Single Exponential Smoothing Double Exponential Smoothing

d Menentukan besarnya nilai b t slope b t = 1 2 t t S S N − − e Menentukan besarnya forecast F t+m = α t + b t m m adalah jangka waktu forecast kedepan.

2.4.2 Exponential Smoothing

Metode exponential smoothing merupakan pengembangan dari metode moving averages. Dalam metode ini peramalan dilakukan dengan mengulang perhitungan secara terus menerus dengan menggunakan data terbaru. Setiap data diberi bobot, data yang lebih baru diberi bobot yang lebih besar. Dua metode dalan exponential smoothing diantaranya single exponential smoothing dan double exponential smoothing.

2.4.2.1 Single Exponential Smoothing

Metode ini adalah pengembangan dari metode moving average MA menggunakan rumus sebagai berikut: F t+1 = T X X X T + + + ... 2 1 Keterangan : Universitas Sumatera Utara Ft+1 : Ramalan untuk periode ke t + 1 X T : Nilai riil periode ke t T : jangka waktu rata-rata bergerak. Metode moving average memang mudah menghitungnya akan tetapi metode ini memberikan bobot yang sama pada setiap data. Untuk mengatasi hal ini maka digunakan metode single exponential smoothing. Pada metode single exponential smoothing bobot yang diberikan pada data yang ada adalah sebesar α untuk data yang te rbaru, α1-α untuk data yang lama, α1-α 2 untuk data yang lebih lama, dan seterusnya. Besarnya α adalah antara 0 dan 1. Semakin mendekati 1 berarti data terbaru lebih diperhatikan. Secara matematis besarnya Peramalan adalah: F t+1 = α X t + 1 – α F t F t+1 : Ramalan untuk periode ke t+1 X t : Nilai riil periode ke t F t : Ramalan untuk periode ke t Dari persamaan di atas besarnya peramalan periode yang akan datang dijelaskan sebagai berikut: F t+1 = α X t + 1- α F t F t+1 = α X t + F t - α F t F t+1 = F t + α X t – F t Secara sederhana : F t+1 = F t + α e t Universitas Sumatera Utara dengan e t adalah kesalahan ramalan nilai sebenarnya dikurangi ramalan untuk periode t. Dengan demikian dapat dikatakan bahwa peramalan pada periode yang akan datang adalah ramalan sebelumnya ditam bah α alpha dikalikan dengan kesalahan ramalan periode sebelumnya. Dalam melakukan peramalan dengan menggunakan metode single exponential smoothing SES, besarnya α ditentukan secara trial dan error sampai diketemukan α yang menghasilkan forecast error terkecil. Metode ini lebih cocok digunakan untuk meramal data-data yang fluktuatif secara random tidak teratur.

2.4.2.2 Double Exponential Smoothing

Pada metode ini proses penentuan ramalan dimulai dengan menentukan besarnya alpha secara trial dan error. Sedangkan tahap-tahap dalam menentukan ramalan adalah sebagai berikut : a Menentukan Smoothing pertama t S t S = 1 1 − − + t t S X α α b Menentukan Smoothing kedua t S t S = 1 1 − − + t t S S α α c Menentukan besarnya konstanta α t α t = t t t S S S − + = t t S S 2 − d Menentukan besarnya slope b t b t = 1 t t S S − − α α Universitas Sumatera Utara e Menentukan besarnya forecast F t+m F t+m = α t + b tm , dengan m adalah jumlah periode ke depan yang diramalkan.

2.5 Menghitung Kesalahan Ramalan

Hasil proyeksi yang akurat adalah forecast yang bisa meminimalkan kesalahan meramal forecast error. Besarnya forecast error dihitung dengan mengurangi data riil dengan besarnya ramalan. Error E = X i - F i Keterangan : X i = data riil periode ke-i F i = ramalan periode ke-i Dalam menghitung forecast error digunakan: a. Percentage Error PE Percentage Error merupakan Kesalahan persentase dari suatu peramalan, PE = 100 x X F X t t t     − dengan : x t = nilai data ke periode ke-t f t = nilai ramalan periode ke-t n = banyaknya data Universitas Sumatera Utara