Problem Analysis KESIMPULAN DAN SARAN

Jurnal Ilmiah Komputer dan Informatika KOMPUTA 6 Edisi. .. Volume. .., Bulan 20.. ISSN : 2089-9033

2.2 Process Analysis

Process analysis in this study will describe the existing processes in the retina of the eye in an identification system to classify images based on texture. Here is a process flow system to be built can be seen in figure 3 Figure 3 Process Flow System

2.3 Data Analysis

The data analysis consisted of analysis of the data input or the input and output of data analysis or output. Sample image data such as retina of the eye that had been prepared in advance. 2.3.1 Input Analysis Input is the image of the retina of the human eye provided on VARIA dataset. The retinal image has a size of 768x584 pixels 2.3.2 Output Analysis Output is the name of the classification results of a retinal image is tested, the data obtained from several processes, namely the image processing, training and testing Naive Bayesian naive Bayesian. 2.4 Method Analysis Analysis method or algorithm on the retina of the eye image identification system is to analyze how naive Bayesian classifying image based on texture. Before you can classify, the input image will go through several stages of image processing and training. After the input image through a few stages later Naive Bayes testing can be performed to classify the image of the retina of the eye.

2.4.1 Image Preprocessing Analysis

image processing is done to get a feature extraction contained in the input image. Here is the process undertaken to get a feature extraction : 2.4.1.1 Process Resize Resize is a process of changing the image size, the process is carried out to match the size of each input image. In this study, the image will resize be 32x32 pixels. Sample results are already in resizing the image can be seen in Figure 4. Figure 4 Resize The Image Result

2.4.1.2 Process Grayscale Grayscale is the process of converting an RGB

image into a gray level image, this process aims to simplify the previous pixel value RGB image has three values into a single value at each pixel. Converting the information of a color image to gray- scale can also be done by giving weight to each color element [5] with R = 0:30, 0:59 and G = B = 0:11. Thus obtained equation. Gray = 0.30 � + 0.59 � + 0.11 � Where : R = red value 31 255 G = green value 31 255 B = blue value 31 255 Sample calculation grayscale : The input image used in the example calculation are the grayscale image 4. Calculation grayscale pixel 0,0: R = 40 31255 = 4,86 G = 40 31255 = 4,86 B = 40 31255 = 4,86 Gray = 4,860,3 + 4,860,59 + 4,860,11 Gray = 1,46 + 2,87 + 0,53 Gray = 4,86 Gray = 5 Using the same formula to all the pixels it will get the grayscale matrix that can be seen in figure 5. Figure 5 Matrix Grayscale

2.4.1.3 Run Length Extraction Process

Run-length is a method for feature extraction, where the value of feature extraction to be obtained 5 5 5 6 6 6 5 6 6 7 7 7 8 7 7 7 7 7 7 8 8 7 7 7 7 6 6 6 5 5 4 4 9 9 10 10 11 11 12 11 10 10 11 13 14 14 14 14 14 14 14 14 14 12 13 12 12 12 11 10 9 8 7 7 9 9 10 11 11 11 12 12 12 12 12 11 13 14 14 15 15 15 15 15 14 13 14 13 12 12 12 11 10 9 8 7 9 9 10 10 11 11 11 11 12 12 12 13 13 14 16 15 16 16 16 15 15 14 15 14 13 13 12 11 10 9 8 8 9 9 10 10 11 11 11 11 12 12 12 13 15 14 14 17 16 17 16 16 16 14 15 15 14 13 12 11 10 10 9 9 9 9 10 10 10 11 11 11 12 12 13 14 15 15 15 15 16 17 17 17 17 15 15 15 14 12 11 11 11 10 10 9 9 9 9 10 10 10 10 11 11 12 13 14 15 16 17 16 15 18 18 17 17 16 16 15 15 14 13 12 11 10 10 9 9 9 9 9 10 10 10 11 12 12 13 14 15 16 17 18 18 18 19 18 16 18 16 17 16 14 13 13 12 11 10 9 8 8 9 9 10 10 10 11 11 12 13 14 15 16 17 19 20 18 20 19 19 17 18 17 16 15 14 13 12 12 11 9 8 8 8 9 9 9 10 10 11 12 12 13 15 17 19 21 22 20 20 20 20 19 17 17 16 15 14 13 12 12 11 10 8 8 8 8 9 9 9 10 11 12 12 13 15 18 22 25 23 20 20 22 21 20 19 18 17 16 14 14 13 12 11 10 7 7 8 8 8 9 9 10 10 11 12 13 15 17 26 26 24 20 20 22 21 20 19 17 16 16 15 15 13 13 12 11 7 7 7 7 8 8 9 9 10 11 11 12 14 18 27 28 26 21 23 21 21 20 19 18 17 17 16 15 14 13 13 11 7 7 6 7 7 7 8 9 9 10 11 12 14 18 27 27 27 22 22 22 23 20 19 18 17 17 16 16 14 13 13 11 6 6 6 6 7 7 8 8 9 10 11 12 14 18 27 26 26 21 23 22 21 20 19 18 18 17 17 15 14 13 12 11 6 5 5 6 6 7 7 8 9 10 10 12 14 17 24 26 24 21 22 23 19 19 19 18 18 17 17 15 13 13 12 11 5 5 5 5 6 6 7 8 9 10 10 12 13 16 20 25 23 20 22 21 20 19 18 18 18 17 16 15 14 13 13 12 5 5 5 5 6 6 7 8 9 9 10 11 13 15 17 20 21 18 21 19 20 20 19 17 16 17 15 14 14 13 13 12 6 5 5 5 6 7 7 8 8 9 10 11 13 15 16 17 16 18 20 19 19 20 19 18 17 15 15 14 14 13 13 12 6 5 5 6 6 7 7 8 8 9 10 11 13 14 16 17 17 17 18 20 19 20 19 18 17 16 14 14 14 13 13 11 6 6 6 6 7 7 7 8 8 9 10 11 13 14 16 18 18 19 17 20 19 19 18 18 17 16 15 13 13 13 12 12 7 6 6 7 7 7 8 8 8 9 10 11 13 14 16 18 19 19 17 19 19 19 18 18 17 16 15 14 13 12 11 11 7 7 7 7 7 8 8 8 8 9 10 11 13 15 17 18 19 19 17 19 19 18 18 18 17 16 15 14 13 13 11 10 7 7 7 7 7 8 8 8 8 9 10 11 13 15 17 17 18 17 18 18 19 18 18 17 16 15 15 14 13 12 12 11 7 7 7 7 8 8 8 8 9 9 10 11 13 15 16 16 18 15 18 18 18 18 17 16 15 15 14 14 14 13 13 12 7 7 7 7 7 8 8 8 8 9 11 12 13 14 15 17 15 17 17 17 18 18 17 16 16 15 15 14 13 13 12 12 7 7 7 7 8 8 8 8 9 10 11 12 13 14 15 15 14 17 16 16 17 17 16 16 15 14 13 13 13 12 12 12 7 7 7 7 8 8 8 9 9 10 11 12 12 13 14 12 15 16 16 16 15 16 15 15 15 14 13 13 13 13 12 12 7 7 7 7 8 8 8 9 9 10 11 11 12 13 12 12 15 15 15 15 15 15 15 14 14 14 13 13 12 12 12 11 7 7 7 7 7 8 8 9 9 9 10 11 12 13 11 14 15 15 15 14 14 14 14 15 14 13 13 12 12 12 12 11 7 7 7 7 7 8 8 9 10 10 10 11 12 11 12 13 14 14 14 14 14 15 14 14 13 12 12 12 12 12 11 11 6 7 7 7 7 8 9 9 10 10 11 11 11 10 12 12 12 13 13 13 13 13 13 12 12 11 10 11 11 11 11 10 Jurnal Ilmiah Komputer dan Informatika KOMPUTA 7 Edisi. .. Volume. .., Bulan 20.. ISSN : 2089-9033 is the value of SRE short run emphasis, LRE long run emphasis, GLU gray level uninformity, RLU run length uninformity and RPC run percentage . The first step in calculating run length method is to make a run length matrix, the matrix value obtained from the run length grayscale matrix to calculate the degree of gray the same on each line. Orientation is formed by a four-way shift, ie 0 , 45 , 90 and 135 . For example grayscale matrix in Figure 5 is used to obtain a run length matrix. Here is a run length matrix with a shift towards 00, 450, 900 and 1350 are produced. Where i = gray degrees value j = consecutive pixel run rj = The number of pixels in sequence by many order gi = The number of pixels in sequence based on the gray degrees s = The total number of runs generated value Table 3 Run Length Matrix 0 Table 4 Run Length Matrix 45 Table 5 Run Length Matrix 90 Table 6 Run Length Matrix 135 After cakcukating the SRE features Short Run Emphasis, LRE Long Run Emphasis, GLU Grey Level Uninformity, RLURun Length Uninformity, and RPC Run Percentage on run length matrix 0 , 45 , 90 , dan 135 , then the result of features value are : Table 7 Run Length Matrix Features Value Feature Run Length Matrix 45 90 135 SRE 0.69666 0.79458 0.59571 0.73156 LRE 3.67089 2.66213 7.9125 3.35329 GLU 40.61392 46.80109 29.525 42.47305 RLU 286.58544 430.62398 162.83333 333.35329 RPC 0.61719 0.7168 0.46875 0.65234

2.4.2 Naive Bayesian Training Analysis

Naive Bayesian training is done to obtain training data in the form of the mean and variance. The mean and variance of this will be referred for testing. In the training phase the mean and variance sought from every feature on every class training data. The following dataset used for training can be seen in Table 8. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 1 1 5 1 3 2 2 8 6 6 6 2 2 16 7 4 7 4 7 5 1 28 8 8 10 5 6 29 9 19 15 4 1 39 10 27 12 4 1 44 11 44 7 4 3 58 12 31 13 7 1 2 54 13 37 16 2 1 1 57 14 39 6 3 1 1 1 51 15 33 9 3 1 1 1 48 16 29 7 3 39 17 33 8 2 1 44 18 20 9 3 1 33 19 17 6 2 25 20 16 3 1 20 21 10 1 11 22 7 1 8 23 6 6 24 3 3 25 2 2 26 2 2 4 27 2 1 3 28 1 1 29 30 31 r j|ɵ 397 141 52 29 9 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 632 i r j G i|ɵ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 2 2 5 6 3 3 12 6 19 1 2 1 23 7 27 7 3 2 2 3 44 8 20 8 4 3 35 9 33 13 2 48 10 43 9 2 54 11 49 12 3 64 12 47 12 4 1 1 65 13 47 6 5 1 1 60 14 47 11 3 61 15 44 8 4 1 57 16 32 7 2 41 17 34 11 1 46 18 25 6 2 2 35 19 17 7 1 25 20 19 2 1 22 21 8 2 10 22 8 1 9 23 6 6 24 3 3 25 2 2 26 4 1 5 27 3 1 4 28 1 1 29 30 31 r j|ɵ 546 128 37 12 7 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 734 i r j G i|ɵ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 2 2 5 6 1 1 2 10 6 10 7 1 1 19 7 16 3 4 2 1 3 1 30 8 8 4 4 1 2 1 20 9 5 3 4 1 3 2 1 19 10 8 5 6 4 1 1 25 11 19 4 5 4 2 1 1 36 12 20 7 9 3 2 1 42 13 19 7 5 4 1 1 37 14 22 10 5 4 1 42 15 22 12 6 1 1 42 16 20 6 4 2 32 17 21 9 3 1 1 35 18 11 5 4 2 2 24 19 7 5 2 2 16 20 7 2 2 1 1 13 21 7 1 1 9 22 4 3 7 23 6 6 24 3 3 25 2 2 26 4 1 5 27 2 1 3 28 1 1 29 30 31 r j|ɵ 252 95 67 28 16 6 2 2 2 7 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 i r j G i|ɵ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 2 2 5 7 1 4 12 6 19 1 1 2 23 7 20 10 1 5 4 1 41 8 8 8 9 1 1 1 28 9 19 9 2 1 2 33 10 24 8 3 1 1 1 38 11 37 12 1 2 2 54 12 32 19 6 1 58 13 42 13 3 2 60 14 40 16 2 58 15 43 12 1 1 57 16 37 6 1 44 17 32 7 3 1 43 18 23 11 2 36 19 14 6 3 23 20 9 7 1 17 21 12 12 22 8 1 9 23 4 1 5 24 3 3 25 2 2 26 4 1 5 27 3 1 4 28 1 1 29 30 31 r j|ɵ 445 150 43 15 8 3 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 668 i r j G i|ɵ