Reaksi Jangkar DASAR TEORI

15 U S O M Bidang Netral Magnetis Sikat F Dimana : a T = torsi jangkar Newton-meter r = jari-jari rotor meter Apabila torsi start lebih besar dari torsi beban, maka jangkar akan berputar.

2.4 Reaksi Jangkar

Reaksi jangkar merupakan pengaruh medan magnet yang disebabkan oleh mengalirnya arus pada jangkar, dimana jangkar tersebut berada di dalam medan magnet. Reaksi jangkar menyebabkan terjadinya dua hal, yaitu : 1. Demagnetisasi atau penurunan kerapatan fluksi medan utama. 2. Magnetisasi silang. Apabila kumparan medan dialiri oleh arus tetapi kumparan jangkar tidak dialiri oleh arus, maka dengan mengabaikan pengaruh celah udara, jalur fluksi ideal untuk kutub utama dari motor arus searah dua kutub, berasal dari kutub utara menuju kutub selatan seperti pada Gambar 2.5 berikut ini : Gambar 2.5 Fluksi yang dihasilkan oleh kumparan medan Dari Gambar 2.5 dapat dijelaskan bahwa : Universitas Sumatera Utara 16  Fluksi didistribusikan simetris terhadap bidang netral magnetis.  Sikat ditempatkan bertepatan dengan bidang netral magnetis. Bidang netral magnetis didefinisikan sebagai bidang di dalam motor dimana konduktor bergerak sejajar dengan garis gaya magnet ggm sehingga gaya gerak listrik ggl induksi konduktor pada bidang tersebut adalah nol. Seperti yang terlihat dari Gambar 2.5 sikat selalu ditempatkan di sepanjang bidang netral magnetis. Oleh karena itu, bidang netral magnetis juga disebut sebagai sumbu komutasi karena pembalikan arah arus jangkar berada pada bidang tersebut. Vektor OF M mewakili besar dan arah dari fluksi medan utama, dimana vektor ini tegak lurus terhadap bidang netral magnetis. Sewaktu hanya konduktor jangkar saja yang dialiri oleh arus listrik sementara kumparan medan tidak dieksitasi, maka disekeliling konduktor jangkar timbul garis gaya magnet atau fluksi. Gambaran arah garis gaya magnet ditunjukkan pada Gambar 2.6 berikut ini : Gambar 2.6 Fluksi yang dihasilkan oleh kumparan jangkar Penentuan arah dari garis gaya magnet yang diakibatkan oleh arus jangkar ditentukan dengan aturan putaran sekrup cork screw rule. Besar dan arah garis gaya magnet tersebut diwakili oleh vektor OF A yang sejajar dengan bidang netral Universitas Sumatera Utara 17 magnetis. Pada prakteknya, sewaktu mesin beroperasi maka konduktor jangkar dan konduktor medan sama- sama dialiri oleh arus listrik, distribusi fluksi resultan diperoleh dari menggabungkan kedua fluksi tersebut. Oleh karena itu distribusi fluksi medan utama yang melalui jangkar tidak lagi simetris tetapi sudah mengalami pembelokan saat mendekati konduktor yang dialiri arus tersebut. Hal tersebut dikarenakan pengaruh fluksi jangkar yang dapat dilihat dari Gambar 2.7 berikut ini : Gambar 2.7 Hasil kombinasi antara fluksi medan dan fluksi jangkar Fluksi yang dihasilkan oleh garis gaya magnet jangkar menentang fluksi medan utama pada setengah bagian dari salah satu kutubnya dan memperkuat fluksi medan utama pada setengah bagian yang lain. Hal ini jelas akan menyebabkan penurunan kerapatan fluksi pada setengah bagian dari salah satu kutubnya dan terjadi kenaikan pada setengah bagian yang lain di kutub yang sama. Efek dari intensitas medan magnet atau lintasan fluksi pada jangkar yang memotong lintasan fluksi medan utama ini disebut sebagai reaksi jangkar magnetisasi silang cross magnetization. Universitas Sumatera Utara 18 Magnetisasi-silang ini juga menyebabkan pergeseran bidang netral. Pada Gambar 2.7 dapat dilihat bahwa vektor OFr merupakan resultan vektor OF A dan OF M, serta posisi bidang netral magnetis yang baru, di mana selalu tegak lurus terhadap vektor OFr. Bidang netral magnetis motor yang baru bergeser sejauh  karena posisi bidang netral magnetis ini selalu tegak lurus terhadap vektor OF. Dengan pergeseran bidang netral ini maka sikat juga akan bergeser sejauh pergeseran bidang netral magnetis. Hal ini dapat menimbulkan bunga api di segmen komutator dekat sikat. Kebanyakan mesin listrik bekerja pada kerapatan fluksi yang dekat titik jenuhnya, sehingga dapat menimbulkan kejenuhan magnetik. Apabila kejenuhan magnetik ini terjadi, maka efek penguatan fluksi resultan lebih kecil bila dibandingkan dengan efek pelemahan fluksi resultan atau dengan kata lain pertambahan kerapatan fluksi resultan pada salah satu bagian kutub lebih sedikit bila dibandingkan dengan pengurangan keraptan fluksi pada bagian yang lainnya. Sehingga fluksi resultan akan berkurang dari harga tanpa bebannya. Hali inilah yang disebut efek demagnetisasi reaksi jangkar dan perlu diingat bahwa demagnetisasi hanya terjadi karena adanya saturasi magnetik.

2.5 Mengatasi Reaksi Jangkar

Dokumen yang terkait

Analisis Pengaruh Jatuh Tegangan Terhadap Torsi Dan Putaran Pada Motor Arus Searah Penguatan Shunt (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

10 172 64

Pengaruh Penambahan Kutub Bantu Pada Motor Arus Searah Penguatan Seri Dan Shunt Untuk Memperkecil Rugi-Rugi

2 40 93

Pengaruh Posisi Sikat dan Penambahan Kutub Bantu Terhadap Efisiensi dan Torsi Motor DC Shunt (Aplikasi Pada Laboratorium Konversi Energi Listrik FT-USU)

2 94 60

Studi Pengaruh Perubahan Posisi Sikat Terhadap Efisiensi Motor Dc Shunt (Aplikasi Pada Laboratorium Konversi Energi Listrik FT-USU)

1 60 61

Studi Penentuan Rugi-Rugi Motor Arus Searah Penguatan Kompon Pendek Dengan Menggunakan Metode Perlambatan (Retardation Test) ( Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU )

0 34 73

Studi Pengereman Secara Dinamis Pada Motor Arus Searah Penguatan Shunt Dengan Mikrokontroller ( Aplikasi Pada Laboratorium Konversi Energi Listrik FT-Usu )

1 44 53

BAB II DASAR TEORI - Pengaruh Penambahan Kutub Bantu Pada Motor Arus Searah Penguatan Seri Dan Shunt Untuk Memperkecil Rugi-Rugi

0 0 31

SEARAH PENGUATAN SERI DAN SHUNT UNTUK MEMPERKECIL RUGI-RUGI (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

0 0 13

BAB II DASAR TEORI - Pengaruh Penambahan Kutub Bantu Pada Motor Arus Searah Penguatan Seri Dan Shunt Untuk Memperkecil Rugi-Rugi (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

1 0 31

SEARAH PENGUATAN SERI DAN SHUNT UNTUK MEMPERKECIL RUGI-RUGI (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

0 0 13