Reaksi Jangkar MOTOR ARUS SEARAH

r = jari-jari rotor meter Apabila torsi start lebih besar dari torsi beban, maka jangkar akan berputar.

2.4 Reaksi Jangkar

Reaksi jangkar merupakan pengaruh medan magnet yang disebabkan oleh mengalirnya arus pada jangkar, dimana jangkar tersebut berada di dalam medan magnet. Reaksi jangkar menyebabkan terjadinya dua hal, yaitu : 1. Demagnetisasi atau penurunan kerapatan fluksi medan utama. 2. Magnetisasi silang. Apabila kumparan medan dialiri oleh arus tetapi kumparan jangkar tidak dialiri oleh arus, maka dengan mengabaikan pengaruh celah udara, jalur fluksi ideal untuk kutub utama dari motor arus searah dua kutub, berasal dari kutub utara menuju kutub selatan seperti pada Gambar 2.5 berikut ini : U S O M Bidang Netral Magnetis Sikat F Gambar 2.5 Fluksi yang dihasilkan oleh kumparan medan Dari Gambar 2.5 dapat dijelaskan bahwa : 1. Fluksi didistribusikan simetris terhadap bidang netral magnetis. 2. Sikat ditempatkan bertepatan dengan bidang netral magnetis. Bidang netral magnetis didefinisikan sebagai bidang di dalam motor dimana konduktor bergerak sejajar dengan garis gaya magnet ggm sehingga gaya gerak listrik Universitas Sumatera Utara ggl induksi konduktor pada bidang tersebut adalah nol. Seperti yang terlihat dari Gambar 2.5 sikat selalu ditempatkan di sepanjang bidang netral magnetis. Oleh karena itu, bidang netral magnetis juga disebut sebagai sumbu komutasi karena pembalikan arah arus jangkar berada pada bidang tersebut. Vektor OF M mewakili besar dan arah dari fluksi medan utama, dimana vektor ini tegak lurus terhadap bidang netral magnetis. Sewaktu hanya konduktor jangkar saja yang dialiri oleh arus listrik sementara kumparan medan tidak dieksitasi, maka disekeliling konduktor jangkar timbul garis gaya magnet atau fluksi. Gambaran arah garis gaya magnet ditunjukkan pada Gambar 2.6 berikut ini : U S Bidang Netral Magnetis O A F Gambar 2.6 Fluksi yang dihasilkan oleh kumparan jangkar Penentuan arah dari garis gaya magnet yang diakibatkan oleh arus jangkar ditentukan dengan aturan putaran sekrup cork screw rule. Besar dan arah garis gaya magnet tersebut diwakili oleh vektor OF A yang sejajar dengan bidang netral magnetis. Pada prakteknya, sewaktu mesin beroperasi maka konduktor jangkar dan konduktor medan sama- sama dialiri oleh arus listrik, distribusi fluksi resultan diperoleh dari menggabungkan kedua fluksi tersebut. Oleh karena itu distribusi fluksi medan utama yang melalui jangkar tidak lagi simetris tetapi sudah mengalami pembelokan saat mendekati konduktor yang dialiri arus tersebut. Hal tersebut dikarenakan pengaruh fluksi jangkar yang dapat dilihat dari Gambar 2.7 berikut ini : Universitas Sumatera Utara U S β Bidang netral magnetis lama Bidang netral magnetis baru ω F A F M O F r Gambar 2.7 Hasil kombinasi antara fluksi medan dan fluksi jangkar Fluksi yang dihasilkan oleh garis gaya magnet jangkar menentang fluksi medan utama pada setengah bagian dari salah satu kutubnya dan memperkuat fluksi medan utama pada setengah bagian yang lain. Hal ini jelas akan menyebabkan penurunan kerapatan fluksi pada setengah bagian dari salah satu kutubnya dan terjadi kenaikan pada setengah bagian yang lain di kutub yang sama. Efek dari intensitas medan magnet atau lintasan fluksi pada jangkar yang memotong lintasan fluksi medan utama ini disebut sebagai reaksi jangkar magnetisasi silang cross magnetization. Magnetisasi-silang ini juga menyebabkan pergeseran bidang netral. Pada Gambar 2.7 dapat dilihat bahwa vektor OFr merupakan resultan vektor OF A dan OF M, serta posisi bidang netral magnetis yang baru, di mana selalu tegak lurus terhadap vektor OFr. Bidang netral magnetis motor yang baru bergeser sejauh β karena posisi bidang netral magnetis ini selalu tegak lurus terhadap vektor OF. Dengan pergeseran bidang netral ini maka sikat juga akan bergeser sejauh pergeseran bidang netral magnetis. Hal ini dapat menimbulkan bunga api di segmen komutator dekat sikat. Universitas Sumatera Utara Kebanyakan mesin listrik bekerja pada kerapatan fluksi yang dekat dengan titik jenuhnya, sehingga dapat menimbulkan kejenuhan magnetik. Pengaruh kejenuhan magnetik terhadap fluksi medan utama dapat dijelaskan dengan Gambar 2.8 berikut ini : Gambar 2.8 Kurva pemagnetan saat terjadi reaksi jangkar Pada Gambar 2.8 dapat dilihat bahwa garis gaya magnet ggm resultan adalah F k – F j dimana F k adalah ggm medan utama tanpa dipengaruhi reaksi jangkar dan F j adalah ggm pada jangkar. Untuk F j positif dan F j negatif dimisalkan dengan adanya pertambahan dan atau pengurangan ggm yang terjadi pada kutub medan sebesar F k . Untuk lokasi di permukaan kutub dimana ggm rotor menambahkan ggm kutub, terjadi sedikit penambahan kerapatan fluks ∆Ф n. Tetapi pada lokasi permukaan kutub dimana ggm rotor mengeliminir ggm kutub, terdapat penurunan kerapatan fluksi ∆Ф t yang lebih besar : ∆Ф n ∆Ф t , sehingga penjumlahan rata-rata kerapatan fluks yang terjadi adalah kerapatan fluks kutub yang semakin berkurang. Hal ini disebut juga efek demagnetisasi reaksi jangkar yang timbul karena adanya saturasi magnetik. Pelemahan fluks ini menimbulkan efek yang sangat serius pada motor arus searah, dimana pelemahan fluks akan menyebabkan motor arus searah semakin cepat hingga tak terkendali.

2.5 Mengatasi Reaksi Jangkar