Unit-of-Order and Distributed Topics Unit-of-Order, Topics, and Message Driven Beans
10.5.5 Using Unit-of-Order with Topics
Assigning a Unit-of-Order does not prohibit parallel processing of a message by two subscribers on the same topic. Since individual subscribers for a topic have their own destination and message list, similar to a queue with one consumer, messages are processed by all subscribers according to the Unit-of-Order assigned at the time of production.10.5.5.1 Unit-of-Order and Distributed Topics
The routing of messages between physical topics can affect Unit-of-Order if an application directly sends to a member of a distributed topic. To ensure correct order of processing, the application must ensure the messages are sent via the logical distributed topic that is, the destination is obtained using the JNDI name of the distributed topic. WebLogic Server then ensures messages with the same Unit-of-Order take the same path to the distributed topic member.10.5.5.2 Unit-of-Order, Topics, and Message Driven Beans
The WebLogic Server message driven bean implementation goes beyond the requirements of the EJB and JMS specifications to provide parallel processing of an incoming message stream for a single topic subscription and JMS session. This parallel processing does not take Unit-of-Order into account, so care is required to ensure that the processing is still ordered correctly. There are two ways to achieve this – either process each message in its own JTA transaction, or disable parallel processing by setting the pool size to one. When using Unit-of-Order with topics and message driven beans, you must either: ■ Section 10.5.5.2.1, Use JTA Transactions or ■ Section 10.5.5.2.2, Set Pools Size to One Start by configuring MDBs to Section 10.5.5.2.1, Use JTA Transactions. In the unlikely event that the transaction overhead is unacceptable, switch to Section 10.5.5.2.2, Set Pools Size to One.10.5.5.2.1 Use JTA Transactions The simplest approach is to use JTA transactions. It has
a processing overhead, but is usually low as WebLogic Server has a highly optimized transaction engine and the application benefits from parallel processing of messages that have different Units-of-Order. The JTA transaction may be of benefit for some application use cases. For example, where it is necessary to ensure atomic interaction with other operations such as sending JMS messages, or updating a database.10.5.5.2.2 Set Pools Size to One Setting the pool size to one allows more efficient,
non-transactional messaging to be used, but has a drastic effect on parallelism.10.5.6 Using Unit-of-Order with JMS Message Management
Parts
» Oracle Fusion Middleware Online Documentation Library
» Document Scope and Audience Guide to this Document
» Related Documentation New and Changed JMS Features In This Release
» Major Components WebLogic JMS Architecture
» Point-to-Point Messaging PublishSubscribe Messaging
» Using the Default Connection Factories
» Connection Understanding the JMS API
» WebLogic JMS Session Guidelines Session Subclasses Non-Transacted Session
» MessageProducer and MessageConsumer Understanding the JMS API
» Message Header Fields Message
» Message Property Fields Message
» ServerSessionPoolFactory ServerSessionPool ServerSession Understanding the JMS API
» ConnectionConsumer Understanding the JMS API
» Message Compression Message Properties and Message Header Fields Message Ordering
» Topics vs. Queues Asynchronous vs. Synchronous Consumers
» Persistent vs. Non-Persistent Messages
» Deferring Acknowledges and Commits Using AUTO_ACK for Non-Durable Subscribers
» Avoid Multi-threading Using the JMSXUserID Property
» Declaring a Wrapped JMS Factory using Deployment Descriptors
» Injecting Resource Dependency into a Class Non-Injected EJB 3.0 Resource Reference Annotations
» Automatically Enlisting Transactions Container-Managed Security
» Connection Testing Java EE Compliance Pooled JMS Connection Objects
» Speeding Up JNDI Lookups by Pooling Session Objects Speeding Up Object Creation Through Caching
» Performance and Tuning Disabling Wrapping and Pooling Simplified Access to Foreign JMS Providers
» ejb-jar.xml weblogic-ejb-jar.xml
» PoolTest.java PoolTestHome.java PoolTestBean.java
» Using compenv Sending a JMS Message In a Java EE Container
» Dependency Injection EJB 3.0 Wrapper Without Injection
» Create a Queue Session Create a Topic Session
» Create QueueSenders and QueueReceivers Create TopicPublishers and TopicSubscribers
» Step 1: Look Up a Connection Factory in JNDI Step 6a: Create the Message Object Message Producers
» Step 6b: Optionally Register an Asynchronous Message Listener
» Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7
» Send a Message Using Queue Sender
» Send a Message Using TopicPublisher
» Create a Message Object Define a Message Setting Message Producer Attributes
» Asynchronous Message Pipeline Receiving Messages Asynchronously
» Use Prefetch Mode to Create a Synchronous Message Pipeline
» Importing Required Packages Acknowledging Received Messages
» Setting a Redelivery Delay Overriding the Redelivery Delay on a Destination
» Defining a Session Exception Listener Closing a Session
» Preconditions for Deleting Destinations What Happens when a Destination is Deleted
» Defining the Persistent Store Setting the Client ID Policy
» Defining the Client ID Creating a Sharable Subscription Policy
» Creating Subscribers for a Durable Subscription Best Practice: Always Close Failed JMS ClientIDs
» Deleting Durable Subscriptions Modifying Durable Subscriptions
» Setting Message Header Fields
» Setting Message Property Fields
» Browsing Header and Property Fields
» Displaying Message Selectors Indexing Topic Subscriber Message Selectors To Optimize Performance
» WebLogic XML APIs Using a String Representation Using a DOM Representation
» Releasing Object Resources Configuring JMS System Resources Using JMSModuleHelper
» Creating a JMS System Resource Deleting a JMS System Resource
» Configuring JMS Servers and Store-and-Forward Agents Best Practices when Using JMSModuleHelper
» Benefits of Using Multicasting Limitations of Using Multicasting Using WebLogic Server Unicast
» Step 2: Set Up the Message Listener Dynamically Configuring Multicasting Configuration Attributes
» Uniform Distributed Destinations Weighted Distributed Destinations
» Queue Forwarding QueueSenders QueueReceivers
» TopicPublishers TopicSubscribers Using Replicated Distributed Topics
» Maximizing Production Stuck Messages
» Message Processing According to the JMS Specification Message Processing with Unit-of-Order
» Message Delivery with Unit-of-Order
» Joe Orders a Book What Happened to Joes Order
» Unit-of-Order and Distributed Topics Unit-of-Order, Topics, and Message Driven Beans
» Basic UOW Terminology Rules For Processing UOW Messages
» Example UOW Producer Code UOW Exceptions
» Limitations of UOW Message Groups Overview of Transactions
» WebLogic Messaging High Availability Features
» Application Design Limitations When using Replicated Distributed Topics Advanced Topic Features
» What is the Subscription Key Configuring a Shared Subscription
» Managing Durable Subscriptions How Sharing a Durable Subscription Works
» Sample Producer Code Re-usable ConnectionFactory Objects
» Re-usable Destination Objects Reconnected Connection Objects
» Reconnected Session Objects Automatic Failover for JMS Producers
» Special Cases for Reconnected Consumers
» Integer int Long long Character char String
» Closing Connections Helper Functions
Show more