . . . . . . . . . . . . . . . . . . . . 101

  6.19.9 Operator Properties . . . . . . . . . . . . . . . . . . . . . 102

  6.19.10 An Instantaneous Boost . . . . . . . . . . . . . . . . . . . 103

  6.19.11 A Very Useful Identity . . . . . . . . . . . . . . . . . . . . 105

  6.19.12 A Very Useful Identity with some help.... . . . . . . . . . 106

  6.19.13 Another Very Useful Identity . . . . . . . . . . . . . . . . 108

  85 5.6.13 Conditional Probabilities for Dice . . . . . . . . . . . . . .

  77 5.6.11 The Poisson Probability Distribution . . . . . . . . . . . .

  41 4.22.18 The World of Hard/Soft Particles . . . . . . . . . . . . . .

  57

  43 4.22.19 Things in Hilbert Space . . . . . . . . . . . . . . . . . . .

  45 4.22.20 A 2-Dimensional Hilbert Space . . . . . . . . . . . . . . .

  47 4.22.21 Find the Eigenvalues . . . . . . . . . . . . . . . . . . . . .

  49 4.22.22 Operator Properties . . . . . . . . . . . . . . . . . . . . .

  50 4.22.23 Ehrenfest’s Relations . . . . . . . . . . . . . . . . . . . . .

  51 4.22.24 Solution of Coupled Linear ODEs . . . . . . . . . . . . . .

  53 4.22.25 Spectral Decomposition Practice . . . . . . . . . . . . . .

  55 4.22.26 More on Projection Operators . . . . . . . . . . . . . . .

  5 Probability 61 5.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  74 5.6.10 Extended Menu at Berger’s Burgers . . . . . . . . . . . .

  61 5.6.1 Simple Probability Concepts . . . . . . . . . . . . . . . .

  61 5.6.2 Playing Cards . . . . . . . . . . . . . . . . . . . . . . . . .

  66 5.6.3 Birthdays . . . . . . . . . . . . . . . . . . . . . . . . . . .

  67 5.6.4 Is there life? . . . . . . . . . . . . . . . . . . . . . . . . . .

  68 5.6.5 Law of large Numbers . . . . . . . . . . . . . . . . . . . .

  68 5.6.6 Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  69 5.6.7 Psychological Tests . . . . . . . . . . . . . . . . . . . . . .

  70 5.6.8 Bayes Rules, Gaussians and Learning . . . . . . . . . . .

  71 5.6.9 Berger’s Burgers-Maximum Entropy Ideas . . . . . . . . .

  6.19.14 Pure to Nonpure? . . . . . . . . . . . . . . . . . . . . . . 109 CONTENTS iii

  6.19.15 Schur’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . 110

  6.19.16 More About the Density Operator . . . . . . . . . . . . . 112

  6.19.17 Entanglement and the Purity of a Reduced Density Op- erator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

  6.19.18 The Controlled-Not Operator . . . . . . . . . . . . . . . . 115

  6.19.19 Creating Entanglement via Unitary Evolution . . . . . . . 116

  6.19.20 Tensor-Product Bases . . . . . . . . . . . . . . . . . . . . 117

  6.19.21 Matrix Representations . . . . . . . . . . . . . . . . . . . 118

  6.19.22 Practice with Dirac Language for Joint Systems . . . . . 121

  6.19.23 More Mixed States . . . . . . . . . . . . . . . . . . . . . . 123

  6.19.24 Complete Sets of Commuting Observables . . . . . . . . . 125

  6.19.25 Conserved Quantum Numbers . . . . . . . . . . . . . . . 126

  7 How Does It really Work:

  Photons, K-Mesons and Stern-Gerlach 127

  7.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

  7.5.1 Change the Basis . . . . . . . . . . . . . . . . . . . . . . . 127

  7.5.2 Polaroids . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

  7.5.3 Calcite Crystal . . . . . . . . . . . . . . . . . . . . . . . . 129

  7.5.4 Turpentine . . . . . . . . . . . . . . . . . . . . . . . . . . 129

  7.5.5 What QM is all about - Two Views . . . . . . . . . . . . 130

  7.5.6 Photons and Polarizers . . . . . . . . . . . . . . . . . . . 134

  7.5.7 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . 135

  7.5.8 K-Meson oscillations . . . . . . . . . . . . . . . . . . . . . 136

  7.5.9 What comes out? . . . . . . . . . . . . . . . . . . . . . . . 138

  7.5.10 Orientations . . . . . . . . . . . . . . . . . . . . . . . . . . 139

  7.5.11 Find the phase angle . . . . . . . . . . . . . . . . . . . . . 140

  7.5.12 Quarter-wave plate . . . . . . . . . . . . . . . . . . . . . . 143

  7.5.13 What is happening? . . . . . . . . . . . . . . . . . . . . . 144

  7.5.14 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . 145

  7.5.15 More Interference . . . . . . . . . . . . . . . . . . . . . . . 146

  7.5.16 The Mach-Zender Interferometer and Quantum Interference147

  7.5.17 More Mach-Zender . . . . . . . . . . . . . . . . . . . . . . 153

  8 Schrodinger Wave equation

  1-Dimensional Quantum Systems 155

  8.15 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

  8.15.1 Delta function in a well . . . . . . . . . . . . . . . . . . . 155

  8.15.2 Properties of the wave function . . . . . . . . . . . . . . . 156

  8.15.3 Repulsive Potential . . . . . . . . . . . . . . . . . . . . . . 157

  8.15.4 Step and Delta Functions . . . . . . . . . . . . . . . . . . 159

  8.15.5 Atomic Model . . . . . . . . . . . . . . . . . . . . . . . . 160

  8.15.6 A confined particle . . . . . . . . . . . . . . . . . . . . . . 164 8.15.7 1/x potential . . . . . . . . . . . . . . . . . . . . . . . . . 165

  CONTENTS iv

  8.15.8 Using the commutator . . . . . . . . . . . . . . . . . . . . 166

  8.15.9 Matrix Elements for Harmonic Oscillator . . . . . . . . . 168

  8.15.10 A matrix element . . . . . . . . . . . . . . . . . . . . . . . 169

  8.15.11 Correlation function . . . . . . . . . . . . . . . . . . . . . 170

  8.15.12 Instantaneous Force . . . . . . . . . . . . . . . . . . . . . 171

  8.15.13 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . 172

  8.15.14 Oscillator with Delta Function . . . . . . . . . . . . . . . 174

  8.15.15 Measurement on a Particle in a Box . . . . . . . . . . . . 177

  8.15.16 Aharonov-Bohm experiment . . . . . . . . . . . . . . . . . 183

  8.15.17 A Josephson Junction . . . . . . . . . . . . . . . . . . . . 186

  8.15.18 Eigenstates using Coherent States . . . . . . . . . . . . . 189

  8.15.19 Bogliubov Transformation . . . . . . . . . . . . . . . . . . 190

  8.15.20 Harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . 192

  8.15.21 Another oscillator . . . . . . . . . . . . . . . . . . . . . . 193

  8.15.22 The coherent state . . . . . . . . . . . . . . . . . . . . . . 194

  8.15.23 Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . . 200

  8.15.24 Generating Function . . . . . . . . . . . . . . . . . . . . . 205

  8.15.25 Given the wave function ...... . . . . . . . . . . . . . . . . 207

  8.15.26 What is the oscillator doing? . . . . . . . . . . . . . . . . 208

  8.15.27 Coupled oscillators . . . . . . . . . . . . . . . . . . . . . . 210

  8.15.28 Interesting operators .... . . . . . . . . . . . . . . . . . . . 210

  8.15.29 What is the state? . . . . . . . . . . . . . . . . . . . . . . 212

  8.15.30 Things about particles in box . . . . . . . . . . . . . . . . 213

  8.15.31 Handling arbitrary barriers..... . . . . . . . . . . . . . . . 214

  8.15.32 Deuteron model . . . . . . . . . . . . . . . . . . . . . . . 217

  8.15.33 Use Matrix Methods . . . . . . . . . . . . . . . . . . . . . 219

  8.15.34 Finite Square Well Encore . . . . . . . . . . . . . . . . . . 220

  8.15.35 Half-Infinite Half-Finite Square Well Encore . . . . . . . . 224

  8.15.36 Nuclear α Decay . . . . . . . . . . . . . . . . . . . . . . . 229

  8.15.37 One Particle, Two Boxes . . . . . . . . . . . . . . . . . . 231

  8.15.38 A half-infinite/half-leaky box . . . . . . . . . . . . . . . . 236

  8.15.39 Neutrino Oscillations Redux . . . . . . . . . . . . . . . . . 239

  8.15.40 Is it in the ground state? . . . . . . . . . . . . . . . . . . 242

  8.15.41 Some Thoughts on T-Violation . . . . . . . . . . . . . . . 243

  8.15.42 Kronig-Penney Model . . . . . . . . . . . . . . . . . . . . 246

  8.15.43 Operator Moments and Uncertainty . . . . . . . . . . . . 254

  8.15.44 Uncertainty and Dynamics . . . . . . . . . . . . . . . . . 255

  9 Angular Momentum; 2- and 3-Dimensions 259

  9.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

  9.7.1 Position representation wave function . . . . . . . . . . . 259

  9.7.2 Operator identities . . . . . . . . . . . . . . . . . . . . . . 260

  9.7.3 More operator identities . . . . . . . . . . . . . . . . . . . 261

  9.7.4 On a circle . . . . . . . . . . . . . . . . . . . . . . . . . . 263

  9.7.5 Rigid rotator . . . . . . . . . . . . . . . . . . . . . . . . . 263 CONTENTS v

  9.7.6 A Wave Function . . . . . . . . . . . . . . . . . . . . . . . 265

  9.7.7 L = 1 System . . . . . . . . . . . . . . . . . . . . . . . . . 265

  9.7.8 A Spin-3/2 Particle . . . . . . . . . . . . . . . . . . . . . 268

  9.7.9 Arbitrary directions . . . . . . . . . . . . . . . . . . . . . 272

  9.7.10 Spin state probabilities . . . . . . . . . . . . . . . . . . . 276

  9.7.11 A spin operator . . . . . . . . . . . . . . . . . . . . . . . . 277

  9.7.12 Simultaneous Measurement . . . . . . . . . . . . . . . . . 278

  9.7.13 Vector Operator . . . . . . . . . . . . . . . . . . . . . . . 280

  9.7.14 Addition of Angular Momentum . . . . . . . . . . . . . . 281

  9.7.15 Spin = 1 system . . . . . . . . . . . . . . . . . . . . . . . 282

  9.7.16 Deuterium Atom . . . . . . . . . . . . . . . . . . . . . . . 287

  9.7.17 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . 288

  9.7.18 Spin in Magnetic Field . . . . . . . . . . . . . . . . . . . . 289

  9.7.19 What happens in the Stern-Gerlach box? . . . . . . . . . 296

  9.7.20 Spin = 1 particle in a magnetic field . . . . . . . . . . . . 297

  9.7.21 Multiple magnetic fields . . . . . . . . . . . . . . . . . . . 298

  9.7.22 Neutron interferometer . . . . . . . . . . . . . . . . . . . . 299

  9.7.23 Magnetic Resonance . . . . . . . . . . . . . . . . . . . . . 302

  9.7.24 More addition of angular momentum . . . . . . . . . . . . 306

  9.7.25 Clebsch-Gordan Coefficients . . . . . . . . . . . . . . . . . 308

  9.7.26 Spin −1/2 and Density Matrices . . . . . . . . . . . . . . . 309

  9.7.27 System of N Spin −1/2 Particle . . . . . . . . . . . . . . . 311

  9.7.28 In a coulomb field . . . . . . . . . . . . . . . . . . . . . . 312

  9.7.29 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 312

  9.7.30 What happens? . . . . . . . . . . . . . . . . . . . . . . . . 314

  9.7.31 Anisotropic Harmonic Oscillator . . . . . . . . . . . . . . 315

  9.7.32 Exponential potential . . . . . . . . . . . . . . . . . . . . 317

  9.7.33 Bouncing electrons . . . . . . . . . . . . . . . . . . . . . . 320

  9.7.34 Alkali Atoms . . . . . . . . . . . . . . . . . . . . . . . . . 322

  9.7.35 Trapped between . . . . . . . . . . . . . . . . . . . . . . . 323

  9.7.36 Logarithmic potential . . . . . . . . . . . . . . . . . . . . 324

  9.7.37 Spherical well . . . . . . . . . . . . . . . . . . . . . . . . . 325

  9.7.38 In magnetic and electric fields . . . . . . . . . . . . . . . . 328

  9.7.39 Extra(Hidden) Dimensions . . . . . . . . . . . . . . . . . 329

  9.7.40 Spin −1/2 Particle in a D-State . . . . . . . . . . . . . . . 339

  9.7.41 Two Stern-Gerlach Boxes . . . . . . . . . . . . . . . . . . 340

  9.7.42 A Triple-Slit experiment with Electrons . . . . . . . . . . 341

  9.7.43 Cylindrical potential . . . . . . . . . . . . . . . . . . . . . 342

  9.7.44 Crazy potentials..... . . . . . . . . . . . . . . . . . . . . . 345

  9.7.45 Stern-Gerlach Experiment for a Spin-1 Particle . . . . . . 347

  9.7.46 Three Spherical Harmonics . . . . . . . . . . . . . . . . . 348

  9.7.47 Spin operators ala Dirac . . . . . . . . . . . . . . . . . . . 350

  9.7.48 Another spin = 1 system . . . . . . . . . . . . . . . . . . 351

  9.7.49 Properties of an operator . . . . . . . . . . . . . . . . . . 352

  9.7.50 Simple Tensor Operators/Operations . . . . . . . . . . . . 354

  9.7.51 Rotations and Tensor Operators . . . . . . . . . . . . . . 355

  CONTENTS vi

  9.7.52 Spin Projection Operators . . . . . . . . . . . . . . . . . . 356

  9.7.53 Two Spins in a magnetic Field . . . . . . . . . . . . . . . 357

  9.7.54 Hydrogen d States . . . . . . . . . . . . . . . . . . . . . . 359

  9.7.55 The Rotation Operator for Spin −1/2 . . . . . . . . . . . . 360

  9.7.56 The Spin Singlet . . . . . . . . . . . . . . . . . . . . . . . 362

  9.7.57 A One-Dimensional Hydrogen Atom . . . . . . . . . . . . 364

  9.7.58 Electron in Hydrogen p −orbital . . . . . . . . . . . . . . . 365

  9.7.59 Quadrupole Moment Operators . . . . . . . . . . . . . . . 372

  9.7.60 More Clebsch-Gordon Practice . . . . . . . . . . . . . . . 375

  9.7.61 Spherical Harmonics Properties . . . . . . . . . . . . . . . 383

  9.7.62 Starting Point for Shell Model of Nuclei . . . . . . . . . . 387

  9.7.63 The Axial-Symmetric Rotor . . . . . . . . . . . . . . . . . 395

  9.7.64 Charged Particle in 2-Dimensions . . . . . . . . . . . . . . 398

  9.7.65 Particle on a Circle Again . . . . . . . . . . . . . . . . . . 408

  9.7.66 Density Operators Redux . . . . . . . . . . . . . . . . . . 411

  9.7.67 Angular Momentum Redux . . . . . . . . . . . . . . . . . 412

  9.7.68 Wave Function Normalizability . . . . . . . . . . . . . . . 415

  9.7.69 Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

  9.7.70 Pauli Matrices and the Bloch Vector . . . . . . . . . . . . 417

10 Time-Independent Perturbation Theory 419

  10.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

  10.9.1 Box with a Sagging Bottom . . . . . . . . . . . . . . . . . 419

  10.9.2 Perturbing the Infinite Square Well . . . . . . . . . . . . . 420

  10.9.3 Weird Perturbation of an Oscillator . . . . . . . . . . . . 421

  10.9.4 Perturbing the Infinite Square Well Again . . . . . . . . . 423

  10.9.5 Perturbing the 2-dimensional Infinite Square Well . . . . 424

  10.9.6 Not So Simple Pendulum . . . . . . . . . . . . . . . . . . 426 10.9.7 1-Dimensional Anharmonic Oscillator . . . . . . . . . . . 427

  10.9.8 A Relativistic Correction for Harmonic Oscillator . . . . . 429

  10.9.9 Degenerate perturbation theory on a spin = 1 system . . 430

  10.9.10 Perturbation Theory in Two-Dimensional Hilbert Space . 431

  10.9.11 Finite Spatial Extent of the Nucleus . . . . . . . . . . . . 435

  10.9.12 Spin-Oscillator Coupling . . . . . . . . . . . . . . . . . . . 438

  10.9.13 Motion in spin-dependent traps . . . . . . . . . . . . . . . 440

  10.9.14 Perturbed Oscillator . . . . . . . . . . . . . . . . . . . . . 443

  10.9.15 Another Perturbed Oscillator . . . . . . . . . . . . . . . . 444

  10.9.16 Helium from Hydrogen - 2 Methods . . . . . . . . . . . . 446

  10.9.17 Hydrogen atom + xy perturbation . . . . . . . . . . . . . 449

  10.9.18 Rigid rotator in a magnetic field . . . . . . . . . . . . . . 451

  10.9.19 Another rigid rotator in an electric field . . . . . . . . . . 453

  10.9.20 A Perturbation with 2 Spins . . . . . . . . . . . . . . . . 454

  10.9.21 Another Perturbation with 2 Spins . . . . . . . . . . . . . 456

  10.9.22 Spherical cavity with electric and magnetic fields . . . . . 458

  10.9.23 Hydrogen in electric and magnetic fields . . . . . . . . . . 461 CONTENTS vii

  10.9.24 n = 3 Stark effect in Hydrogen . . . . . . . . . . . . . . . 463

  10.9.25 Perturbation of the n = 3 level in Hydrogen - Spin-Orbit and Magnetic Field corrections . . . . . . . . . . . . . . . 466

  10.9.26 Stark Shift in Hydrogen with Fine Structure . . . . . . . 477 10.9.27 2-Particle Ground State Energy . . . . . . . . . . . . . . . 482 10.9.28 1s2s Helium Energies . . . . . . . . . . . . . . . . . . . . . 484

  10.9.29 Hyperfine Interaction in the Hydrogen Atom . . . . . . . 485

  10.9.30 Dipole Matrix Elements . . . . . . . . . . . . . . . . . . . 487

  10.9.31 Variational Method 1 . . . . . . . . . . . . . . . . . . . . 489

  10.9.32 Variational Method 2 . . . . . . . . . . . . . . . . . . . . 494

  10.9.33 Variational Method 3 . . . . . . . . . . . . . . . . . . . . 495

  10.9.34 Variational Method 4 . . . . . . . . . . . . . . . . . . . . 496

  10.9.35 Variation on a linear potential . . . . . . . . . . . . . . . 497

  10.9.36 Average Perturbation is Zero . . . . . . . . . . . . . . . . 499 10.9.37 3-dimensional oscillator and spin interaction . . . . . . . . 500

  10.9.38 Interacting with the Surface of Liquid Helium . . . . . . . 501

  10.9.39 Positronium + Hyperfine Interaction . . . . . . . . . . . . 502

  10.9.40 Two coupled spins . . . . . . . . . . . . . . . . . . . . . . 504

  10.9.41 Perturbed Linear Potential . . . . . . . . . . . . . . . . . 508

  10.9.42 The ac-Stark Effect . . . . . . . . . . . . . . . . . . . . . 509

  10.9.43 Light-shift for multilevel atoms . . . . . . . . . . . . . . . 516

  10.9.44 A Variational Calculation . . . . . . . . . . . . . . . . . . 525

  10.9.45 Hyperfine Interaction Redux . . . . . . . . . . . . . . . . 526

  10.9.46 Find a Variational Trial Function . . . . . . . . . . . . . . 528

  10.9.47 Hydrogen Corrections on 2s and 2p Levels . . . . . . . . . 535

  10.9.48 Hyperfine Interaction Again . . . . . . . . . . . . . . . . . 539

  10.9.49 A Perturbation Example . . . . . . . . . . . . . . . . . . . 542

  10.9.50 More Perturbation Practice . . . . . . . . . . . . . . . . . 544

11 Time-Dependent Perturbation Theory 547

  11.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

  11.5.1 Square Well Perturbed by an Electric Field . . . . . . . . 547 11.5.2 3-Dimensional Oscillator in an electric field . . . . . . . . 549

  11.5.3 Hydrogen in decaying potential . . . . . . . . . . . . . . . 550 11.5.4 2 spins in a time-dependent potential . . . . . . . . . . . 551

  11.5.5 A Variational Calculation of the Deuteron Ground State Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

  11.5.6 Sudden Change - Don’t Sneeze . . . . . . . . . . . . . . . 556

  11.5.7 Another Sudden Change - Cutting the spring . . . . . . . 557

  11.5.8 Another perturbed oscillator . . . . . . . . . . . . . . . . 558

  11.5.9 Nuclear Decay . . . . . . . . . . . . . . . . . . . . . . . . 559

  11.5.10 Time Evolution Operator . . . . . . . . . . . . . . . . . . 562

  11.5.11 Two-Level System . . . . . . . . . . . . . . . . . . . . . . 562

  11.5.12 Instantaneous Force . . . . . . . . . . . . . . . . . . . . . 563

  11.5.13 Hydrogen beam between parallel plates . . . . . . . . . . 564

  CONTENTS viii

  11.5.14 Particle in a Delta Function and an Electric Field . . . . 565

  11.5.15 Nasty time-dependent potential [complex integration needed]569

  11.5.16 Natural Lifetime of Hydrogen . . . . . . . . . . . . . . . . 570

  11.5.17 Oscillator in electric field . . . . . . . . . . . . . . . . . . 573

  11.5.18 Spin Dependent Transitions . . . . . . . . . . . . . . . . . 574

  11.5.19 The Driven Harmonic Oscillator . . . . . . . . . . . . . . 579

  11.5.20 A Novel One-Dimensional Well . . . . . . . . . . . . . . . 581

  11.5.21 The Sudden Approximation . . . . . . . . . . . . . . . . . 582

  11.5.22 The Rabi Formula . . . . . . . . . . . . . . . . . . . . . . 584

  11.5.23 Rabi Frequencies in Cavity QED . . . . . . . . . . . . . . 585

12 Identical Particles 589

  12.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

  12.9.1 Two Bosons in a Well . . . . . . . . . . . . . . . . . . . . 589

  12.9.2 Two Fermions in a Well . . . . . . . . . . . . . . . . . . . 590

  12.9.3 Two spin −1/2 particles . . . . . . . . . . . . . . . . . . . 592

  12.9.4 Hydrogen Atom Calculations . . . . . . . . . . . . . . . . 595

  12.9.5 Hund’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . 599

  12.9.6 Russell-Saunders Coupling in Multielectron Atoms . . . . 600

  12.9.7 Magnetic moments of proton and neutron . . . . . . . . . 603

  12.9.8 Particles in a 3-D harmonic potential . . . . . . . . . . . . 605 12.9.9 2 interacting particles . . . . . . . . . . . . . . . . . . . . 608

  12.9.10 LS versus JJ coupling . . . . . . . . . . . . . . . . . . . . 610

  12.9.11 In a harmonic potential . . . . . . . . . . . . . . . . . . . 612 12.9.12 2 particles interacting via delta function . . . . . . . . . . 614 12.9.13 2 particles in a square well . . . . . . . . . . . . . . . . . 616 12.9.14 2 particles interacting via a harmonic potential . . . . . . 617

  12.9.15 The Structure of helium . . . . . . . . . . . . . . . . . . . 619

  13 Scattering Theory and Molecular Physics 623

  13.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

  13.3.1 S-Wave Phase Shift . . . . . . . . . . . . . . . . . . . . . 623

  13.3.2 Scattering Slow Particles . . . . . . . . . . . . . . . . . . 625

  13.3.3 Inverse square scattering . . . . . . . . . . . . . . . . . . . 626

  13.3.4 Ramsauer-Townsend Effect . . . . . . . . . . . . . . . . . 629

  13.3.5 Scattering from a dipole . . . . . . . . . . . . . . . . . . . 630

  13.3.6 Born Approximation Again . . . . . . . . . . . . . . . . . 631

  13.3.7 Translation invariant potential scattering . . . . . . . . . 632 13.3.8 ℓ = 1 hard sphere scattering . . . . . . . . . . . . . . . . . 632

  13.3.9 Vibrational Energies in a Diatomic Molecule . . . . . . . 634

  13.3.10 Ammonia Molecule . . . . . . . . . . . . . . . . . . . . . . 635

  13.3.11 Ammonia molecule Redux . . . . . . . . . . . . . . . . . . 637

  13.3.12 Molecular Hamiltonian . . . . . . . . . . . . . . . . . . . . 638

  13.3.13 Potential Scattering from a 3D Potential Well . . . . . . . 640

  13.3.14 Scattering Electrons on Hydrogen . . . . . . . . . . . . . 645 CONTENTS ix

  13.3.15 Green’s Function . . . . . . . . . . . . . . . . . . . . . . . 646

  13.3.16 Scattering from a Hard Sphere . . . . . . . . . . . . . . . 649

  13.3.17 Scattering from a Potential Well . . . . . . . . . . . . . . 650

  13.3.18 Scattering from a Yukawa Potential . . . . . . . . . . . . 653

  13.3.19 Born approximation - Spin-Dependent Potential . . . . . 654

  13.3.20 Born approximation - Atomic Potential . . . . . . . . . . 656

  13.3.21 Lennard-Jones Potential . . . . . . . . . . . . . . . . . . . 657

  13.3.22 Covalent Bonds - Diatomic Hydrogen . . . . . . . . . . . 661

  13.3.23 Nucleus as sphere of charge - Scattering . . . . . . . . . . 663

  15 States and Measurement 667

  15.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

  15.6.1 Measurements in a Stern-Gerlach Apparatus . . . . . . . 667

  15.6.2 Measurement in 2-Particle State . . . . . . . . . . . . . . 670

  15.6.3 Measurements on a 2 Spin-1/2 System . . . . . . . . . . . 671

  15.6.4 Measurement of a Spin-1/2 Particle . . . . . . . . . . . . 673

  15.6.5 Mixed States vs. Pure States and Interference . . . . . . . 677

  15.6.6 Which-path information, Entanglement, and Decoherence 680

  15.6.7 Livio and Oivil . . . . . . . . . . . . . . . . . . . . . . . . 684

  15.6.8 Measurements on Qubits . . . . . . . . . . . . . . . . . . 688

  15.6.9 To be entangled.... . . . . . . . . . . . . . . . . . . . . . . 690

  15.6.10 Alice, Bob and Charlie . . . . . . . . . . . . . . . . . . . . 691

  16 The EPR Argument and Bell Inequality 695

  16.10Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

  16.10.1 Bell Inequality with Stern-Gerlach . . . . . . . . . . . . . 695

  16.10.2 Bell’s Theorem with Photons . . . . . . . . . . . . . . . . 699

  16.10.3 Bell’s Theorem with Neutrons . . . . . . . . . . . . . . . . 704

  16.10.4 Greenberger-Horne-Zeilinger State . . . . . . . . . . . . . 706

  17 Path Integral Methods 711

  17.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

  17.7.1 Path integral for a charged particle moving on a plane in the presence of a perpendicular magnetic field . . . . . . . 711

  17.7.2 Path integral for the three-dimensional harmonic oscillator 712

  17.7.3 Transitions in the forced one-dimensional oscillator . . . . 712

  17.7.4 Green’s Function for a Free Particle . . . . . . . . . . . . 713

  17.7.5 Propagator for a Free Particle . . . . . . . . . . . . . . . . 713

  18 715

  Solid State Physics

  18.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

  18.7.1 Piecewise Constant Potential Energy One Atom per Primitive Cell . . . . . . . . . . . . . . . . 715

  18.7.2 Piecewise Constant Potential Energy Two Atoms per Primitive Cell . . . . . . . . . . . . . . . 715

  CONTENTS x

  18.7.3 Free-Electron Energy Bands for a Crystal with a Primitive Rectangular Bravais Lattice . . . . . . . . . . . . . . . . . 716

  18.7.4 Weak-Binding Energy Bands for a Crystal with a Hexag- onal Bravais Lattice . . . . . . . . . . . . . . . . . . . . . 717

  18.7.5 A Weak-Binding Calculation #1 . . . . . . . . . . . . . . 718

  18.7.6 Weak-Binding Calculations with Delta-Function Potential Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

  19 721

  Second Quantization

  19.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

  19.9.1 Bogoliubov Transformations . . . . . . . . . . . . . . . . . 721

  19.9.2 Weakly Interacting Bose gas in the Bogoliubov Approxi- mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

  19.9.3 Problem 19.9.2 Continued . . . . . . . . . . . . . . . . . . 722

  19.9.4 Mean-Field Theory, Coherent States and the Grtoss-Pitaevkii Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 723

  19.9.5 Weakly Interacting Bose Gas . . . . . . . . . . . . . . . . 724

  19.9.6 Bose Coulomb Gas . . . . . . . . . . . . . . . . . . . . . . 724

  19.9.7 Pairing Theory of Superconductivity . . . . . . . . . . . . 724

  19.9.8 Second Quantization Stuff . . . . . . . . . . . . . . . . . . 725

  19.9.9 Second Quantized Operators . . . . . . . . . . . . . . . . 727

  19.9.10 Working out the details in Section 19.8 . . . . . . . . . . 727

20 Relativistic Wave Equations

  729

  Electromagnetic Radiation in Matter

  20.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

  20.8.1 Dirac Spinors . . . . . . . . . . . . . . . . . . . . . . . . . 729

  20.8.2 Lorentz Transformations . . . . . . . . . . . . . . . . . . . 729

  20.8.3 Dirac Equation in 1 + 1 Dimensions . . . . . . . . . . . . 730

  20.8.4 Trace Identities . . . . . . . . . . . . . . . . . . . . . . . . 730

  20.8.5 Right- and Left-Handed Dirac Particles . . . . . . . . . . 730

  20.8.6 Gyromagnetic Ratio for the Electron . . . . . . . . . . . . 731

  20.8.7 Dirac → Schrodinger . . . . . . . . . . . . . . . . . . . . . 731

  20.8.8 Positive and Negative Energy Solutions . . . . . . . . . . 731

  20.8.9 Helicity Operator . . . . . . . . . . . . . . . . . . . . . . . 732

  20.8.10 Non-Relativisitic Limit . . . . . . . . . . . . . . . . . . . . 732

  20.8.11 Gyromagnetic Ratio . . . . . . . . . . . . . . . . . . . . . 732

  20.8.12 Properties of γ

  5 . . . . . . . . . . . . . . . . . . . . . . . . 732

  20.8.13 Lorentz and Parity Properties . . . . . . . . . . . . . . . . 732

  20.8.14 A Commutator . . . . . . . . . . . . . . . . . . . . . . . . 733

  20.8.15 Solutions of the Klein-Gordon equation . . . . . . . . . . 733

  20.8.16 Matrix Representation of Dirac Matrices . . . . . . . . . . 733

  20.8.17 Weyl Representation . . . . . . . . . . . . . . . . . . . . . 734

  20.8.18 Total Angular Momentum . . . . . . . . . . . . . . . . . . 734

  20.8.19 Dirac Free Particle . . . . . . . . . . . . . . . . . . . . . . 735

Chapter 3 Formulation of Wave Mechanics - Part 2

3.11 Solutions

3.11.1 Free Particle in One-Dimension - Wave Functions

  (a) Z

  ∞ px

  1

  i ~

  ˜ ψ(p, 0) = e ψ(x, 0) dx

  √ 2π~

  −∞

  Z 2

  ∞ (p (x −x0)

  N −p0)x

  i

~ −

4σ2

  = e e dx √

  2π~

  −∞ x2

  Z (p x2 xx0

  ∞ −p0)x

4σ2 2σ2 4σ2

+i − − ~

  N

  • = e

  √ 2π~

  −∞ x2

  Z (p

  

∞ x2 x0 −p0)

x+

− − −i ~

  N 4σ2 2σ2 4σ2 = e

  √ 2π~ −∞ x2 (p ∞ (p 2 x0 x x0 2 Z 2

  −p0) −p0)

  N σ 4σ2 2σ2 2σ2 −i ~ − −σ −i ~ = e e e

  √ 2π~ x2 2 x0 (p ∞ 2 Z −∞

  −p0) 4σ2 2 N σ 2σ2 −y −i ~

  = e e 2σ e dy √

  2π~ x2 2 x0

(p

2 −∞

  −p0)

  N

  σ √ 4σ2 2σ2

−i ~

  = e e 2σ π √

  2π~ √ (p 2 2 (p

  −p0)

  N σ 2 −p0)x0 ~2 σ = e e

  √ ~

  (b) Find ˜ ψ(p, t) We have

  2

  ∂ ˜ ψ(p, t) p ˜ ˜ i~ = H ˜ ψ(p, t) = E ψ(p, t) = ψ(p, t)

  p

  ∂t 2m since ˜ ψ(p, t) is an eigenfunction of H (only 1 p value). This implies that p t/~ t/2m~ 2

  −iE −ip

  ˜ ψ(p, t) = ˜ ψ(p, 0)e = ˜ ψ(p, 0)e

  (c) Find ψ(x, t) Z

  ∞

  1

  ipx/~

  ˜ ψ(x, t) = e ψ(p, t)dp

  √ 2π~

  −∞

  √ Z

  ∞

(p

2 2 (p 2 −p0) −p0)x0

  1 N σ

  2

  ipx/~ σ t/2m~ − −i −ip ~2 ~

  = e e e e dp √ √

  ~ 2π~

  −∞

  Z

  ∞ 2 2 2 2 2 2 2 2 2 N σ ipx/~ /~ ip x /~ t/2m~ σ /~ 2pp σ /~ p σ /~ −ipx −ip −p

  = e e e e e e e dp √

  π~

  −∞

  Z 2 2 2

2

2 2 2 2 N σ ip x /~ p σ /~ p (σ /~ /~+2p σ /~ )

  • it/2m~)−p(ix/~−ix

  = e e e dp √

  π~

  −∞

  Z 2 2 22 2 N σ ip x /~ p σ /~ β

  −(αp−β)

  = e e e e dp √

  π~

  −∞

  where

  2

  σ it x x 2p

  2

  2

  • α = and i σ
  • 2

  − 2αβ = i

  2

  ~ ~ − ~ ~ 2m~

  Therefore, letting y = αp − β and dy = αdp we get

  Z 2 2

2

22 N σ

  1

  ip x /~ p σ /~ β −y

  ψ(x, t) = e e e e dy √

  π~ α

  −∞ (x 2 /~)2 −x0−2ip0σ 2 2 2 − ~

  1 4 σ2 + it

  ip x /~ p σ /~

  ( 2m ) = N σe e e q

  it~

  2

  σ +

  2m

  where we have used Z

  ∞ 2

  √

  −y

  e dy = π

  −∞

  (d) Show that the spread in the spatial probability distribution

  2

  |ψ(x, t)| ℘(x, t) = hψ(t) | ψ(t)i increases with time.

  The important terms are

  1 q → amplitude decreases with time

  it~

  2

  σ +

  2m

  and (x 2 /~)2

  −x0−2ip0σ − 4 σ2 + it ~

  ( 2m ) e → width(spread) increases with time

  A sequence of pictures below illustrates what is happening:

  

3.11.2 Free Particle in One-Dimension - Expectation Val-

ues

  For a free particle in one-dimension

  2

  p H =

  2m (a) Show x x hp i = hp i

  t=0

  d

  1

  x

  hp i = x , H] x t = x h[p i = 0 → hp i hp i dt i~ h i

  hp x i t=0

  (b) Show t + hxi = hxi t=0

  m

  d

  1

  1

  1

  1

  2

  ]

  x x

  hxi = h[x, H]i = h[x, p x i = hp i = hp i dt i~ 2im~ m m Therefore

  1

  t = x t +

  hxi hp i hxi m

  2

  2

  (c) Show (∆p ) = (∆p )

  x x t=0

  d

  1

  2

  2

  2

  2

  , H] =

  t

  hp x i = h[p x i = 0 → hp x i hp x i dt i~ Therefore

  2

  2

  

2

  2

  2

  2

  (∆p ) = = = (∆p )

  x t x x x

t hp x i − hp i t hp x i − hp i

  2

  (d) Find (∆x) as a function of time and initial conditions. HINT: Find d

  2

  x dt To solve the resulting differential equation, one needs to know the time dependence of x + p x x hxp i. Find this by considering d

  • p x

  x x

  hxp i dt We have

  2

  d d d

  2

  

2

  (∆x) = hx i + hxi dt dt dt

  Now d

  1

  1

  2

  2

  2

  2

  , H] , p ] hx i = h[x i = h[x x i dt i~ 2im~

  1

  1

  2

  2

  2

  2

  2

  2

  = p x x + i~)p x

  x x

  hx x − p x i = hx(p − p x i 2im~ 2im~

  1

  2

  2

  = xp + i~xp x

  x x x

  hxp − p x i 2im~

  1

  2

  2

  = x + i~)(p x + i~) + i~xp x

  

x x x

  h(p − p x i 2im~

  1

  2

  2

  2

  = xp x + 2i~p x + i~xp x

  

x x x x

  hp − ~ − p x i 2im~

  1

  2

  2

  2

  = (p x + i~)x + 2i~p x + i~xp x

  x x x x

  hp − ~ − p x i 2im~

  1

  2

  = x + i~xp

  x x

  h3i~p − ~ i 2im~

  1

  2

  = x + i~(xp + i~xp

  x x x

  h2i~p − i~) − ~ i 2im~

  1 = x + xp

  x x

  hp i m We then get d

  1

  1

  2

  2

  x + xp x + xp ), H] x, p ] + [xp , p ]

  x x x x x x

  hp i = h[(p i = h[p x x i dt i~ 2im~

  1

  2

  3

  3

  2

  = xp x + xp xp

  x x

  hp x − p x x − p x i 2im~

  1

  3

  3

  = (p x + i~)p x + xp (xp

  x x x x x x

  hp − p x x − p − i~)p i 2im~

  1

  2

  

2

  3

  3

  2

  2

  = xp + i~p x + xp xp + i~p

  x x

  hp x x − p x x − p x x i 2im~

  1

  2

  2

  3

  3

  2

  = (p x + i~) + 2i~p x + xp

  x x

  hp x x − p x x − (xp − i~)p x i 2im~

  1

  2

  2

  2

  2

  2

  = =

  t

  h4i~p x i = hp x i hp x i 2im~ m m where we have used the result from part (c). Therefore,

  2

  

2

x x + xp x t = t + x x + xp x

  hp i hp x i hp i m and we get d

  2

  1

  2

  2

  t + x + xp

  x x

  hx i = hp x i hp i

  2

  dt m m

  • 1 m hp

  i − d dt

  =

  2 m

  2