Pembuatan Silikon Karbida (SiC) dari Pasir Silika (SiO2) dan Karbon (C) dengan Kapasitas 20.000/Tahun

  = 54,7913 kmol/jam Massa impuritis

  = 2.196,9228 kg/jam Mol SiC murni =

   SiO

  = 81,0298 kg/jam  Na

  

40

2.196,9228

  

0962 ,

  =

  SiC Mr SiC F

  = 2.525,2525 kg/jam Produk Akhir = Silikon Karbida (SiC) dengan kemurnian 87 % Kapasitas produksi = 2.525,2525 kg/jam Massa SiC Murni = 87 % x 2.525,2525 kg/jam

  (4,93%) = 124,5406 kg/jam  C (3,21%)

  1 1000 kg

  24 hari 1 ton

  330 hari tahun 1 . jam

  

tahun

ton

.

  1 hari = 24 jam Kapasitas produksi tiap jam = 20.000 .

  Kapasitas produksi Silikon Karbida = 20.000 ton/tahun, dengan kemurnian 87% (% berat) dengan ketentuan sebagai berikut: 1 tahun = 330 hari kerja

  

LAMPIRAN A

NERACA MASSA

A.1 PERHITUNGAN PENDAHULUAN A.1.1 Menghitung Kapasitas Produksi

  2

2 O (2,60%) = 65,6683 kg/jam

   FePO

  4

  (2,26%) = 57,0910 kg/jam

  A.1.2 Menghitung Kapasitas Feed

  Reaksi : SiO

  2

  • 3 C → SiC + 2 CO
    • Pereaksi pembatas :SiO

  2

  • Konversi SiO

  2

  sebesar 96 % Massa SiC murni = 2.196,9228 kg/jam Mol SiC murni = 54,7913 kmol/jam Mol SiO

  2

  = 56,8640 kmol/jam Massa SiO

  =

96 SiC N

  2

  2 O) = 6,5%

  .60H

  2

  dalam 10Na

  2

  murni/ jam = x kg/jam Jumlah SiO

  2

  Basis Jumlah bahan baku SiO

  ) = 1% (Lowe, 1958)

  4

  4. Besi Fosfat ( FePO

  .60H

  = N SiO

  2

  %

  2. Karbon (C) = 36%

  ) = 56,5%

  2

  1. Pasir Silika (SiO

  Bahan baku dan Rasio (%wt)

  = 56,8640 x 60,0864 = 3.416,7525 kg/jam

  2

  x Mr SiO

  2

  3. Larutan Natrium Silikat (10Na

2 O.30SiO

2 O.30SiO

  O H SiO O Na massa x O H SiO O Na Mr SiO Mr x 2 2 2 2 2 2 2 60 .

  36  

  

2

O/jam

  =

  1  

  56

  = jam kg jam kg 0910 , 57 3.225,6404 5 ,

  4

  FePO

  6  

  56 5 ,

  2 O = 3.225,6404 371 0914 , jam kg jam kg 5 ,

  .60H

  2

  2 O.30SiO

  10Na

  56

  10 60 . 30 .

  . 055 2753 , 2 3.225,6404

5 ,

  murni = 3.225,6404 kg/jam C = jam kg jam kg

  2

  = 3.225,6404 kg/jam Jumlah bahan baku : SiO

  x

  total = 3.416,7525 kg/jam x kg/jam + 0,0592x kg/jam = 3.416,7525 kg/jam

  2

  = 0,0592 x kg/jam Jumlah bahan baku SiO

  5 , 51  

  56 5 , 6 %

  SiO murni massa 2 5 ,

  =

  30

  10

  30 .

  A.2 PERHITUNGAN NERACA MASSA A.2.1 Mixer (M-101) Fungsi: Tempat pencampuran semua bahan baku.

  30 .

  (19)

  SiO

  2 = =

  O H SiO O Na Mr SiO Mr O H SiO O Na F SiO F 2 2 2 2 2 2 2 ) 18 ( 2 ) 18 ( 30 .

  30 .

  10

  30 30 . 30 .

  10   

  3.416,7525 kg/jam F

  (19)

  Na

  O H SiO O Na Mr O Na Mr O H SiO O Na F 2 2 2 2 2 2

2

) 18 ( 30 .

  10

  =

  10 30 . 30 .

  10  

  = 57,0910 kg/jam

  F

  (19)

  H

  = O H SiO O Na Mr O H Mr

  O H SiO O Na F 2 2 2 2 2 2

2

) 18 ( 30 .

  30 .

  10

  60 30 . 30 .

  10  

  = 114,3110 kg/jam

  2.055,2753 kg/jam F

  C

  (18) (19) (17) SiO 2 C FePO 4

  (19)

  10Na 2 O.30SiO 2 .60H 2 O

  10Na 2 O.30SiO 2 .60H 2 O SiO 2 C FePO 4 Neraca massa komponen: Alur 17

  F

  (17)

  10Na

  2 O.30SiO

  2

  .60H

  2 O = 371,0914 kg/jam Alur 18

  F

  (18)

  SiO

  2 =

  3.225,6404 kg/jam F

  (18)

  FePO

  4 = 57,0910 kg/jam

  F

  (18)

  C

  =

  2.055,2753 kg/jam

  Alur 19

  F

  (19)

  FePO

  4 =

  57,0910 kg/jam F

2 O =

2 O

  • 3.225,6404 3.416,7525 C - 2.055,2753 2.055,2753
  • 57,0910 57,0910 Na

  F

  (19)

  SiO

  2 =

  3.416,7525 kg/jam F

  (19)

  FePO

  4 = 57,0910 kg/jam

  (19)

  Neraca massa komponen: Alur 19

  C = 2.055,2753 kg/jam F

  (19)

  Na

  2 O =

  65,6683 kg/jam F

  (19)

  H

  2 O =

  F

  10Na 2 O.30SiO 2 .60H 2 O H 2 O (19) (20) (19a)

  Neraca massa total :

  SiO

  Tabel A.1 Neraca massa pada Tangki Mixer (M-101)

  Komponen Masuk (kg/jam) Keluar (kg/jam) Alur 17 Alur 18 Alur 19

  10Na

  2 O.30SiO

  2

  .60H

  2 O 371,0914 - -

  2

  10Na 2 O.30SiO 2 .60H 2 O SiO 2 C FePO 4

  FePO

  4

  2 O - - 65,6683

  H

  2 O - - 114,3110

  Subtotal 371,0914 5.338,0067 5.709,0981

  Total 5.709,0981 5.709,0981 A.2.2 Pelletizing Machine (L-102) Fungsi : Mengubah dan membentuk slurry menjadi pellet.

  SiO 2 C FePO 4

  114,3110 kg/jam

  Alur 19a

  Dari Tabel 20.44 Perry Handbook, moisture requirements untuk mengubah dan membentuk slurry menjadi pellet berkisar antara 13,0 O.

  • – 13,9 % H

  2 Misalkan, jumlah total = X kg/jam

  = 5.709,0981 + 0,139 X

   X X = 6.498,0105 kg/jam (19a)

  F H O (0,139 x 6.498,0105)

  =

  2

  • – 114,3110 788,9125 kg/jam

  = Alur 20 (20)

  F SiO 3.416,7525 kg/jam

  =

  2 (20)

  F FePO = 57,0910 kg/jam

  4 (20)

  F C = 2.055,2753 kg/jam

  (20)

  F Na O 65,6683 kg/jam

  =

  2 (20)

  F H O 903,2235 kg/jam

  2 = Neraca massa total :

  Tabel A.2 Neraca massa pada Pelletizing Machine (L-102)

  Komponen Masuk (kg/jam) Keluar (kg/jam) Alur 19 Alur 19a Alur 20

  • SiO 3.416,7525 3.416,7525

  2

  • C 2.055,2753 2.055,2753
  • FePO 57,0910 57,0910

  4

  • Na O 65,6683 65,6683

  2 H O 114,3110 788,9125 903,2235

  2 Subtotal 5.709,0981 788,9125 6.498,0105 Total 6.498,0105 6.498,0105

  • Komposisi gas alam (alur 22) :

  2

  10

  = 1,25 % (Speight, dkk., 2006)

  X

  (23)

  O

  2

  = 21 %

  X

  (23)

  N

  = 79 %

  C

  4

  2 →

  CO

  2

  2 O

  Konversi CH

  4 ≈ 100%

  σ CH

  4

  = -1

  4 H

  (22)

  (22)

  X

  Udara E-139 Gas Alam 24 B-101 O 2 N 2 CO 2 H 2 O FC

  Dimana :

  X

  (22)

  CH

  4

  = 90 %

  X

  C

  A.2.3 Burner (B-101)

  2 H

  6

  = 7,5 %

  X

  (22)

  C

  3 H

  8

  = 1,25 %

  Fungsi : Tempat pembakaran gas alam sebagai sumber panas Rotary Kiln Preheater (B-102).

  • Komposisi Udara :
  • Reaksi :

1. CH

  • 2O
  • 2H
  • 2

  • 3H

2 H

  • 5O
  • 4H

  4 H

  Konversi C

  

2

O

  2

  4CO

  13 O 2 →

  10

  2 O = 4

  4. C

  = 3 σ H

  2

  = -5 σ CO

  2

  = -1 σ O

  8

  2 H 6 ≈ 100%

  10

  σ C

  Berdasarkan energi yang dibutuhkan untuk menaikkan suhu rotary

  C, maka jumlah gas alam yang dibutuhkan adalah 400 kg/jam dengan kebutuhan udara (excess 20%) sebesar 11.706,5321 kg/jam.

  o

  C sampai 863

  o

  dari 30

  kiln preheater

  Karena pembakaran dengan menggunakan oksigen berlebih dari udara, maka reaksi pembakaran gas alam mempunyai konversi yang mendekati 100%.

  = -1 σ O

  = 4 σ H

  2

  σ CO

  13

  2

  = -

  2

  3 H

  ≈ 100% σ C

  6

  6

  2 H 6 ≈ 100%

  Konversi C

  

2

O

  2

  2CO

  7 O 2 →

  2 H

  2 H

  C

  2 O = 2 2.

  = 1 σ H

  2

  = -2 σ CO

  2

  σ O

  σ C

  6

  = -1 σ O

  2

  Konversi C

  

2

O

  2

  3CO

  2 →

  8

  3 H

  3. C

  2 O = 3

  = 2 σ H

  2

  σ CO

  7

  2

  = -

  • 2
  • 5H

4 H

2 O = 5

  Perhitungan neraca massa :

  (% CHMrCH )  (% C HMrC H )  (% C HMrC H )  (% C HMrC H ) 4 4 2 6 2 6 3 8 3 8 4 10 4 10 Mr gas alam = 100 % ( , 9  16 , 0425 )  ( , 075  30 , 07 )  ( , 0125  44 , 096 )  ( , 0125  58 , 124 )

  =

  100 %

  = 17,9712 kg/kmol

  Alur 22 (22)

  F = 400 kg/jam

  (22) 22 kg 400

  N = F = jam = 22,2578 kg/jam kg

  Mr gas alam 17 , 9712 kmol (22) (22)

  N CH = 0,9 x N = 20,0320 kg/jam

  4 (22) (22)

  F CH = N CH x Mr CH = 321,3633 kg/jam

  4

  4

  4 (22) (22)

  N C H = 0,075 x N = 1,6693 kg/jam

  2

  6 (22) (22)

  F C H = N C H x Mr C H = 50,1968 kg/jam

  2

  6

  2

  6

  2

  6 (22) (22)

  N C H = 0,0125 x N = 0,2782 kg/jam

  3

  8 (22) (22)

  F C H = N C H x Mr C H = 12,2685 kg/jam

  3

  8

  3

  8

  3

  8 (22) (22)

  N C H = 0,0125 x N = 0,2782 kg/jam

  4

  10 (22) (22)

  F C H = N C H x Mr C H = 16,1714 kg/jam

  4

  10

  4

  10

  4

  10 Alur 23 (23)

  F = 11.305,6092 kg/jam

  (23) 23 kg 11.305,690

  2 N = F = jam = 391,8710 kg/jam kg 28 , 8503

  Mr gas alam kmol (23) (23) (23)

  N O = X O x N = 82,2929 kg/jam

  2

  2 (23) (23)

  F O = N O x Mr O = 2.633,2744 kg/jam

  2

  2

  2 (23) (23) (23)

  N N = X N x N = 309,5781 kg/jam

  2

  2 (23) (23)

  F N = N N x Mr N = 8.672,3349 kg/jam

  2

  2

  2

  • – (1 x 20,0320) =
  • – (1 x 1,6693) =
  • – (1 x 0,2782) =
  • – (1 x 0,2782) =

  2

  (24)

  O

  2

  x Mr O

  2

  = 1.061,9345 kg/jam F

  (24)

  N

  = F

  2

  (23)

  N

  2

  = 8.672,3349 kg/jam N

  (24)

  CO

  2

  = N

  = N

  O

  O

  4 H

  6

  )

  3 H

  8

  )

  2

  13

  x r C

  10

  (24)

  ) = 82,2988

  2

  7

  x (1 x1,6693)

  2

  13

  x(1 x 0,2782) = 33,1867 kmol/jam

  F

  (23)

  2 – (2 x r

  x r C

  ) + (3 x r C

  CO

  2

  x Mr CO

  2

  = 1.114,1914 kg/jam N

  (24)

  H

  4

  2 H

  = N

  

6

  ) + (4 x r C

  3 H

  8

  ) + (5 x r C

  4 H

  10

  ) = (2 x (1 x 20,0320) + (3 x 1 x 1,6693) + (4 x (1 x 0,2782)

  (24)

  2

  CH

  3 H

  4

  )

  2

  

7

  x r C

  2 H

  6

  )

  8

  CO

  )

  2

  13

  x r C

  4 H

  10

  ) = (82,2988 x (1 x 20,0320) + (2 x (1 x 1,6693) + (3 x (1 x 0,2782)

  F

  (24)

  2 H

  

7

  (22)

  C

  2 H 6 – r C

  2 H

  6

  = N

  (22)

  C

  2 H 6 – (konversi x N (22)

  2 H

  (22)

  6

  ) = 1,6693

  N

  (24)

  C

  3 H

  8

  = N

  C

  = N

  C

  (22)

  CH

  4

  = N

  (22)

  CH

  4 – r CH

  4

  = N

  CH

  6

  4 – (konversi x N (22)

  CH

  4

  ) = 20,0320

  N

  (24)

  C

  2 H

  Alur 24

  3 H 8 – r C

  N

  (24)

  C

  4 H 10 – (konversi x N (22)

  C

  4 H

  10

  ) = 0,2782

  N

  O

  = N

  2

  = N

  (23)

  O

  2 – (2 x r

  CH

  4

  )

  (22)

  10

  3 H

  ) = 0,2782

  8

  = N

  (22)

  C

  3 H 8 – (konversi x N (22)

  C

  3 H

  8

  N

  4 H

  (24)

  C

  4 H

  10

  = N

  (22)

  C

  4 H 10 – r C

  (24)

  • – (
  • – (5 x r C
  • – (
  • – (2 x (1 x 20,0320) – (
  • – (5 x (1 x 0,2782 – (
  • – (
  • – (5 x r C
  • – (
    • (4 x (1 x 0, 2782) = 25,3182 kmol/jam

  2

2 O = (2 x r CH

  • (5 x (1 x 0,2782) = 47,5760 kmol/jam

  (24) (24)

  F H O = N H O x Mr H O = 857,0910 kg/jam

  2

  2

2 Neraca massa total:

  Tabel A.3 Neraca massa pada Burner (B-101)

  Masuk (kg/jam) Keluar (kg/jam) Komponen Alur 22 Alur 23 Alur 24

  CH 321,3633 - -

  4

  • C H 50,1968

  2

6 C H

  • 12,2685

  3

  6

  • C H 16,1714

  4

  8

  • O

  2.633,2744 1.061,9920

2 N - 8.672,3349 8.672,3349

  2

  • CO

  1.114,1914

  2 H O -

  857,0910 -

  2 Subtotal 400,0000 11.305,6092 11.705,6092 Total 11.705,6092 11.705,6092

  A.2.4 Rotary Kiln Preheater (B-102)

  Fungsi: Pemanas awal bahan baku sampai suhu 617

  C, sebelum dikirim ke Electric Furnace (B-103).

  O 2 N 2 CO 2 H O 2 SiO 2 21 C FePO 4 H O 2

  10Na O.30SiO .60H O 2 2 2 25 SiO 2 C FePO 4 Na 2 O O 2 N 2 CO 2 H O 2 Dimana : Asumsi oksigen (O ) tidak bereaksi dengan pasir silika (SiO ) dan Karbon (C).

  2

  2 Neraca massa komponen Alur 21 :

  Massa masuk alur 21 Rotary Kiln Preheater (B-102) = Massa keluar alur 20

  Pelletizing Machine (L-101) (21)

  F FePO

  = 57,0911 kg/jam

  4 (21)

  F C

  = 2055,2733 kg/jam (21)

  F SiO = 3416,7525 kg/jam

  2 (21)

  F Na O

  = 65,6683 kg/jam

  2 (21)

  F H O

  = 903,2235 kg/jam

  2

  Alur 24 :

  Massa masuk alur 24 Rotary Kiln Preheater (B-102) = Massa keluar alur 24 Burner (B-101)

  (24)

  F CO = 1.114,1914 kg/jam

  2 (24)

  F N = 8.672,3349 kg/jam

  2 (24)

  F O = 1.061,9940 kg/jam

  2 (24)

  F H O = 857,0910 kg/jam

  2 Alur 25 : (25)

  F FePO

  = 57,0911 kg/jam

  4 (25)

  F C

  = 2.055,2733 kg/jam (25)

  F SiO = 3.416,7525 kg/jam

  2 (25)

  F Na O = 65,6683 kg/jam

  2 Alur 26 : (26) (24)

  F CO = F CO = 1.114,1914 kg/jam

  2

  2 (26) (24)

  F N N 8.672,3349 kg/jam

  = F =

  2

  2 (26) (24)

  F O O 1.061,9920 kg/jam

  2 = F 2 = (26) (21) (24)

  F H O = F H O + F H O

  2

  2

  2 = (903,2235 + 857,0910) kg/jam = 1760,3144 kg/jam

  Neraca massa total

  Tabel A.4 Neraca massa pada Rotary Kiln Preheater (B-102)

  Masuk (kg/jam) Keluar (kg/jam) Komponen Alur 21 Alur 24 Alur 25 Alur 26

  • SiO 3.416,7525 3.416,7525 -

2 C - 2.055,2753 2.055,2753 -

  • FePO 57,0910 57,0910 -

  4

  • Na O 65,6683 65,6683 -

2 O - - 1.061,9920 1.061,9920

  2

  8.672,3349 - 8.672,3349 - N

  2

  1.114,1914 - 1.114,1914 - CO

  2 H

  • O 903,2235 857,0910 1.760,3144

  2 Subtotal 6.498,0105 11.706,6092 5594,7871 12.608,8327 Total 18.203,6198 18.203,6198

  A.2.5 Electric Furnace (B-103)

  Fungsi: Tempat reaksi reduksi dimana terjadinya pembentukan SiC pada suhu 1600 C.

  N

  2 CO

27

  2 28 Udara 25

  29 SiC SiO 2 SiO 2 C

  C FePO 4 FePO 4 Na 2 O Na 2 O

  Reaksi :

  • SiO + 3 C

  2 → SiC + 2 CO

  Konversi SiO sebesar 96 %

  2

  = -1 σ SiO

  2

  = -3 σ C

  = 1 σ SiC

  = 2 σ CO

  1

  • CO + O

  2 → CO

  2

2 Konversi CO ≈ 100%

  = -1 σ CO

  1

  = - σ O

  2

  2

  = 1 σ CO

  2

  56,8640

  N

  0107 ,

  12 2.055,2753

  = 171,1204 kmol/jam F

  (25)

  Na

  Alur 29

  (29)

  = C Ar C F ) 25 (

  SiO

  2 = N

  (25)

  SiO

  2 – r SiO

  2 =

  = kmol kg jam kg

  C

  Alur 25

  (25)

  F(25) SiO2 = 3.416,7525 kg/jam N(25)SiO2

  = 2 2 ) 25 ( SiO Mr SiO F

  = kmol kg jam kg

  0864 ,

  60 3.416,7525

  = 56,8640 kmol/jam F

  FePO

  (25)

  4 =

  57,0910 kg/jam F

  (25)

  C

  =

  2.055,2753 kg/jam N

2 O = 65,6683 kg/jam

  • – (0,96 x 56,8640)
  • – 3 x r SiO
  • – 3 x (0,96 x 56,8640)

  2,0727 kmol/jam F

  2

  SiC = N

  (29)

  SiC x Mr SiC = 54,7913 x 40,0962

  = 2.196,9228 kg/jam Alur 27

  N

  (27)

  O

  2 =

  2

  1

  x r CO + r S =

  2

  1

  x (1x(2 x r SiO

  ))

  54,7913 kmol/jam F

  =

  2

  1

  x (1x(2 x 0,96 x 56,8640))

  = 54,7913 kmol/jam

  F

  (29)

  O

  2 = N

  (27)

  O

  2

  x Mr O

  2 = 54,7913 x 31,9988

  (29)

  =

  (29)

  =

  SiO

  2 = N

  (29)

  SiO

  2

  x Mr SiO

  2 = 2,0727 x 60,0864 =

  124,5406 kg/jam N

  (29)

  C

  =

  N

  (25)

  C

  171,1204

  0,96 x 56,8640

  

=

  2 =

  SiC = r SiO

  (29)

  81,0298 kg/jam N

  =

  6,7465 x 12,0107

  C x Ar C

  = 6,7465 kmol/jam

  (29)

  N

  =

  C

  (29)

  F

  2 =

  5774,1120 kg/jam N

  (28)

  N

  2 =

  4

  (28)

  CO

  2 =

  r CO

  =

  1x(2 x r SiO

  2

  )

  = 1x(2 x 0,96 x 56,8640) =

  109,5826 kmol/jam F

  CO

  F

  2 =

  N

  (28)

  CO

  2

  x Mr CO

  2 = 109,582 x 44,0962 =

  4.822,7903 kg/jam

  Neraca massa total:

  Tabel A.5 Neraca massa pada Electric Furnace (B-103)

  Komponen Masuk (kg/jam) Keluar (kg/jam) Alur 25 Alur 27 Alur 28 Alur 29

  SiO

  2

  (27)

  2 =

  FePO

  79 

  57,0910 - - 57,0910 Na

  =

  1.753,2558 kg/jam N

  (27)

  N

  2 =

  2 ) 29 (

  %

  21 %

  79 O N

  =

  54,7913 %

  21 %

  = 206,1196 kmol/jam

  N

  F

  (27)

  N

  2 =

  N

  (27)

  N

  2

  x Mr N

  2 = 206,1196 x 28,0134 =

  5.774,1120 kg/jam

  Alur 28

  F

  (28)

  3.416,7525 - - 124,5406 C 2.055,2753 - - 81,0298

2 O 65,6683 - - 65,6683

  O

  • 1.753,2558 - - N

  2

  • 5.774,1120 5.774,1120 - CO

  2

  • 4.822,7903 - SiC - - - 2.196,9228

  2

  Subtotal 5.594,7870 7.527,3678 10.596.9023 2.525,2525

  Total 13.122,1548 13.122,1548

  A.2.6 Mixing Point (M-102) 40 M-102 43 O

  2 O

  2 N

  2 N

  2 CO

  2 CO

  2 H O

  2 H O 41

  2 O

  2 N

  2 Neraca massa komponen Alur 40

  (40)

  F CO 1.114,1914 kg/jam

  =

  2 (40)

  F N 8.672,3349 kg/jam

  2 = (40)

  F O = 1.061,9920 kg/jam

  2 (40)

  F H O 1.760,3144 kg/jam

  =

  2 Alur 41 (41)

  F N 5.774,1120 kg/jam

  =

  2 (41)

  F CO 4.822,7903 kg/jam

  =

  2 Alur 43 (43) (40) (41)

  F CO F CO + F CO

  =

  2

  2

  

2

  5.936,9817 kg/jam

  = (43) (40) (41)

  F N = F N + F N

  2

  2

  2

  14.447,7903 kg/jam

  = (43)

  F O 1.061,9920 kg/jam

  =

  2 (43)

  F H O = 1.760,3144 kg/jam

  2

  Neraca massa total

  Tabel A. 6 Neraca Massa pada Mixing Point (M-102)

  Masuk (kg/jam) Keluar (kg/jam) Komponen Alur 40 Alur 41 Alur 43

  O 1.061,9920 - 1.061,9920

  2 N 8.672,3349 5.774,1120 14.447,3349

  2 CO 1.114,1914 4.822,7903 5.936,9817

  2

  • H O 1.760,3144 1.760,3144

2 Subtotal 12.608,8327 10.596,9023 23.205,7350

  

Total 23.205,7350 23.205,7350

A.2.7 Steam Boiler (E-201)

  Fungsi: Memanaskan boiler feed water untuk menghasilkan superheated .

  steam

  47 44 H 2 O 46 O 2 O 2 N 2 N 2 CO 2 CO 2 H 2 O 45 - H O 2 H 2 O Neraca massa komponen Alur 43 = Alur 46

  (43) (46)

  F CO F CO = 5.936,9817 kg/jam

  2 =

  2 (43) (46)

  F N = F N = 14.447,4469 kg/jam

  2

  2 (43) (46)

  F O F O = 1.061,9920 kg/jam

  =

  2

  2

  (43) (46)

  F H O F H O = 1.760,3144 kg/jam

  =

  2

  2 Alur 45 = Alur 47 (45) (47)

  F H O = F H O = 16.010,6797 kg/jam

  2

2 Neraca massa total

  Tabel A. 7 Neraca massa pada Steam Boiler (E-201)

  Masuk (kg/jam) Keluar (kg/jam) Komponen Alur 43 Alur 45 Alur 47 Alur 46

  O

  • 1.061,9920 1.061,9920

  2

  • N 14.447,4469 14.447,4469

  2 CO 5.936,9817 - - 5.936,9817

  2 H O 1.760,3144 7.300 7.300 1.760,3144

  2 Subtotal 23.205,7350 7.300 7.300 23.205,7350 Total 30.505,7350 30.505,7350

  

LAMPIRAN B

PERHITUNGAN NERACA PANAS

  Basis perhitungan : 1 jam operasi Satuan Operasi : kJ/jam Temperatur referensi :

  25 C (298 K) Kapasitas : 20.000 ton/tahun Perhitungan neraca panas menggunakan rumus sebagai berikut: Perhitungan beban panas pada masing-masing alur masuk dan keluar. T

  Q = H = (Smith dan Van Ness, 2001)

  n x Cp x dTT ref

  Persamaan umum untuk menghitung kapasitas panas adalah sebagai berikut:,

  

2

  3 CpabTcTdT x , T

  Jika Cp adalah fungsi dari temperatur maka persamaan menjadi : T T 2 2

  2

  3

  ( )

  CpdTabTCTdT dT T T T   1 2 1 b c d

  2

  

2

  3

  3

  4

  4

  ( ) ( ) ( ) ( )

  CpdTa TTTTTTTT

  2

  1

  2

  1

  2

  1

  2

  1  T 1

  2

  3

  4 Untuk sistem yang melibatkan perubahan fasa persamaan yang digunakan adalah : T T T 2 b 2 CpdTCp dT   HCp dT l Vl v T T T    1 1 b Perhitungan energi untuk sistem yang melibatkan reaksi : T T 2 2

  dQ

  ( )  rH TN CpdTN CpdT r out in

    dt T T 1

1

  

B.1 Data-Data Kapasitas Panas, Panas Perubahan Fasa, dan Panas Reaksi

Komponen

  Tabel B.1 Data Kapasitas Panas Komponen Cair ( J/mol K)

  2

  3

  4 Kapasitas Panas Cairan, Cp = a + bT + CT + dT + eT (J/mol K) l Komponen a b c d e H O 1,82964E+01 4,72118E-01 -1,33878E-03 1,31424E-06 2

  0,00000E+00 (Perry, 2007) Tabel B.2 Data Kapasitas Panas Komponen Gas ( J/mol K)

  2

  3

  4 Kapasitas Panas Gas, Cp = a + bT + CT + dT + eT (J/mol K) g

  Komponen a b c d e

  O 2,9883E+01 -1,1384E-02 4,3378E-05 -3,7006E-08 1,0101E-11

  2 N 2,9412E+01 -3,0068E-03 5,4506E-05 5,1319E-09 -4,2531E-12

  2 CO 1,9022E+01 7,9629E-02 -7,3707E-05 3,7457E-08 -8,1330E-12

  2 H O 3,4047E+00 -9,6506E-03 3,2998E-05 -2,0447E-08 4,3023E-12

  2 CH 3,8387E+01 -2,3664E-02 2,9098E-04 -2,6385E-07 8,0068E-11

  4 C H 3,3834E+01 -1,5518E-02 3,7689E-04 -4,1177E-07 1,3889E-10

  2

  6 C H 4,7266E+01 -1,3147E-01 1,1700E-03 -1,6970E-06 8,1891E-10

  3

  8 C H 6,6709E+01 -1,8552E-01 1,5284E-03 -2,1879E-06 1,0458E-09

  4

  10

  (Perry, 2007) Tabel B.3 Kapasitas Panas Padatan (s)

  2 Kapasitas Panas Padatan, Cp = a + bT + cT- (kal/mol K)

s

Komponen a b c T range (K) 10,87 0,0087 -241.200 273

  • – 848 SiO

  2 10,95 0,0055 848

  • SiC 8,89 0,0029 -284.000 173
    • – 1.873
    • – 1.629 C 2,637 0.0026 -116.900 273
    • – 1.373

  (Perry, 2007)

  Tabel B.4 Data Panas Reaksi Pembentukan Panas Re

  f,

  25 C) aksi Pembentukan (∆H

  Komponen ( kJ/kmol)

  CH -78.451,6774

  4 C H -84.684,0665

  2

  6 C H -103.846,7654

  3

  8 C H -126.147,4607

  4

  10 H O -241.834,9330

  2 CO -393.504,7656

  2 CO -110.541,1580

  SiO -851.385,7800

2 SiC -117.230,4000

  (Perry, 2007)

  B.2 Perhitungan Neraca Panas B.2.1 Pelletizing Machine (L-102)

  Fungsi : Memperbesar ukuran bahan menjadi bentuk pellet, untuk memperbesar porositas bahan. Asumsi : Selama proses terjadi kenaikan suhu bahan menjadi 40 C.

  H 2 SiO 2 O SiO 2 19 20 C C FePO 4 FePO 4

  10Na 2 O.30SiO 2 .60H 2

  10Na 2 O.30SiO 2 .60H 2 o O O o

  40 C, 1 atm

30 C, 1 atm

  313 303 dQ out in

   N CpdTN CpdT s s

    298 298   dT

a. Menghitung Panas Masuk

  303

  19 SiO : Qi = N . Cp dT

  2 SiO2 SiO2 SiO 2

  298

  = 56,8640 (kmol/jam). 1840,5824 (J/mol) = 104.662,8578 (kJ/jam)

  303

  19 C : Qi = N .

  Cp dT C C C

   298

  = 171,1204 (kmol/jam). 529,4370 (J/mol) = 90.597,4426 (kJ/mol)

  303

  19 FePO : Qi = N . Cp dT

  4 FePO4 FePO4 FePO 4

  298

  = 0,3785 (kmol/jam). 474,5705 (J/mol) = 179,6469 kJ/jam

  303

  19 Na O : Qi = N . Cp dT

  2 Na2O Na2O Na O 2

  298

  = 1,0595 (kmol/jam). 346,4530 (J/mol) = 367,0758 kJ/jam

  303 H O : Qi = N .

  Cp dT

2 H2O H2O H O

  2

  298

  = 6,3453 (kmol/jam). 374,6878 (kJ/mol) = 2.377,4888 kJ/jam

b. Menghitung Panas Keluar

  313

  20 SiO : Qo = N .

  Cp dT

  2 SiO2 SiO2 SiO 2

  298

  = 56,8640 (kmol/jam). 2.301,5507 (J/mol) = 130.875,3542 (kJ/jam)

  313

  20 C : Qo = N . Cp dT C C C

  298

  = 171,1204 (kmol/jam). 621,9829 (J/mol) = 106.433,9294 (kJ/mol)

  313

  20 FePO : Qo = N .

  Cp dT

  4 FePO4 FePO4 FePO 4

  298

  = 0,3785 (kmol/jam). 1.461,4185 (J/mol) = 553,6239 kJ/jam

  313

  20 Na O : Qo = N . Cp dT

  2 Na2O Na2O Na O 2

  298

  = 1,0595 (kmol/jam). 1.050,3585 (J/mol) = 1.112,5017 kJ/jam

  313

  20 H O : Qo = N . Cp dT

  2 H2O H2O H O 2

  298

  = 6,3453 (kmol/jam). 1.125,7408 (kJ/mol) = 7.143,1090 kJ/jam

  Tabel B.5 Neraca Energi pada Pelletizing Machine (L-102)

  Komponen Masuk (kJ) Keluar (kJ)

  SiO 104.662,8578 130.875,3542

2 C 90.597,4426 106.433,9294

  Na O 367,0758 1.112,5017

  2 FePO 179,6469 553,6239

  4 H O 2.377,4888 7.143,1090

  2 Jumlah 198.184,5119 246.118,5182

  • ∆Hr
  • Q 47.934,0063

  Total 246.118,5182 246.118,5182

  B.2.2 Bucket Elevator (C-110) Fungsi: Mengangkut bahan baku dari pelletizing machine ke rotary kiln pre-heater.

  Asumsi terjadi penurunan suhu bahan menjadi 35 C, selama pengangkutan. o H 2 H 2 O

  35 C, 1 atm SiO 2 SiO 2 o O

  40 C, 1 atm 20 21 C C FePO 4 FePO 4

  10Na 2 O.30SiO 2 .60H 2

  10Na 2 O.30SiO 2 .60H 2 O O

  a. Menghitung Panas Masuk

  Panas masuk bucket elevator sama dengan panas keluar pelletizing machine pada alur 20, yaitu = 246.118,5182 kJ/jam.

  b. Menghitung Panas Keluar 308

  21 SiO : Qo = N .

  Cp dT

  2 SiO2 SiO2 SiO 2

  298

  = 56,8640 (kmol/jam). 2.069,7463 (kJ/mol) = 117.694,0320 (kJ/jam)

  308

  21 C : Qo = N . Cp dT C C SiO 2

  298

  = 171,1204 (kmol/jam). 575,1541 (J/mol) = 98.420,5688 (kJ/mol)

  308

  21 FePO : Qo = N .

  Cp dT

  4 FePO4 FePO4 SiO 2

  298

  = 0,3785 (kmol/jam). 961,7110 (J/mol) = 364,0521 kJ/jam

  308

  21 Na O : Qo = N .

  Cp dT

  2 Na2O Na2O SiO 2

  298

  = 1,0595 (kmol/jam). 696,5830 (J/mol) = 738,0474 kJ/jam

21 H2O .

20 H

  179,6469 364,0521 H

  4

  FePO

  Na

  H

  2

  104.662,8578 117.694,0320 C 90.597,4426 98.420,5688

  Komponen Masuk (kJ/jam) Keluar (kJ/jam) H

  Tabel B.6 Neraca Energi pada Bucket Elevator (C-110)

  = 6,3453 (kmol/jam). 749,9460 (J/mol) = 4.758,5962 kJ/jam

   308 298 2 Cp dT SiO

  = N

  2 O : Qo H2O

  21 SiO

2 O 367,0758 738,0474

2 O 2.377,4888 4.758,5962

  Total 246.118,5182 246.118,5182

  Jumlah 198.184,5119 221.975,2965 ∆Hr

  • Q - 24.143,2217

a. Menghitung Panas Reaksi Pemb akaran Gas Alam (∆Hr)

  • 2O
  • 2H
  • 2
  • 3H

7 O

  • 5O
  • 4H

  

  2(g)

  →

  4CO

  

2(g)

  2 O (g)

  ………(4)

  Hr (1)

  (30

  o

  C) = ∆H r

  o (1)

  303 298 2 4 2 2

    

  2

  2 Cpg dT Cpg Cpl Cpg O CH O H CO r

  (1)

  = 20,0320 kmol/jam ∆H

  r o (1)

  = ∆H

  r o (CO2)

  

r