Laporan Pratikum Boost Converter

(1)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Laporan Pratikum Unit IX

B

B

o

o

o

o

s

s

t

t

C

C

o

o

n

n

v

v

e

e

r

r

t

t

e

e

r

r

1. Tujuan

Setelah melakukan praktikum ini mahasiswa diharapkan mampu:

 Memahami prinsip kerja dari Boost Converter.

 Merancang dan membuat rangkaian Boost Converter.

2. Dasar Teori

Rangkaian Boost bisa menghasilkan tegangan keluaran yang lebih tinggi dibanding tegangan masukannya (penaik tegangan). Skema konverter ini diperlihatkan di Gambar.1. Jika saklar MOSFET ditutup maka arus diinduktor akan naik (energi tersimpan di induktor naik). Saat saklar dibuka maka arus induktor akan mengalir menuju beban melewati dioda (energi tersimpan diinduktor turun). Rasio antara tegangan keluaran terhadap tegangan masukan konverter sebanding dengan rasio antara periode penyaklaran dan waktu pembukaan saklar. Ciri khas utama konverter ini adalah bisa menghasilkan arus masukan yang kontinyu. Pada saat ini, rangakaian boost banyak dipakai dalam penyearah yang mempunyai faktor-daya satu seperti terlihat di Gambar.2. Pada rangkaian ini, saklar dikendalikan sedemikian rupa sehingga gelombang arus induktor mempunyai bentuk seperti bentuk gelombang sinusoidal yang disearahkan. Dengan cara ini, arus masukan penyearah akan mempunyai bentuk mendekati sinusoidal dengan faktor-daya sama dengan satu. Pengendali konverter semacam ini sekarang tersedia banyak di pasaran dalam bentuk chip.


(2)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Gambar. 1 Rangkaian Konverter Boost

Gambar. 2 Rangkaian Penyearah dengan faktor daya satu

Konverter jenis ini dapat juga diistilahkan sebagai konverter penaik tegangan atau juga disebut sebagai step up converter. Alasan disebut demikian ialah, konverter jenis ini mampu untuk menaikkan tegangan masukan. Meskipun Konverter jenis ini mampu untuk menaikkan tegangan , namun juga harus mengikuti aturan dari boost converter tersebut, yaitu dengan mengatur Duty Cycle (D) / siklus kerja. Seperti telah dijelaskan sebelumnya bahwa untuk mengaktifkan elektronic switch MOSFET, pada dasarnya ialah dengan menggunakan Pulsed Width Modulation (PWM) dimana pengaturan PWM ini sendiri sangat terkait dengan duty cycle / siklus kerja (D).

Persamaan berikut ini menunjukkan persamaan duty cycle (D)


(3)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

3. Alat dan Bahan

Pada pratikum ini menggunakan alat dan bahan sebagai berikut

 Mosfet IRF540n

 IC IRS2186

 Dioda 1N4002

 Kapasitor 2,2 uF

 Kapasitor 100 nF

 Kapasitor 47 uF

 Induktor

 Resistor 68 ohm

 Obeng + -

 Kabel Jumper

 Multimeter

 Osciloscope

 Power Supply


(4)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

4. Langkah Percobaan

1. Buatlah rangkaian seperti pada Gambar 1 ( Rangkaian Boost Converter). 2. Aktifkan power supply kemudian atur tegangan Vcc = 10Vdc dan Vs = 6Vdc 3. Aktifkan function generator, kemudian atur function generator dengan amplitudo =

2,5; frekuensi (2 kHz, 10 kHz dan 50kHz); offset = 1,5 Volt ; impedansi = High Z dan Duty cycle berdasarkan pada tabel 1

4. Amati bentuk gelombang yang dihasilkan oleh Buck Converter

5. Ukur nilai tegangan luaran, arus masukkan dan arus setelah terpasang dengan beban.

6. Ulangi langkah-langkah diatas berdasarkan duty cycle pada tabel 1. 7. Catat hasil pengamatan pada tabel dibawah ini.


(5)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

5. Hasil Pengukuran

No Duty Cycle

Frekuensi

Vin (Volt)

Vout I-in I-out S P Efisiensi

(kHz) (Volt) (A) (A) (Watt) (Watt) (%) 1 20% 2 kHz 5.91 5.91 0.259 0.184 1.08744 0.349281 32.1195652 2 20% 10 kHz 5.93 6 0.244 1.85 10.9705 0.36 3.28152773 3 20% 50 kHz 5.92 5.73 0.301 0.183 1.08336 0.328329 30.3065463 4 30% 2 kHz 5.9 6.65 0.336 0.196 1.1564 0.442225 38.2415254 5 30% 10 kHz 5.93 6.83 0.303 0.199 1.18007 0.466489 39.5306211 6 30% 50 kHz 5.69 6.64 0.38 0.198 1.12662 0.440896 39.134402 7 40% 2 kHz 5.88 7.53 0.448 0.21 1.2348 0.567009 45.9190962 8 40% 10 kHz 5.91 7.88 0.386 0.215 1.27065 0.620944 48.8682171 9 40% 50 kHz 5.68 7.52 0.491 0.212 1.20416 0.565504 46.9625299 10 50% 2 kHz 5.89 8.52 0.624 0.224 1.31936 0.725904 55.0194033 11 50% 10 kHz 5.91 9.18 0.512 0.234 1.38294 0.842724 60.9371339 12 50% 50 kHz 5.66 8.57 0.664 0.228 1.29048 0.734449 56.9128541 13 60% 2 kHz 5.88 9.61 0.905 0.239 1.40532 0.923521 65.7160647 14 60% 10 kHz 5.9 10.9 0.714 0.257 1.5163 1.1881 78.3552068 15 60% 50 kHz 5.67 9.77 0.94 0.244 1.38348 0.954529 68.9947813 16 70% 2 kHz 5.86 10.4 1.336 0.249 1.45914 1.0816 74.125855 17 70% 10 kHz 5.9 12.8 1.05 0.28 1.652 1.6384 99.1767554 18 70% 50 kHz 5.64 10.3 1.396 0.25 1.41 1.0609 75.2411348 19 80% 2 kHz 5.58 9.63 1.85 0.237 1.32246 0.927369 70.1245406 20 80% 10 kHz 5.89 13.5 1.625 0.288 1.69632 1.8225 107.438455 21 80% 50 kHz 5.34 7.66 1.989 0.214 1.14276 0.586756 51.3455144


(6)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

6. Wiring Gambar

Gambar 4. Wiring rangkaian Boost Konverter

7. Gambar Gelombang

Bentuk gelombang Frekuensi 2 Khz


(7)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Gambar 7. Duty cycle 40% Gambar 8. Duty cycle 50%

Gambar 9. Duty cycle 60% Gambar 10. Duty cycle 70%


(8)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Bentuk gelombang Frekuensi 10 Khz

Gambar 12. Duty cycle 20% Gambar 13. Duty cycle 30%

Gambar 14. Duty cycle 40% Gambar 15. Duty cycle 50%


(9)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Gambar 18. Duty cycle 80%

Bentuk gelombang Frekuensi 50 Khz

Gambar 19. Duty cycle 20% Gambar 20. Duty cycle 30%


(10)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Gambar 23. Duty cycle 60% Gambar 24. Duty cycle 70%


(11)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

8. Analisa

1. Perhitungan dengan menggunakan data teori: a. Hitunglah Vo

Duty Cycle Frekuensi Vin (Volt) Vout

(kHz) (Volt) 20% 2 kHz 6 7.5 20% 10 kHz 6 7.5 20% 50 kHz 6 7.5 30% 2 kHz 6 8.5714286 30% 10 kHz 6 8.5714286 30% 50 kHz 6 8.5714286 40% 2 kHz 6 10 40% 10 kHz 6 10 40% 50 kHz 6 10 50% 2 kHz 6 12 50% 10 kHz 6 12 50% 50 kHz 6 12 60% 2 kHz 6 15 60% 10 kHz 6 15 60% 50 kHz 6 15 70% 2 kHz 6 20 70% 10 kHz 6 20 70% 50 kHz 6 20 80% 2 kHz 6 30 80% 10 kHz 6 30 80% 50 kHz 6 30

b. Hitunglah P dan S!

Duty Cycle

Frekuensi Vin (Volt)

I-in S P

(kHz) (A) (Watt) (Watt) 20% 2 kHz 6 0.09375 0.5625 0.5625 20% 10 kHz 6 0.09375 0.5625 0.5625 20% 50 kHz 6 0.09375 0.5625 0.5625 30% 2 kHz 6 0.122449 0.7346939 0.7346939


(12)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

30% 10 kHz 6 0.122449 0.7346939 0.7346939 30% 50 kHz 6 0.122449 0.7346939 0.7346939 40% 2 kHz 6 0.1666667 1 1 40% 10 kHz 6 0.1666667 1 1 40% 50 kHz 6 0.1666667 1 1 50% 2 kHz 6 0.24 1.44 1.44 50% 10 kHz 6 0.24 1.44 1.44 50% 50 kHz 6 0.24 1.44 1.44 60% 2 kHz 6 0.375 2.25 2.25 60% 10 kHz 6 0.375 2.25 2.25 60% 50 kHz 6 0.375 2.25 2.25 70% 2 kHz 6 0.6666667 4 4 70% 10 kHz 6 0.6666667 4 4 70% 50 kHz 6 0.6666667 4 4 80% 2 kHz 6 1.5 9 9 80% 10 kHz 6 1.5 9 9 80% 50 kHz 6 1.5 9 9

c. Hitunglah effisiensi !

Duty Cycle

Frekuensi Vin (Volt)

I-in S P Efisiensi

(kHz) (A) (Watt) (Watt) (%) 20% 2 kHz 6 0.09375 0.5625 0.5625 100 20% 10 kHz 6 0.09375 0.5625 0.5625 100 20% 50 kHz 6 0.09375 0.5625 0.5625 100 30% 2 kHz 6 0.122449 0.7346939 0.7346939 100 30% 10 kHz 6 0.122449 0.7346939 0.7346939 100 30% 50 kHz 6 0.122449 0.7346939 0.7346939 100 40% 2 kHz 6 0.1666667 1 1 100 40% 10 kHz 6 0.1666667 1 1 100 40% 50 kHz 6 0.1666667 1 1 100 50% 2 kHz 6 0.24 1.44 1.44 100 50% 10 kHz 6 0.24 1.44 1.44 100 50% 50 kHz 6 0.24 1.44 1.44 100 60% 2 kHz 6 0.375 2.25 2.25 100 60% 10 kHz 6 0.375 2.25 2.25 100


(13)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

60% 50 kHz 6 0.375 2.25 2.25 100 70% 2 kHz 6 0.6666667 4 4 100 70% 10 kHz 6 0.6666667 4 4 100 70% 50 kHz 6 0.6666667 4 4 100 80% 2 kHz 6 1.5 9 9 100 80% 10 kHz 6 1.5 9 9 100 80% 50 kHz 6 1.5 9 9 100

2. Perbandingan hasil teori dan praktek a. Hitunglah persentase error dari Vo!

Duty Cycle

Frekuensi Vout Vout % Error

Praktek Teori Vo

(kHz) (Volt) (Volt) (%) 20% 2 kHz 5.91 7.5 21.2 20% 10 kHz 6 7.5 20 20% 50 kHz 5.73 7.5 23.6 30% 2 kHz 6.65 8.5714286 22.41667 30% 10 kHz 6.83 8.5714286 20.31667 30% 50 kHz 6.64 8.5714286 22.53333 40% 2 kHz 7.53 10 24.7 40% 10 kHz 7.88 10 21.2 40% 50 kHz 7.52 10 24.8 50% 2 kHz 8.52 12 29 50% 10 kHz 9.18 12 23.5 50% 50 kHz 8.57 12 28.58333 60% 2 kHz 9.61 15 35.93333 60% 10 kHz 10.9 15 27.33333 60% 50 kHz 9.77 15 34.86667 70% 2 kHz 10.4 20 48 70% 10 kHz 12.8 20 36 70% 50 kHz 10.3 20 48.5 80% 2 kHz 9.63 30 67.9 80% 10 kHz 13.5 30 55 80% 50 kHz 7.66 30 74.46667


(14)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

b. Hitunglah persentase error dari P dan S!

Duty Cycle

Frekuensi Duty Cycle

Frekuensi Vout Vout % Error

Praktek Teori Vo

(kHz) (kHz) (Volt) (Volt) (%) 20% 2 kHz 20% 2 kHz 5.91 7.5 21.2 20% 10 kHz 20% 10 kHz 6 7.5 20 20% 50 kHz 20% 50 kHz 5.73 7.5 23.6 30% 2 kHz 30% 2 kHz 6.65 8.5714286 22.41667 30% 10 kHz 30% 10 kHz 6.83 8.5714286 20.31667 30% 50 kHz 30% 50 kHz 6.64 8.5714286 22.53333 40% 2 kHz 40% 2 kHz 7.53 10 24.7 40% 10 kHz 40% 10 kHz 7.88 10 21.2 40% 50 kHz 40% 50 kHz 7.52 10 24.8 50% 2 kHz 50% 2 kHz 8.52 12 29 50% 10 kHz 50% 10 kHz 9.18 12 23.5 50% 50 kHz 50% 50 kHz 8.57 12 28.58333 60% 2 kHz 60% 2 kHz 9.61 15 35.93333 60% 10 kHz 60% 10 kHz 10.9 15 27.33333 60% 50 kHz 60% 50 kHz 9.77 15 34.86667 70% 2 kHz 70% 2 kHz 10.4 20 48 70% 10 kHz 70% 10 kHz 12.8 20 36 70% 50 kHz 70% 50 kHz 10.3 20 48.5 80% 2 kHz 80% 2 kHz 9.63 30 67.9 80% 10 kHz 80% 10 kHz 13.5 30 55 80% 50 kHz 80% 50 kHz 7.66 30 74.46667

3. Buatlah Grafik Tegangan Output terhadap dutycycle, untuk setiap frekuensi

Duty Cycle

Frekuensi Vout

Praktek

(kHz) (Volt) 20% 2 kHz 5.91 30% 2 kHz 6.65 40% 2 kHz 7.53 50% 2 kHz 8.52 60% 2 kHz 9.61 70% 2 kHz 10.4 80% 2 kHz 9.63


(15)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Duty Cycle

Frekuensi Vout

Praktek

(kHz) (Volt) 20% 10 kHz 6 30% 10 kHz 6.83 40% 10 kHz 7.88 50% 10 kHz 9.18 60% 10 kHz 10.9 70% 10 kHz 12.8 80% 10 kHz 13.5

Duty Cycle

Frekuensi Vout

Praktek

(kHz) (Volt) 20% 50 kHz 5.73 30% 50 kHz 6.64 40% 50 kHz 7.52 50% 50 kHz 8.57 60% 50 kHz 9.77 70% 50 kHz 10.3 80% 50 kHz 7.66


(16)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Pertanyaan

1. Jelaskan prinsip kerja Boost Converter ?

Konverter jenis ini dapat juga diistilahkan sebagai konverter penaik tegangan atau juga disebut sebagai step up converter. Alasan disebut demikian ialah, konverter jenis ini mampu untuk menaikkan tegangan masukan. Meskipun Konverter jenis ini mampu untuk menaikkan tegangan , namun juga harus mengikuti aturan dari boost converter tersebut, yaitu dengan mengatur Duty Cycle (D) / siklus kerja.

Prinsip kerja dari rangkaian boost converter adalah ketika kondisi mosfet on atau menyala, maka siklus tegangan DC atau input akan mengalir ke induktor. Sehingga mosfet bertindak sebagai konduktor dan tidak ada tegangan yang mengalir pada dioda. Sedangkan saat kondisi mosfet off atau terputus menyebabkan tegangan DC yang ada pada induktor akan diteruskan menuju beban (R) melalui dioda. Perlu di ketahui bahwa proses on dan off ini membutuhkan waktu yang sangat cepat sekali, sehingga mendapatkan hasil yang diharapkan.

2. Jelaskan pengaruh dari frekuensi switching pada boost converter?

Menambahkan banyaknya pulsa dari penyearah atau meninggikan frekuensi switching biasanya dilakukan untuk mengurangi besarnya nilai pasif filter yang dibutuhkan. Menambah/meninggikan frekuensi swiching saklar maka riak arus yang dihasilkan pada sisi keluaran akan semakin kecil. Hal ini berarti dengan menaikan frekuensi swiching sistem filter yang dibutuhkan untuk meminimisasi riak semakin kecil pula. Pada saat interval DT dari periode pensaklaran, saklar yang tertutup menyambungkan induktor ke negatif catu daya dan arus mengalir. Arus induktor meningkat dan energi disimpan pada induktor. Dioda dibias mundur sehingga tidak ada arus induktor yang mengalir ke beban dan dioda ini menjadi pemisah dari bagian keluaran. Kemudian saat saklar terbuka, bagian keluaran menerima energi dari induktor dan masukan.


(17)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Kesimpulan

Boost converter adalah konverter DC- DC jenis penaik tegangan atau step up. Konverter boost mampu menghasilkan nilai tegangan output yang lebih besar dari tegangan input tanpa membutuhkan transformator. Switching converter terdiri dari kapasitor, induktor dan saklar. Semua komponen diasumsikan tidak mengkonsumsi daya, sehingga dapat mencapai efisiensi yang tinggi. Untuk saklar digunakan komponen semikonduktor. Biasanya menggunakan MOSFET. Komponen tersebut terbuka dan tertutup seperti saklar dengan memberikan sinyal gelombang kotak ke kaki gate.

Jika komponen semikonduktor berada pada kondisi mati, arus yang mengalir adalah nol dan konsumsi daya juga nol. Jika komponen tersebut berada pada kondisi hidup, tegangan jatuh diantaranya akan mendekati nol sehinggan konsumsi dayanya akan sangat kecil. Selama digunakan sebagai converter, komponen saklar akan bekerja pada frekuensi konstan f dengan on-time DT dimana periode T adalah 1/f. D adalah siklus kerja atau duty cycle.

Pada saat interval DT dari periode pensaklaran, saklar yang tertutup menyambungkan induktor ke negatif catu daya dan arus mengalir. Arus induktor meningkat dan energi disimpan pada induktor. Dioda dibias mundur sehingga tidak ada arus induktor yang mengalir ke beban dan dioda ini menjadi pemisah dari bagian keluaran. Kemudian saat saklar terbuka, bagian keluaran menerima energi dari induktor dan masukan.


(1)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

30% 10 kHz 6 0.122449 0.7346939 0.7346939 30% 50 kHz 6 0.122449 0.7346939 0.7346939

40% 2 kHz 6 0.1666667 1 1

40% 10 kHz 6 0.1666667 1 1 40% 50 kHz 6 0.1666667 1 1

50% 2 kHz 6 0.24 1.44 1.44

50% 10 kHz 6 0.24 1.44 1.44 50% 50 kHz 6 0.24 1.44 1.44 60% 2 kHz 6 0.375 2.25 2.25 60% 10 kHz 6 0.375 2.25 2.25 60% 50 kHz 6 0.375 2.25 2.25

70% 2 kHz 6 0.6666667 4 4

70% 10 kHz 6 0.6666667 4 4 70% 50 kHz 6 0.6666667 4 4

80% 2 kHz 6 1.5 9 9

80% 10 kHz 6 1.5 9 9

80% 50 kHz 6 1.5 9 9

c. Hitunglah effisiensi ! Duty

Cycle

Frekuensi Vin (Volt)

I-in S P Efisiensi

(kHz) (A) (Watt) (Watt) (%)

20% 2 kHz 6 0.09375 0.5625 0.5625 100 20% 10 kHz 6 0.09375 0.5625 0.5625 100 20% 50 kHz 6 0.09375 0.5625 0.5625 100 30% 2 kHz 6 0.122449 0.7346939 0.7346939 100 30% 10 kHz 6 0.122449 0.7346939 0.7346939 100 30% 50 kHz 6 0.122449 0.7346939 0.7346939 100

40% 2 kHz 6 0.1666667 1 1 100

40% 10 kHz 6 0.1666667 1 1 100

40% 50 kHz 6 0.1666667 1 1 100

50% 2 kHz 6 0.24 1.44 1.44 100

50% 10 kHz 6 0.24 1.44 1.44 100

50% 50 kHz 6 0.24 1.44 1.44 100

60% 2 kHz 6 0.375 2.25 2.25 100


(2)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

60% 50 kHz 6 0.375 2.25 2.25 100

70% 2 kHz 6 0.6666667 4 4 100

70% 10 kHz 6 0.6666667 4 4 100

70% 50 kHz 6 0.6666667 4 4 100

80% 2 kHz 6 1.5 9 9 100

80% 10 kHz 6 1.5 9 9 100

80% 50 kHz 6 1.5 9 9 100

2. Perbandingan hasil teori dan praktek a. Hitunglah persentase error dari Vo!

Duty Cycle

Frekuensi Vout Vout % Error

Praktek Teori Vo

(kHz) (Volt) (Volt) (%) 20% 2 kHz 5.91 7.5 21.2

20% 10 kHz 6 7.5 20

20% 50 kHz 5.73 7.5 23.6 30% 2 kHz 6.65 8.5714286 22.41667 30% 10 kHz 6.83 8.5714286 20.31667 30% 50 kHz 6.64 8.5714286 22.53333 40% 2 kHz 7.53 10 24.7 40% 10 kHz 7.88 10 21.2 40% 50 kHz 7.52 10 24.8

50% 2 kHz 8.52 12 29

50% 10 kHz 9.18 12 23.5 50% 50 kHz 8.57 12 28.58333 60% 2 kHz 9.61 15 35.93333 60% 10 kHz 10.9 15 27.33333 60% 50 kHz 9.77 15 34.86667

70% 2 kHz 10.4 20 48

70% 10 kHz 12.8 20 36 70% 50 kHz 10.3 20 48.5 80% 2 kHz 9.63 30 67.9 80% 10 kHz 13.5 30 55 80% 50 kHz 7.66 30 74.46667


(3)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

b. Hitunglah persentase error dari P dan S! Duty

Cycle

Frekuensi Duty Cycle

Frekuensi Vout Vout % Error

Praktek Teori Vo

(kHz) (kHz) (Volt) (Volt) (%) 20% 2 kHz 20% 2 kHz 5.91 7.5 21.2

20% 10 kHz 20% 10 kHz 6 7.5 20

20% 50 kHz 20% 50 kHz 5.73 7.5 23.6 30% 2 kHz 30% 2 kHz 6.65 8.5714286 22.41667 30% 10 kHz 30% 10 kHz 6.83 8.5714286 20.31667 30% 50 kHz 30% 50 kHz 6.64 8.5714286 22.53333 40% 2 kHz 40% 2 kHz 7.53 10 24.7 40% 10 kHz 40% 10 kHz 7.88 10 21.2 40% 50 kHz 40% 50 kHz 7.52 10 24.8

50% 2 kHz 50% 2 kHz 8.52 12 29

50% 10 kHz 50% 10 kHz 9.18 12 23.5 50% 50 kHz 50% 50 kHz 8.57 12 28.58333 60% 2 kHz 60% 2 kHz 9.61 15 35.93333 60% 10 kHz 60% 10 kHz 10.9 15 27.33333 60% 50 kHz 60% 50 kHz 9.77 15 34.86667

70% 2 kHz 70% 2 kHz 10.4 20 48

70% 10 kHz 70% 10 kHz 12.8 20 36 70% 50 kHz 70% 50 kHz 10.3 20 48.5 80% 2 kHz 80% 2 kHz 9.63 30 67.9 80% 10 kHz 80% 10 kHz 13.5 30 55 80% 50 kHz 80% 50 kHz 7.66 30 74.46667

3. Buatlah Grafik Tegangan Output terhadap dutycycle, untuk setiap frekuensi

Duty Cycle

Frekuensi Vout

Praktek

(kHz) (Volt) 20% 2 kHz 5.91 30% 2 kHz 6.65 40% 2 kHz 7.53 50% 2 kHz 8.52 60% 2 kHz 9.61 70% 2 kHz 10.4 80% 2 kHz 9.63


(4)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Duty Cycle

Frekuensi Vout

Praktek

(kHz) (Volt) 20% 10 kHz 6 30% 10 kHz 6.83 40% 10 kHz 7.88 50% 10 kHz 9.18 60% 10 kHz 10.9 70% 10 kHz 12.8 80% 10 kHz 13.5

Duty Cycle

Frekuensi Vout

Praktek

(kHz) (Volt) 20% 50 kHz 5.73 30% 50 kHz 6.64 40% 50 kHz 7.52 50% 50 kHz 8.57 60% 50 kHz 9.77 70% 50 kHz 10.3 80% 50 kHz 7.66


(5)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Pertanyaan

1. Jelaskan prinsip kerja Boost Converter ?

Konverter jenis ini dapat juga diistilahkan sebagai konverter penaik tegangan atau juga disebut sebagai step up converter. Alasan disebut demikian ialah, konverter jenis ini mampu untuk menaikkan tegangan masukan. Meskipun Konverter jenis ini mampu untuk menaikkan tegangan , namun juga harus mengikuti aturan dari boost converter tersebut, yaitu dengan mengatur Duty Cycle (D) / siklus kerja.

Prinsip kerja dari rangkaian boost converter adalah ketika kondisi mosfet on atau menyala, maka siklus tegangan DC atau input akan mengalir ke induktor. Sehingga mosfet bertindak sebagai konduktor dan tidak ada tegangan yang mengalir pada dioda. Sedangkan saat kondisi mosfet off atau terputus menyebabkan tegangan DC yang ada pada induktor akan diteruskan menuju beban (R) melalui dioda. Perlu di ketahui bahwa proses on dan off ini membutuhkan waktu yang sangat cepat sekali, sehingga mendapatkan hasil yang diharapkan.

2. Jelaskan pengaruh dari frekuensi switching pada boost converter?

Menambahkan banyaknya pulsa dari penyearah atau meninggikan frekuensi switching biasanya dilakukan untuk mengurangi besarnya nilai pasif filter yang dibutuhkan. Menambah/meninggikan frekuensi swiching saklar maka riak arus yang dihasilkan pada sisi keluaran akan semakin kecil. Hal ini berarti dengan menaikan frekuensi swiching sistem filter yang dibutuhkan untuk meminimisasi riak semakin kecil pula. Pada saat interval DT dari periode pensaklaran, saklar yang tertutup menyambungkan induktor ke negatif catu daya dan arus mengalir. Arus induktor meningkat dan energi disimpan pada induktor. Dioda dibias mundur sehingga tidak ada arus induktor yang mengalir ke beban dan dioda ini menjadi pemisah dari bagian keluaran. Kemudian saat saklar terbuka, bagian keluaran menerima energi dari induktor dan masukan.


(6)

ELEKTRONIKA DAYA / MK- 4307

Tugas 9/ 25-12-2014 Puji Iswandi 4211301025 Mekatronika 3A

Kesimpulan

Boost converter adalah konverter DC- DC jenis penaik tegangan atau step up. Konverter boost mampu menghasilkan nilai tegangan output yang lebih besar dari tegangan input tanpa membutuhkan transformator. Switching converter terdiri dari kapasitor, induktor dan saklar. Semua komponen diasumsikan tidak mengkonsumsi daya, sehingga dapat mencapai efisiensi yang tinggi. Untuk saklar digunakan komponen semikonduktor. Biasanya menggunakan MOSFET. Komponen tersebut terbuka dan tertutup seperti saklar dengan memberikan sinyal gelombang kotak ke kaki gate.

Jika komponen semikonduktor berada pada kondisi mati, arus yang mengalir adalah nol dan konsumsi daya juga nol. Jika komponen tersebut berada pada kondisi hidup, tegangan jatuh diantaranya akan mendekati nol sehinggan konsumsi dayanya akan sangat kecil. Selama digunakan sebagai converter, komponen saklar akan bekerja pada frekuensi konstan f dengan on-time DT dimana periode T adalah 1/f. D adalah siklus kerja atau duty cycle.

Pada saat interval DT dari periode pensaklaran, saklar yang tertutup menyambungkan induktor ke negatif catu daya dan arus mengalir. Arus induktor meningkat dan energi disimpan pada induktor. Dioda dibias mundur sehingga tidak ada arus induktor yang mengalir ke beban dan dioda ini menjadi pemisah dari bagian keluaran. Kemudian saat saklar terbuka, bagian keluaran menerima energi dari induktor dan masukan.