Numerical examples Directory UMM :Data Elmu:jurnal:I:Insurance Mathematics And Economics:Vol26.Issue2-3.2000:

H. Cossette, E. Marceau Insurance: Mathematics and Economics 26 2000 133–149 141 Table 1 Moments of X i , N i and W i Class 1 Class 2 E [X i ] 1.1250 1.1250 E [X i 2 ] 2.5313 2.5313 E [N i ] 4.0000 4.0000 Var[N i ] 4.0000 4.0000 E [W i ] 4.5000 4.5000 Var[W i ] 10.1250 30.375 Table 2 Correlation parameters ρN 1 , N 2 = ρN 1 , N 2 = 0.25 ρN 1 , N 2 = 0.75 λ 1.0000 3.0000 CovN 1 , N 2 1.0000 3.0000 CovW 1 , W 2 1.2656 3.7969 ρW 1 , W 2 0.0727 0.2165

4. Numerical examples

We study the impact on the probability of ruin of a relation of dependence between two classes of business of an insurance book of business. In a first example, we consider the aggregation of the classes of business via a common shock model and in a second one, the aggregation is made via the Negative Binomial model with common component. We compare the ruin probability ψu, 1, 20 obtained for different relations of dependence between the classes of business. The differences result from the choice of correlation coefficient between N 1 and N 2 which are either 0, 0.25 or 0.75. The case with a correlation coefficient of zero corresponds to the case of independent classes of business. Example 1 Poisson model with common shock. The characteristics of the two books of business are the following: Book of business 1 : X 1 ∼ Weibull0.5, 1.125 N 1 ∼ Poisson4 Book of business 2 : X 2 ∼ Exponential2.25 N 2 ∼ Poisson4. The moments of X i , N i , W i are summarized in Table 1. Also, the correlation parameters are given in Table 2. The numerical results for the ruin probability are shown in Table 3, where the last number added in ψu, 1, 20 indicates the correlation coefficient between N 1 and N 2 . Example 2 Negative Binomial model with common component. In this example, the characteristics of the books of business are Book of business 1 : X 1 ∼ Weibull0.5, 1.125 N 1 ∼ Negative Binomial1, 4 Book of business 2 : X 2 ∼ Exponential2.25 N 2 ∼ Negative Binomial1, 4. In Tables 4 and 5, we give the moments of X i , N i , W i and the correlation parameters. The numerical results for the ruin probability are summarized in Table 6, where the last number added in ψu, 1, 20 again indicates the correlation coefficient between N 1 and N 2 . 142 H. Cossette, E. Marceau Insurance: Mathematics and Economics 26 2000 133–149 Table 3 Ruin probabilities ψu, 1, 20 in the Poisson model u ψu, 1, 20, 0 ψu, 1, 20, 0.25 ψu, 1, 20, 0.75 ψu, 1, 20, 0.25 ψu, 1, 20, 0 − 1 ψu, 1, 20, 0.75 ψu, 1, 20, 0 − 1 0.6317 0.6389 0.6518 1.1 3.2 10 0.3207 0.3343 0.3592 4.2 12.0 20 0.1643 0.1752 0.1961 6.6 19.4 30 0.0836 0.0909 0.1055 8.7 26.2 40 0.0420 0.0465 0.0558 10.7 32.9 50 0.0208 0.0234 0.0290 12.5 39.4 60 0.0102 0.0117 0.0149 14.7 46.1 70 0.0050 0.0057 0.0075 14.0 50.0 80 0.0024 0.0028 0.0037 16.7 54.2 90 0.0011 0.0014 0.0018 27.3 63.6 100 0.0005 0.0006 0.0009 20.0 80.0 110 0.0003 0.0003 0.0004 0.0 33.3 120 0.0001 0.0001 0.0002 0.0 100.0 130 0.0001 0.0001 0.0001 0.0 0.0 140 0.0000 0.0000 0.0000 0.0 0.0 150 0.0000 0.0000 0.0000 0.0 0.0 Table 4 Moments of X i , N i and W i Class1 Class 2 E [X i ] 1.1250 1.1250 E [X i 2 ] 2.5313 2.5313 E [N i ] 4.0000 4.0000 Var[N i ] 20.0000 20.0000 E [W i ] 4.5000 4.5000 Var[W i ] 28.1250 48.3750 Table 5 Correlation parameters ρN 1 , N 2 = ρN 1 , N 2 = 0.25 ρN 1 , N 2 = 0.75 α 0.3125 0.9375 CovN 1 , N 2 5.0000 15.0000 CovW 1 , W 2 6.3281 18.9844 ρW 1 , W 2 0.1716 0.5147 We observe that the increase in the ruin probability ψu, 1, 20 with the introduction of a relation of dependence is more important in the Negative Binomial model than in the Poisson model. We have observed similar results for ψu, 1, 10 and ψu, 1, 30. In both examples, we observe that the ruin probabilities increase as the coefficient of correlation ρN 1 , N 2 increases. It is worth mentioning that with X 1 exponentially distributed and X 2 having a Weibull distribution in both the Poisson and Negative Binomial model, the correlation coefficient ρN 1 , N 2 of 0.75 in the Poisson model produces a correlation coefficient ρW 1 , W 2 of 0.2165 while it leads to a correlation coefficient ρW 1 , W 2 equal to 0.5147 in the Negative Binomial model. This might explain the smaller impact on the ruin probabilities of the introduction of a relation of dependence in the Poisson model than in the Negative Binomial model. H. Cossette, E. Marceau Insurance: Mathematics and Economics 26 2000 133–149 143 Table 6 Ruin probabilities ψu, 1, 20 in negative binomial model u ψu, 1, 20, 0 ψu, 1, 20, 0.25 ψu, 1, 20, 0.75 ψu, 1, 20, 0.25 ψu, 1, 20, 0 − 1 ψu, 1, 20, 0.75 ψu, 1, 20, 0 − 1 0.6867 0.6933 0.6972 1.0 1.5 10 0.4599 0.4971 0.5133 8.1 11.6 20 0.3025 0.3530 0.3743 16.7 23.7 30 0.1956 0.2474 0.2696 26.5 37.8 40 0.1243 0.1711 0.1916 37.7 54.1 50 0.0776 0.1167 0.1345 50.4 73.3 60 0.0476 0.0785 0.0932 64.9 95.8 70 0.0287 0.0522 0.0638 81.9 122.3 80 0.0171 0.0342 0.0432 100.0 152.6 90 0.0100 0.0222 0.0289 122.0 189.0 100 0.0058 0.0142 0.0191 144.8 229.3 110 0.0033 0.0090 0.0126 172.7 281.8 120 0.0019 0.0057 0.0081 200.0 326.3 130 0.0010 0.0035 0.0052 250.0 420.0 140 0.0006 0.0022 0.0033 266.7 450.0 150 0.0003 0.0013 0.0021 333.3 600.0

5. Dependence and the adjustment coefficient