DESIGN OPTIMISATION OF OUTER HOOD PANELOF ESEMKA R2 CAR Design Optimisation Of Outer Hood Panel Of Esemka R2 Car To Improve Pedestrian Protection.

DESIGN OPTIMISATION OF OUTER HOOD PANEL
OF ESEMKA R2 CAR
TO IMPROVE PEDESTRIAN PROTECTION

THESIS
Submitted to
Master Program of Mechanical Engineering
Postgraduated Program of Universitas Muhammadiyah Surakarta
In fulfilment of the requirement for the degree of Master of Engineering
(Automotive Manufacture)

By
Binyamin
ID Number : U100 140 002

MASTER PROGRAM OF MECHANICAL ENGINEERING
POSTGRADUATE PROGRAM
UNIVERSITAS MUHAMMADIYAH SURAKARTA
2016

i


APPROVAL

Thesis report which tttled "DESIGN OPTIMISATION OF OUTER HOOD

PANEL OF ESEMKA R2 CAR TO IMPROW

PEDESTRIAN

PROTECTION', had been approved by Chair of Master Study Program of
Mechanical Engineering In fulfilment of the requirement for the Master Degree

of

Engineering at Universitas Muhammadiyah Surakarta.

Prepared by:

ID Number: U 100 140 002


Binyamin

Approved at:

:

Day

g

akwrdwy

: / ro/Lotb

Date

&

Co-Supervisor


Supervisor

Nft
\ Ilqtli

;

\Jlr}'\j

Agus

llwi Anggonor

't'Marwan Effendy, S.T., M,T., Ph.D."

l1

S.T., M.Eng., Ph.fD.

NOTE OF ST}PERVISOR

Tri Widodo Besar Riyadi, S.T., M.Sc., Ph.D.
Lecturer of Postgraduate Program
Universitas Muhammadiyah Strakarta

Official Note
Subject Thesis of Binyamin

Dear,

Chairman of Master Program of Mechanicel Engineering
Universitas Muhammadiyah Surakarta

Assalamu'alaikum Warahmatultahi Wabarakaffi

After reading, researching, reviewing, correcting and make correction

as needed

to your thesis:


Name
ID

:

Binyamin

Number : U 100 140 002

Program
Title

: Master

of Mechanical Engineering

: Design Optimisation of Outer Hood Panel

of Esemka R2 Car to Improve Pedestian Protection
With this we can


asisess

the thesis can be approved for a thesis submitted in the

trial exam on Master of Mechanical Engineering

Wassalamu'alaikum Warahmatullahi Wabarakatuh

Surakarta,

I

October 2016

Supervisor

6-

4


Tri Widodo Besar Riyadi, S.T., M.Sc., Ph.D.
lll
aaa

NOTE OFCO.SUPERVISOR
Agus Dwi Anggono, S.T., M"Eng., Ph.D.
Lecturer of Postgraduate Program
[Jniversitas Muhammadiyah Strakarta

OfficialNote
Subject: Thesis of Binyamin

Dear,

Chaiman of Master Program of Mechanical Enginecring
Universitrs Muhammadiyah Surakarta
Assalamu'alaikum Warahmatullahi r$/abarakatuh

After reading, researching, reviewing correcting and make correction


as needed

to your thesis:

Name
ID

:

Binyamin

Number : U 100 140002

Program
Title

: Master of Mechanical Engineering
: Design Optimisation


of Outer Hood Panel

of Esemka R2 Car to Improve Pedestrian Protection

With this we can

assess the thesis can be approved

for a thesis submitted in the

trial exarn on Master of Mechanical Engineering

Wassalamu'alaikum Waralrmatullahi Wabarakatuh

Srrakartq

(

October}Arc


Agus Dwi Anggono, S.T., M.EnB., Ph.D,

iv

'- -=

APPROVAL OF THESIS FOR SUBMISSION
DESIGN OPTIItrSATION OF OUTER HOOD PANEL
OF ESEMKA R2 CAR TO IMPROYE PEDESTRIAN PROTECTION
submitted by

Binyamin
Has been examined by the board of examiners on 30th August 2016.4.11 feedback,
corrections, and suggestions recommended by the examiners have been considered and
revision has been accordirlgly made by the student.

The boards of examiners,oortify
,t.'

seu


ilo,n. A;ii3'is eligible

$urak arta,3Oth September 2016
irector of Graduate School

m*"ffi-r'g.j

tm
a

for submission.

STATEMENT OF AUTHORSHIP

I

hereby confirm that ttre thesis entitled "Design Optimisation of Outer Hood

Panel of Esemka Rll Car to Improve Pedestrian Protection" is an original and
autlrentic work written by myself and

it has satisfied the rules and nogulations of

Universitas Muhammadiyah Surakarta with respect to plagiarism. I certiS that all

quotations and the sources

of information

have been

fully

referred and

acknowledged accordingly.

Name

Binyamin

ID Number

u

Program

Master of Mechanical Engineering

Field of study

Automotive Manufacfure

100 140 002

I confirm that this thesis has not been submiued for the award of any previous
degree in any tertiary institutions in Indonesia or abroad.

Stnakarta, B October

@

fl

.ffi. -:

Binyamin

vl
a

}Arc

ABSTRACT

Traffic accidents are terrible scourge that occur in many countries, specially for
developing countries where transportation affairs like tangled yarn. Besides
functioning as an engine compartment cover, the hood of modern compact SUV
can also help to manage the impact energy of a pedestrian s head in a vehiclepedestrian impact. This paper presents outer hood design of Esemka R2 that has a
potential to improve hood s ability and also to absorb the impact energy of a
pedestrian s head. The developed method for the design of an outer hood
configuration aims to provide a robust design and homogeneous of Head Injury
Criterion (HIC) for impact position at WAD 1000 and three different thicknesses
(1.25 mm, 1.35 mm & 1.50 mm) of outer hood panel of Esemka R2 compact
SUV, taking into consideration the limited space available for deformation. The
non-linear Finite Element Analysis (FEA) software (Explicit Dynamics) was used
in this research to simulate the testing procedurs of head impact for child
pedestrian. The results show that the average of comparison dimensional of outer
hood panel of Esemka R2 was 4.89 mm. The minimum of deformation space meet
the requirement for HIC value which required to obtain robust and homogeneous
head impact performance. Outer hood thickness and materials were identified as
the factors to influence the stress and HIC value of the hood. By comparing all
outer hood panels, aluminium alloy as the best selected material which has the
lowest percentage value is 32.78% for the pedestrian protection.
Keywords: HIC; outer hood panel; FEA; pedestrian protection.

vii

ABSTRAKSI

Kecelakaan lalu lintas adalah momok yang mengerikan yang terjadi di banyak negara,
khusus untuk negara-negara berkembang di mana urusan transportasi seperti benang
kusut. Selain berfungsi sebagai penutup kompartemen mesin, kap SUV kompak yang
modern juga dapat membantu untuk mengelola energi dampak kepala pejalan kaki di
dampak kendaraan-pejalan kaki. makalah ini menyajikan desain kap luar Esemka R2
yang memiliki potensi untuk meningkatkan kemampuan hood dan juga untuk menyerap
energi benturan kepala pejalan kaki ini. Metode yang dikembangkan untuk desain
konfigurasi hood luar bertujuan untuk memberikan desain yang kuat dan homogen Head
Injury Criterion (HIC) untuk posisi di WAD 1000 dan tiga ketebalan yang berbeda (1,25
mm, 1,35 mm & 1,50 mm) dari panel kap luar Esemka R2 kompak SUV, dengan
mempertimbangkan ruang terbatas yang tersedia untuk deformasi. Software Non-linear
Analisis Elemen Hingga (Dynamics Explicit) yang digunakan dalam penelitian ini untuk
mensimulasikan prosedur dasar pengujian impak kepala untuk pejalan kaki anak. Hasil
penelitian menunjukkan bahwa rata-rata perbandingan dimensi panel kap luar Esemka R2
adalah 4,89 mm. Minimum ruang deformasi memenuhi persyaratan dengan nilai HIC
yang homogen serta mendapatkan kinerja impak kepala yang aman. ketebalan hood luar
dan bahan diidentifikasi sebagai faktor yang mempengaruhi stres dan nilai HIC pada kap.
Dengan membandingkan semua panel kap luar, paduan aluminium sebagai bahan yang
dipilih terbaik yang memiliki nilai persentase terendah adalah 32,78% untuk perlindungan
pejalan kaki.

Kata Kunci: HIC; panel kap luar; FEA; keamanan pejalan kaki.

viii

ACKNOWLEDGMENT

Assalamu alaikum Warohmatullahi Wabarokatuh
Alhamdulillahirobbil alamiin. Praise and gratitude be to Allah SWT, The
Lord of universe, because of His blessing and guidance the thesis can be done.
The thesis entitles Design Optimisation of Outer Hood Panel of
Esemka R2 Car to Improve Pedestrian Protection can be done because of
helping and supporting from other people. Therefore, the author sincerely would
like to say thanks and appreciation to:
1. Prof. Bambang Setiaji as Rector of Universitas Muhammadiyah
Surakarta.
2. Prof. Dr. Khudzaifah Dimyati as the Director of Postgraduate Program
of Universitas Muhammadiyah Surakarta.
3. Marwan Effendy, S.T, M.T., Ph.D. as the Head of Master Program of
Mechanical Engineering of Universitas Muhammadiyah Surakarta.
4. Tri Widodo Besar Riyadi, S.T., M.Sc., Ph.D. as the Supervisor who has
given the researcher inspiration, spirit, advices, suggestions, and
corrections to the thesis completion.
5. Agus Dwi Anggono, S.T., M.Eng., Ph.D. as the Co-supervisor who has
given the researcher guidance, suggestions, and correction wisely.
6. All lectures of Master Program of Mechanical Engineering for the
guidance during the study in the university.
7. Gatiningsih, SIP as head of postgraduate library who has given the
facilities regarding literatures needs.
8. Ir. Pramuko Ilmu Purboputro, M.T. as head of Mechanical Engineering
Laboratory for supporting facilities and apparatus.

ix

9. SMK Warga Surakarta especially for Automotive Department that had
loaning Esemka R2 Car for supporting research.
10. His beloved Mother, poor Father, Brothers, Sisters, wife

Aniq

Hudiyah Bil Haq and daughter Syakira Alifa Rasyadani who always
give enormous pray, biggest support, care, affection and great love.
11. His classmate friends

Rahmadi, Wahyu, Puji, Amin Sulistyanto,

Basuki Purwanto, Dhanar and Sanurya (Puput) thanks for your laugh,
funnies experiences and supports, I will never forget you.
The author realizes that this thesis is far from being perfect, so the author
sincerely welcomes any constructive comment, criticism, and suggestion from
anyone. Moreover, the author expects that this thesis will become useful for the
development of academic study and following research.

Wassalamu alaikum Warohmatullahi Wabarokatuh

Surakarta, October 2016
Author

Binyamin

x

LIST OF CONTENTS

THE TITLE OF THE RESEARCH................................................................

i

APPROVAL .....................................................................................................

ii

NOTE OF SUPERVISOR ............................................................................... iii
NOTE OF CO-SUPERVISOR ........................................................................ iv
APPROVAL OF THESIS FOR SUBMISSION ............................................

v

STATEMENT OF AUTHORSHIP ................................................................. vi
ABSTRACT ....................................................................................................... vii
ABSTRAKSI...................................................................................................... viii
ACKNOWLEDGEMENT................................................................................ ix
LIST OF CONTENTS ...................................................................................... xi
LIST OF FIGURES .......................................................................................... xiv
LIST OF TABLES ............................................................................................ xvi
NOMENCLATURE.......................................................................................... xvii
CHAPTER I INTRODUCTION .....................................................................

1

1.1 Background ............................................................................................

1

1.2 Problem Statements.................................................................................

3

1.3 Scope of Study ........................................................................................

4

1.4 Objectives................................................................................................

4

1.5 Contributions...........................................................................................

4

1.6 Thesis Structure.......................................................................................

5

CHAPTER II LITERATURE REVIEW AND THEORY ............................

6

2.1 Literature Review ...................................................................................

6

2.2 Theory ..................................................................................................... 11
2.2.1 Finite Element Method (FEM) .................................................... 11

xi

2.2.2 Nodes........................................................................................... 13
2.2.3 Elements ...................................................................................... 16
2.2.4 FEM Application to Solid Mechanics Problems ......................... 17
2.2.5 Analysis for Three-Dimensional Problems........................................... 18
2.2.6 Dynamics Equation of Motion .............................................................. 29
2.2.7 Triangular Membrane Element ............................................................. 33
2.2.8 Transformation Matrix ................................................................ 38
2.2.9 Consistent Load Vector ............................................................... 40
2.2.10 Head Injury Criterion (HIC) ........................................................ 42
2.3 Principle of Impulse and Momentum...................................................... 43
2.4 Impact...................................................................................................... 45
2.4.1 Direct Central Impact .................................................................. 46
2.4.2 Oblique Central Impact ............................................................... 47
2.5 Reverse Engineering ............................................................................... 50
2.5.1 Reverse Engineering of Machine ................................................ 50
2.6 Regulatory vehicle design requirement for pedestrian protection .......... 51
2.6.1 Global technical regulation (GTR-9) for pedestrian protection .. 51
2.6.2 EURO-NCAP (New Car Assessment Program).......................... 53
2.6.3 ANCAP (Australian New Car Assessment Program) ................. 54
2.6.4 Kinematics of a pedestrian in an impact...................................... 55
CHAPTER III METHODOLOGY ................................................................. 57
3.1 Research Location ................................................................................... 57
3.2 Research Apparatus................................................................................. 57
3.3 Procedure................................................................................................. 59
3.4 Dimensional Data Record ....................................................................... 60
3.5 Modeling of Child Headfoam Impactor .................................................. 61
3.5.1 Dimension.................................................................................... 61
3.5.2 Mass............................................................................................. 62
3.6 Parametric Geometric of Outer Hood Panel ........................................... 62
3.7 Headform Impact Simulation Procedure................................................. 63

xii

CHAPTER IV RESULTS AND DISCUSSION ............................................. 66

4.1 Design Comparison of Outer Hood Panels of Esemka R2...................... 66
4.2 Deformation of Outer Hood Panel .......................................................... 67
4.3 Equivalent (Von-Misses) Stress .............................................................. 71
4.4 Headform Acceleration ........................................................................... 73
CHAPTER V CONCLUSION AND RECOMMENDATION...................... 77
5.1 Conclusion............................................................................................... 77
5.2 Recommendation..................................................................................... 77
REFERENCES.................................................................................................. 79
APPENDIXES A-K

xiii

LIST OF FIGURES

Figure 1.1

Pedestrian unsafe condition .......................................................

1

Figure 1.2

Unsafe pedestrians in Jakarta, Indonesia ...................................

2

Figure 2.1

Representation of a Milling Machine Structure by Finite
Elements ....................................................................................

12

Figure 2.2

Division of a domain into subdomains (elements) ...................

13

Figure 2.3

DOF of One-Dimensional Element ..........................................

14

Figure 2.4

DOF of Two-Dimensional Element ..........................................

15

Figure 2.5

Local and Global DOF of Three-Dimensional Element ...........

15

Figure 2.6

Description of line, area, and volume elements with node
numbers at the element level ....................................................

16

Figure 2.7

Discretization of a domain: element and node numbering .......

17

Figure 2.8

A Tetrahedron Element in Global xyz System ..........................

19

Figure 2.9

A Hexahedron Element with Eight Nodes .................................

23

Figure 2.10 Load Acting on a Plate ...............................................................

34

Figure 2.11 Local and Global Coordinates ...................................................

38

Figure 2.12 Principle of Impulse and Momentum .........................................

44

Figure 2.13 Central Impact of Particles .........................................................

45

Figure 2.14 Particles of Direct Central Impact ..............................................

46

Figure 2.15 Period of Deformation and Restitution.......................................

47

Figure 2.16 Particles at Oblique Central Impact ............................................

48

Figure 2.17 Particles at Oblique Central Impact along the n axis..................

48

Figure 2.18 Oblique Central Impact between Ball and Block .......................

49

Figure 2.19 Period of Momentum Between Ball and Block ..........................

50

Figure 2.20 GTR-9 pedestrian protection head impact requirements ............

51

Figure 2.21 Example of marking of HIC1000 zone and HIC1700 zone........

53

xiv

Figure 2.22 Wrap Around Distances (WAD).................................................

53

Figure 2.23 Head Impact location (left) and leg impact location (right) .......

54

Figure 2.24 ANCAP pedestrian protection impact requirements ..................

55

Figure 2.25 Kinematics of a pedestrian in PPCFC.........................................

56

Figure 2.26 Pedestrian subsystem impactors and their relation to a struck
pedestrian ....................................................................................

56

Figure 3.1

Side view of Esemka Rajawali 2 SUV ......................................

57

Figure 3.2

Manual CMM .............................................................................

58

Figure 3.3

ASUS Laptop A455L Series.......................................................

58

Figure 3.4

Design of CMM Manual in Solidwoks.......................................

60

Figure 3.5

Activity of Dimensional Data Record ........................................

60

Figure 3.6

3-Dimensional Shape of Child Headform Impactor ...................

61

Figure 3.7

Detail of Child Headfoam Impactor ...........................................

61

Figure 3.8

Coordinates Design Boundary of Bonnet ...................................

62

Figure 3.9

Boundary-Surface Generation of Bonnet ...................................

63

Figure 3.10 Finite Element of Design Models ...............................................

64

Figure 3.11 Boundary Condition of The Outer Hood Panel and Headform ..

64

Figure 4.1

Design Comparison of Outer Hood Panel of Esemka R2...........

66

Figure 4.2

Deformation pattern of outer hood panel of aluminum alloy
(1.25 mm) at different time in FE models ..................................

Figure 4.3

68

Comparison of outer hood panel deformation vs. time of three
difference materials with 1.25 mm, 1.35 mm and 1.50 mm
thicknesses ..................................................................................

Figure 4.4

Equivalent (von-misses) stress of outer hood panel of aluminum
alloy (1.25 mm) at different time in FE models .........................

Figure 4.5

Figure 4.7

71

Comparison of equivalent stress vs. time of three difference
materials with 1.25 mm, 1.35 mm and 1.50 mm thicknesses .....

Figure 4.6

70

72

Headform acceleration on outer hood panel of aluminum alloy
(1.25 mm) in FE model at different time ....................................

74

HIC values of the finite element modeling .................................

75

xv

LIST OF TABLES

Table 2.1 Degrees of freedom and force vectors in FEA for different
engineering disciplines..................................................................

14

Table 2.2 Description of numbering at the element level ............................

17

Table 2.3 Comparison between type of equations and number of equations
based on dimensional problems ...................................................

18

Table 2.4 The unknown qua ntities, whose number is equal to the number
of equations available, in various problems are given below ......

18

Table 4.1 Dimensional Comparison of Outer Hood Panel of Esemka R2 ....

67

Table 4.2 The maximum deformation of outer hood panels in the collision
with child headform impactor ......................................................

70

Table 4.3 The maximum stress of outer hood panelsin the collision with
child headform impactor ..............................................................

73

Table 4.4 HIC and deformation ....................................................................

76

xvi

NOMENCLATURE

Resultant acceleration (g)
A

Area (m2)

t1, t2

Two time instants (s)

E

Young s modulus (GPa)

F

Force (N)

Fx

Force at x component (N)

Fy

Force at y component (N)

Fz

Force at z component (N)

m

Mass of the head impactor (kg)

mA

Mass of particle A (kg)

mB

Mass of particle B (kg)
Density (Kg/m3)

v

Velocity of the head impactor (m/s)
Velocity at x component (m/s)
Velocity at y component (m/s)
Velocity at z component (m/s)
Initial velocity (m/s)
Final velocity (m/s)
Initial velocity of particle A (m/s)
Initial velocity of particle B (m/s)
Final velocity of particle A (m/s)
Final velocity of particle B (m/s)

Imp

Impuls (N.s)

e

Coefficient of restitution

P

Impulsive force (N)

xvii

R

Force which during the period of restitution (N)
Angle (°)

L

Lagrangian function
Damping coefficient
( )

Kinetic energy of element

( )

Dissipation function of element

( )

Potential energy of element

( )

Element surface

( )

Element volume
Nodal displacemen

̇

Nodal velocity
⃗(

)

Vector of nodal displacements

⃗̇ (

)

Vector of nodal velocities

⃗̈

Vector of nodal accelerations in the global system

u, v, w

Displacement components

, ,

Components of the global coordinates



Vector of displacements

⃗̇

Vector of velocities of element
( )

Mass matrix of the element (in the global system)

( )

Stiffness matrix of the element (in the global system)

( )

Stiffness matrix of element due to shear stresses

( )
( )

Stiffness matrix of element due to normal stresses
Damping matrix of the element (in the global system)

[ ]

Master mass matrix of the structure

[ ]

Master stiffness matrix of the structure

[ ]

Master damping matrix of the structure



( )



( )

Vector of element nodal forces produced by surface forces
Vector of element nodal forces produced by body forces

xviii



Stress vector



Three-dimensional strain displacement vector

[N]

Shape function of the element matrix

[B]

Matrix that relates the strains to the nodal displacement

[D]

Elasticity matrix

[ ]

Transformation matrix

( )

⃗(
[J]

)

Element volume
The total load vector due to initial (thermal) strains
Jacobian matrix

xix