Jurnal Ilmiah Komputer dan Informatika KOMPUTA
6
Edisi. .. Volume. .., Bulan 20.. ISSN : 2089-9033
2.2 Process Analysis
Process analysis in this study will describe the existing processes in the retina of the eye in an
identification system to classify images based on texture. Here is a process flow system to be built can
be seen in figure 3
Figure 3 Process Flow System
2.3 Data Analysis
The data analysis consisted of analysis of the data input or the input and output of data analysis or
output. Sample image data such as retina of the eye that had been prepared in advance.
2.3.1 Input Analysis
Input is the image of the retina of the human eye provided on VARIA dataset. The retinal image
has a size of 768x584 pixels 2.3.2 Output Analysis
Output is the name of the classification results of a retinal image is tested, the data obtained from
several processes, namely the image processing, training and testing Naive Bayesian naive Bayesian.
2.4 Method Analysis
Analysis method or algorithm on the retina of the eye image identification system is to analyze
how naive Bayesian classifying image based on texture. Before you can classify, the input image will
go through several stages of image processing and training. After the input image through a few stages
later Naive Bayes testing can be performed to classify the image of the retina of the eye.
2.4.1 Image Preprocessing Analysis
image processing is done to get a feature extraction contained in the input image. Here is the
process undertaken to get a feature extraction : 2.4.1.1 Process Resize
Resize is a process of changing the image size, the process is carried out to match the size of each
input image. In this study, the image will resize be 32x32 pixels. Sample results are already in resizing
the image can be seen in Figure 4. Figure 4 Resize The Image Result
2.4.1.2 Process Grayscale Grayscale is the process of converting an RGB
image into a gray level image, this process aims to simplify the previous pixel value RGB image has
three values into a single value at each pixel. Converting the information of a color image to gray-
scale can also be done by giving weight to each color element [5] with R = 0:30, 0:59 and G = B =
0:11. Thus obtained equation. Gray = 0.30
� + 0.59 � + 0.11 � Where :
R = red value 31 255 G = green value 31 255
B = blue value 31 255 Sample calculation grayscale :
The input image used in the example calculation are the grayscale image 4.
Calculation grayscale pixel 0,0:
R = 40 31255 = 4,86 G = 40 31255 = 4,86
B = 40 31255 = 4,86 Gray = 4,860,3 + 4,860,59 + 4,860,11
Gray = 1,46 + 2,87 + 0,53 Gray = 4,86
Gray = 5
Using the same formula to all the pixels it will get the grayscale matrix that can be seen in figure 5.
Figure 5 Matrix Grayscale
2.4.1.3 Run Length Extraction Process
Run-length is a method for feature extraction, where the value of feature extraction to be obtained
5 5
5 6
6 6
5 6
6 7
7 7
8 7
7 7
7 7
7 8
8 7
7 7
7 6
6 6
5 5
4 4
9 9 10 10 11 11 12 11 10 10 11 13 14 14 14 14 14 14 14 14 14 12 13 12 12 12 11 10
9 8
7 7
9 9 10 11 11 11 12 12 12 12 12 11 13 14 14 15 15 15 15 15 14 13 14 13 12 12 12 11 10
9 8
7 9
9 10 10 11 11 11 11 12 12 12 13 13 14 16 15 16 16 16 15 15 14 15 14 13 13 12 11 10 9
8 8
9 9 10 10 11 11 11 11 12 12 12 13 15 14 14 17 16 17 16 16 16 14 15 15 14 13 12 11 10 10
9 9
9 9 10 10 10 11 11 11 12 12 13 14 15 15 15 15 16 17 17 17 17 15 15 15 14 12 11 11 11 10 10
9 9
9 9 10 10 10 10 11 11 12 13 14 15 16 17 16 15 18 18 17 17 16 16 15 15 14 13 12 11 10 10
9 9
9 9
9 10 10 10 11 12 12 13 14 15 16 17 18 18 18 19 18 16 18 16 17 16 14 13 13 12 11 10 9
8 8
9 9 10 10 10 11 11 12 13 14 15 16 17 19 20 18 20 19 19 17 18 17 16 15 14 13 12 12 11
9 8
8 8
9 9
9 10 10 11 12 12 13 15 17 19 21 22 20 20 20 20 19 17 17 16 15 14 13 12 12 11 10 8
8 8
8 9
9 9 10 11 12 12 13 15 18 22 25 23 20 20 22 21 20 19 18 17 16 14 14 13 12 11 10
7 7
8 8
8 9
9 10 10 11 12 13 15 17 26 26 24 20 20 22 21 20 19 17 16 16 15 15 13 13 12 11 7
7 7
7 8
8 9
9 10 11 11 12 14 18 27 28 26 21 23 21 21 20 19 18 17 17 16 15 14 13 13 11 7
7 6
7 7
7 8
9 9 10 11 12 14 18 27 27 27 22 22 22 23 20 19 18 17 17 16 16 14 13 13 11
6 6
6 6
7 7
8 8
9 10 11 12 14 18 27 26 26 21 23 22 21 20 19 18 18 17 17 15 14 13 12 11 6
5 5
6 6
7 7
8 9 10 10 12 14 17 24 26 24 21 22 23 19 19 19 18 18 17 17 15 13 13 12 11
5 5
5 5
6 6
7 8
9 10 10 12 13 16 20 25 23 20 22 21 20 19 18 18 18 17 16 15 14 13 13 12 5
5 5
5 6
6 7
8 9
9 10 11 13 15 17 20 21 18 21 19 20 20 19 17 16 17 15 14 14 13 13 12 6
5 5
5 6
7 7
8 8
9 10 11 13 15 16 17 16 18 20 19 19 20 19 18 17 15 15 14 14 13 13 12 6
5 5
6 6
7 7
8 8
9 10 11 13 14 16 17 17 17 18 20 19 20 19 18 17 16 14 14 14 13 13 11 6
6 6
6 7
7 7
8 8
9 10 11 13 14 16 18 18 19 17 20 19 19 18 18 17 16 15 13 13 13 12 12 7
6 6
7 7
7 8
8 8
9 10 11 13 14 16 18 19 19 17 19 19 19 18 18 17 16 15 14 13 12 11 11 7
7 7
7 7
8 8
8 8
9 10 11 13 15 17 18 19 19 17 19 19 18 18 18 17 16 15 14 13 13 11 10 7
7 7
7 7
8 8
8 8
9 10 11 13 15 17 17 18 17 18 18 19 18 18 17 16 15 15 14 13 12 12 11 7
7 7
7 8
8 8
8 9
9 10 11 13 15 16 16 18 15 18 18 18 18 17 16 15 15 14 14 14 13 13 12 7
7 7
7 7
8 8
8 8
9 11 12 13 14 15 17 15 17 17 17 18 18 17 16 16 15 15 14 13 13 12 12 7
7 7
7 8
8 8
8 9 10 11 12 13 14 15 15 14 17 16 16 17 17 16 16 15 14 13 13 13 12 12 12
7 7
7 7
8 8
8 9
9 10 11 12 12 13 14 12 15 16 16 16 15 16 15 15 15 14 13 13 13 13 12 12 7
7 7
7 8
8 8
9 9 10 11 11 12 13 12 12 15 15 15 15 15 15 15 14 14 14 13 13 12 12 12 11
7 7
7 7
7 8
8 9
9 9 10 11 12 13 11 14 15 15 15 14 14 14 14 15 14 13 13 12 12 12 12 11
7 7
7 7
7 8
8 9 10 10 10 11 12 11 12 13 14 14 14 14 14 15 14 14 13 12 12 12 12 12 11 11
6 7
7 7
7 8
9 9 10 10 11 11 11 10 12 12 12 13 13 13 13 13 13 12 12 11 10 11 11 11 11 10
Jurnal Ilmiah Komputer dan Informatika KOMPUTA
7
Edisi. .. Volume. .., Bulan 20.. ISSN : 2089-9033
is the value of SRE short run emphasis, LRE long run emphasis, GLU gray level uninformity, RLU
run length uninformity and RPC run percentage . The first step in calculating run length method is to
make a run length matrix, the matrix value obtained from the run length grayscale matrix to calculate the
degree of gray the same on each line. Orientation is formed by a four-way shift, ie 0
, 45 , 90
and 135 .
For example grayscale matrix in Figure 5 is used to obtain a run length matrix. Here is a run
length matrix with a shift towards 00, 450, 900 and 1350 are produced.
Where i = gray degrees value
j = consecutive pixel run rj = The number of pixels in sequence by many
order gi = The number of pixels in sequence based on
the gray degrees s = The total number of runs generated value
Table 3 Run Length Matrix 0
Table 4 Run Length Matrix 45 Table 5 Run Length Matrix 90
Table 6 Run Length Matrix 135
After cakcukating the SRE features Short Run Emphasis, LRE Long Run Emphasis, GLU Grey
Level Uninformity,
RLURun Length
Uninformity, and RPC Run Percentage on run length matrix 0
, 45 , 90
, dan 135 , then the result
of features value are : Table 7 Run Length Matrix Features Value
Feature Run Length Matrix
45 90
135 SRE
0.69666 0.79458
0.59571 0.73156
LRE 3.67089
2.66213 7.9125
3.35329 GLU
40.61392 46.80109
29.525 42.47305
RLU 286.58544
430.62398 162.83333
333.35329 RPC
0.61719 0.7168
0.46875 0.65234
2.4.2 Naive Bayesian Training Analysis
Naive Bayesian training is done to obtain training data in the form of the mean and variance.
The mean and variance of this will be referred for testing. In the training phase the mean and variance
sought from every feature on every class training data. The following dataset used for training can be
seen in Table 8.
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1
2 3
4 1
1 5
1 3
2 2
8 6
6 6
2 2
16 7
4 7
4 7
5 1
28 8
8 10 5
6 29
9 19 15
4 1
39 10
27 12 4
1 44
11 44
7 4
3 58
12 31 13
7 1
2 54
13 37 16
2 1
1 57
14 39
6 3
1 1
1 51
15 33
9 3
1 1
1 48
16 29
7 3
39 17
33 8
2 1
44 18
20 9
3 1
33 19
17 6
2 25
20 16
3 1
20 21
10 1
11 22
7 1
8 23
6 6
24 3
3 25
2 2
26 2
2 4
27 2
1 3
28 1
1 29
30 31
r j|ɵ 397 141 52 29 9 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 632 i
r j G i|ɵ
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1
2 3
4 2
2 5
6 3
3 12
6 19
1 2
1 23
7 27
7 3
2 2
3 44
8 20
8 4
3 35
9 33 13
2 48
10 43
9 2
54 11
49 12 3
64 12
47 12 4
1 1
65 13
47 6
5 1
1 60
14 47 11
3 61
15 44
8 4
1 57
16 32
7 2
41 17
34 11 1
46 18
25 6
2 2
35 19
17 7
1 25
20 19
2 1
22 21
8 2
10 22
8 1
9 23
6 6
24 3
3 25
2 2
26 4
1 5
27 3
1 4
28 1
1 29
30 31
r j|ɵ 546 128 37 12 7 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 734 i
r j G i|ɵ
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1
2 3
4 2
2 5
6 1
1 2
10 6
10 7
1 1
19 7
16 3
4 2
1 3
1 30
8 8
4 4
1 2
1 20
9 5
3 4
1 3
2 1
19 10
8 5
6 4
1 1
25 11
19 4
5 4
2 1
1 36
12 20
7 9
3 2
1 42
13 19
7 5
4 1
1 37
14 22 10
5 4
1 42
15 22 12
6 1
1 42
16 20
6 4
2 32
17 21
9 3
1 1
35 18
11 5
4 2
2 24
19 7
5 2
2 16
20 7
2 2
1 1
13 21
7 1
1 9
22 4
3 7
23 6
6 24
3 3
25 2
2 26
4 1
5 27
2 1
3 28
1 1
29 30
31 r j|ɵ 252 95 67 28 16 6 2 2 2 7 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480
i r j
G i|ɵ
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1
2 3
4 2
2 5
7 1
4 12
6 19
1 1
2 23
7 20 10
1 5
4 1
41 8
8 8
9 1
1 1
28 9
19 9
2 1
2 33
10 24
8 3
1 1
1 38
11 37 12
1 2
2 54
12 32 19
6 1
58 13
42 13 3
2 60
14 40 16
2 58
15 43 12
1 1
57 16
37 6
1 44
17 32
7 3
1 43
18 23 11
2 36
19 14
6 3
23 20
9 7
1 17
21 12
12 22
8 1
9 23
4 1
5 24
3 3
25 2
2 26
4 1
5 27
3 1
4 28
1 1
29 30
31 r j|ɵ 445 150 43 15 8 3 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 668
i r j
G i|ɵ