Speeding Up JNDI Lookups by Pooling Session Objects Speeding Up Object Creation Through Caching
4.3.6 Monitoring Pooled Connections
You can use the Administration Console to monitor pooled connections. For more information, see JMS Servers: Monitoring: Active Pooled Connections in the Oracle WebLogic Server Administration Console Help.4.4 Improving Performance Through Pooling
The automatic pooling of connections and other objects by the JMS wrappers means that it is efficient to write code as shown in Section 4.6.2, Sending a JMS Message In a Java EE Container. Although in this example the Connection Factory, Connection, and Session objects are created every time a message is sent, in reality these three classes work together so that when they are used as shown, they do little more than retrieve a Session object from the pool. ■ Section 4.4.1, Speeding Up JNDI Lookups by Pooling Session Objects ■ Section 4.4.2, Speeding Up Object Creation Through Caching ■ Section 4.4.3, Enlisting the Proper Transaction Mode4.4.1 Speeding Up JNDI Lookups by Pooling Session Objects
The JNDI lookups of the Connection Factory and Destination objects can be expensive in terms of performance. This is particularly true if the Destination object points to a Foreign JMS Destination MBean, and therefore, is a lookup on a non-local JNDI provider. Because the Connection Factory and Destination objects are thread-safe, they can be looked up once inside an EJB or servlet at creation time, which saves the time required to perform the lookup each time. Inside a servlet, these lookups can be performed inside the init method. The Connection Factory and Destination objects may then be assigned to an instance variable and reused whenever a message is sent. Inside an EJB, these lookups can be performed inside the ejbCreate method and assigned to an instance variable. For a session bean, each instance of the bean will then have its own copy. Since stateless session beans are pooled, this method is also very efficient and is perfectly consistent with the Java EE specifications, because the number of a times that lookups occur is drastically reduced by pooling the JMS connection objects. Caching these objects in a static member of the EJB class may work, but it is discouraged by the Java EE specification. However, if these objects are cached inside the ejbCreate or init method, then the EJB or servlet must have some way to recreate them if there has been a failure. This is necessary because some JMS providers, like WebLogic JMS, may invalidate a Destination object after a server failure. So, if the EJB runs on Server A, and JMS runs on Server B, then the EJB on Server A will have to perform the JNDI lookup of the objects from Server B again after that server has recovered. The example, Section 4.6.1.5, PoolTestBean.java includes a sample EJB that performs this caching and re-lookup process correctly.4.4.2 Speeding Up Object Creation Through Caching
Once Connection Factory object andor Destination object pooling has been established, it may be tempting to cache other objects, such as the Connection, Session, and Producer objects, inside the ejbCreate method. This will work, but it is not always the most efficient solution. Essentially, by doing this you are removing a Session object from the cache and permanently assigning it to a particular EJB, 4-10 Programming JMS for Oracle WebLogic Server whereas by using the JMS wrappers as designed, that Session object can be shared by other EJBs and servlets as well. Furthermore, the wrappers attempt to reestablish a JMS connection and create new session objects if there is a communication failure with the JMS provider, but this will not work if you cache the Session object on your own.4.4.3 Enlisting the Proper Transaction Mode
Parts
» Oracle Fusion Middleware Online Documentation Library
» Document Scope and Audience Guide to this Document
» Related Documentation New and Changed JMS Features In This Release
» Major Components WebLogic JMS Architecture
» Point-to-Point Messaging PublishSubscribe Messaging
» Using the Default Connection Factories
» Connection Understanding the JMS API
» WebLogic JMS Session Guidelines Session Subclasses Non-Transacted Session
» MessageProducer and MessageConsumer Understanding the JMS API
» Message Header Fields Message
» Message Property Fields Message
» ServerSessionPoolFactory ServerSessionPool ServerSession Understanding the JMS API
» ConnectionConsumer Understanding the JMS API
» Message Compression Message Properties and Message Header Fields Message Ordering
» Topics vs. Queues Asynchronous vs. Synchronous Consumers
» Persistent vs. Non-Persistent Messages
» Deferring Acknowledges and Commits Using AUTO_ACK for Non-Durable Subscribers
» Avoid Multi-threading Using the JMSXUserID Property
» Declaring a Wrapped JMS Factory using Deployment Descriptors
» Injecting Resource Dependency into a Class Non-Injected EJB 3.0 Resource Reference Annotations
» Automatically Enlisting Transactions Container-Managed Security
» Connection Testing Java EE Compliance Pooled JMS Connection Objects
» Speeding Up JNDI Lookups by Pooling Session Objects Speeding Up Object Creation Through Caching
» Performance and Tuning Disabling Wrapping and Pooling Simplified Access to Foreign JMS Providers
» ejb-jar.xml weblogic-ejb-jar.xml
» PoolTest.java PoolTestHome.java PoolTestBean.java
» Using compenv Sending a JMS Message In a Java EE Container
» Dependency Injection EJB 3.0 Wrapper Without Injection
» Create a Queue Session Create a Topic Session
» Create QueueSenders and QueueReceivers Create TopicPublishers and TopicSubscribers
» Step 1: Look Up a Connection Factory in JNDI Step 6a: Create the Message Object Message Producers
» Step 6b: Optionally Register an Asynchronous Message Listener
» Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7
» Send a Message Using Queue Sender
» Send a Message Using TopicPublisher
» Create a Message Object Define a Message Setting Message Producer Attributes
» Asynchronous Message Pipeline Receiving Messages Asynchronously
» Use Prefetch Mode to Create a Synchronous Message Pipeline
» Importing Required Packages Acknowledging Received Messages
» Setting a Redelivery Delay Overriding the Redelivery Delay on a Destination
» Defining a Session Exception Listener Closing a Session
» Preconditions for Deleting Destinations What Happens when a Destination is Deleted
» Defining the Persistent Store Setting the Client ID Policy
» Defining the Client ID Creating a Sharable Subscription Policy
» Creating Subscribers for a Durable Subscription Best Practice: Always Close Failed JMS ClientIDs
» Deleting Durable Subscriptions Modifying Durable Subscriptions
» Setting Message Header Fields
» Setting Message Property Fields
» Browsing Header and Property Fields
» Displaying Message Selectors Indexing Topic Subscriber Message Selectors To Optimize Performance
» WebLogic XML APIs Using a String Representation Using a DOM Representation
» Releasing Object Resources Configuring JMS System Resources Using JMSModuleHelper
» Creating a JMS System Resource Deleting a JMS System Resource
» Configuring JMS Servers and Store-and-Forward Agents Best Practices when Using JMSModuleHelper
» Benefits of Using Multicasting Limitations of Using Multicasting Using WebLogic Server Unicast
» Step 2: Set Up the Message Listener Dynamically Configuring Multicasting Configuration Attributes
» Uniform Distributed Destinations Weighted Distributed Destinations
» Queue Forwarding QueueSenders QueueReceivers
» TopicPublishers TopicSubscribers Using Replicated Distributed Topics
» Maximizing Production Stuck Messages
» Message Processing According to the JMS Specification Message Processing with Unit-of-Order
» Message Delivery with Unit-of-Order
» Joe Orders a Book What Happened to Joes Order
» Unit-of-Order and Distributed Topics Unit-of-Order, Topics, and Message Driven Beans
» Basic UOW Terminology Rules For Processing UOW Messages
» Example UOW Producer Code UOW Exceptions
» Limitations of UOW Message Groups Overview of Transactions
» WebLogic Messaging High Availability Features
» Application Design Limitations When using Replicated Distributed Topics Advanced Topic Features
» What is the Subscription Key Configuring a Shared Subscription
» Managing Durable Subscriptions How Sharing a Durable Subscription Works
» Sample Producer Code Re-usable ConnectionFactory Objects
» Re-usable Destination Objects Reconnected Connection Objects
» Reconnected Session Objects Automatic Failover for JMS Producers
» Special Cases for Reconnected Consumers
» Integer int Long long Character char String
» Closing Connections Helper Functions
Show more