Create an Attunity Stream Model Reverse-engineer an Attunity Stream Model
29.1 Introduction
Oracle GoldenGate OGG product offers solutions that provide key business applications with continuous availability and real-time information. It provides guaranteed capture, routing, transformation and delivery across heterogeneous databases and environments in real-time. Using the Oracle GoldenGate knowledge modules requires that you know and understand Oracle GoldenGate concepts and architecture. See the Oracle GoldenGate Documentation on OTN for more information: http:www.oracle.comtechnetworkmiddlewaregoldengateoverview index.html29.1.1 Overview of the GoldeGate CDC Process
Oracle Data Integrator uses Oracle GoldenGate to replicate online data from a source database to a staging database. This staging database contains a copy of the source tables and the ODI Changed Data Capture CDC infrastructure, both loaded using Oracle GoldenGate. The staging database can be stored in an Oracle or Teradata schema. The source database can be Oracle, Microsoft SQL Server, DB2 UDB, or Sybase ASE. In this chapter, database refers to any of these source database technologies. Setting up CDC with GoldenGate is done using the following process: 1. A replica of the source tables is created in the staging database, using, for example, the Oracle Data Integrator Common Format Designer feature. 2. Oracle Data Integrator Changed Data Capture CDC is activated on these replicated tables using either the JKM database to Oracle Consistent OGG or the JKM database to Teradata Consistent OGG. Starting the journals creates 29-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator Oracle GoldenGate configuration files and sets up a CDC infrastructure in the staging database. Note that no active process is started for capturing source data at that stage. 3. Using the generated configuration files, an Oracle GoldenGate Extract process is configured and started to capture changes from the source database, and corresponding Replicat processes are configured and started to replicate these changes into the staging database. Changes are replicated into both the replicated source table and the CDC infrastructure. GoldenGate can optionally be configured to perform the initial load of the source data into the staging tables. 4. ODI interfaces can source from the replicated tables and use captured changes seamlessly within any ODI scenario.29.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules listed in Table 29–1 for replicating online data from a source to a staging database. Unlike other CDC JKMs, the Oracle GoldenGate JKMs journalize data in the staging Oracle or Teradata database and not in the source server. The JKM database to Oracle Consistent OGG and the JKM database to Teradata Consistent OGG perform the same tasks: ■ Create and manage the ODI CDC framework infrastructure on the replicated tables ■ Generate the parameter files to setup the Oracle GoldenGate capture Extract and Delivery Replicat processes ■ Provide extra steps to check the configuration of the source database and proposes tips to correct the configuration ■ Generate a readme file explaining how to complete the setup Table 29–1 Oracle GoldenGate Knowledge Modules Knowledge Module Description JKM Oracle to Oracle Consistent OGG Creates the infrastructure for consistent set journalizing on an Oracle staging server and generates the Oracle GoldenGate configuration for replicating data from an Oracle source to this staging server. JKM DB2 UDB to Oracle Consistent OGG Creates the infrastructure for consistent set journalizing on an Oracle staging server and generates the Oracle GoldenGate configuration for replicating data from an IBM DB2 UDB source to this staging server. JKM Sybase ASE to Oracle Consistent OGG Creates the infrastructure for consistent set journalizing on an Oracle staging server and generates the Oracle GoldenGate configuration for replicating data from a Sybase ASE source to this staging server. JKM MSSQL to Oracle Consistent OGG Creates the infrastructure for consistent set journalizing on an Oracle staging server and generates the Oracle GoldenGate configuration for replicating data from a Microsoft SQL Server source to this staging server. JKM Oracle to Teradata Consistent OGG Creates the infrastructure for consistent set journalizing on a Teradata staging server and generates the Oracle GoldenGate configuration for replicating data from an Oracle source to this staging server.Parts
» Oracle Fusion Middleware Online Documentation Library
» Terminology Using This Guide
» Concepts Knowledge Modules Introduction
» System Requirements and Certifications
» Using External Tables Technology Specific Requirements
» Using Oracle Streams Technology Specific Requirements
» Connectivity Requirements Installation and Configuration
» Creating an Oracle Physical Schema
» Setting Up an Integration Project
» Reverse-engineer an Oracle Model
» Setting up Changed Data Capture
» Designing an ETL-Style Interface
» Troubleshooting Oracle Database Errors Common Problems and Solutions
» System Requirements and Certifications Technology Specific Requirements
» Creating a File Physical Schema
» In the Models accordion, right click your File Model and select New Datastore.
» In the editor toolbar, click Reverse-Engineer.The Columns Setup Wizard is
» Click OK when the columns definition is complete. From the File main menu, select Save.
» In the Definition Tab, enter the following fields:
» Go to the Files tab to describe the type of file. Set the fields as follows:
» In the toolbar menu, click Reverse Engineer COBOL CopyBook.
» Click OK. COBOL Copybook reverse-engineering
» Create an ODBC Datasource for the Excel Spreadsheet
» Define the Data Server, Physical and Logical Schema for the Microsoft Excel
» Run the customized reverse-engineering
» Select the Microsoft Excel Driver .xls driver.
» Name the data source: ODI_EXCEL_FILE_REPO and select the file
» In Topology Navigator, add a Microsoft Excel data server with the following
» From the File main menu, select Save.
» Add a physical schema to this data server. Leave the default values in the
» In the Context tab of the physical schema, click Add.
» In the new line, select the context that will be used for reverse engineering and
» In the Reverse-Engineer Tab, set the following parameters:
» In the toolbar menu, click Reverse-Engineer.
» Technology-Specific Requirements Installation and Configuration
» Reverse-engineer a Data Model
» Loading Data from an ANSI SQL-92 Compliant Technology
» Loading Data to an ANSI SQL-92 Compliant Technology
» Integrating Data in an ANSI SQL-92 Compliant Technology
» System Requirements Installation and Configuration
» Technologic Specific Requirements Installation and Configuration
» Creating a Physical Schema for XML
» Reverse-Engineering an XML Model
» Synchronizing XML File and Schema
» Loading Data from an XML Schema
» Loading Data to an XML Schema
» Detect the Errors Coming from XML Common Errors
» Creating a Complex File Physical Schema
» Designing an Interface Oracle Fusion Middleware Online Documentation Library
» Using the BULK INSERT Command
» Using Linked Servers Technology Specific Requirements
» Creating a Microsoft SQL Server Physical Schema
» Create a Microsoft SQL Server Model
» Reverse-engineer a Microsoft SQL Server Model
» Loading Data from Microsoft SQL Server
» Integrating Data in Microsoft SQL Server
» Creating a Microsoft Excel Data Server
» Creating a Microsoft Excel Physical Schema
» Setting up Data Quality Setting Up an Integration Project
» Create a Microsoft Excel Model
» Reverse-engineer a Microsoft Excel Model
» Loading Data from Microsoft Excel
» Loading Data to Microsoft Excel
» Decoding Error Messages Common Problems and Solutions
» Specific Requirements Oracle Fusion Middleware Online Documentation Library
» Creating a Netezza Physical Schema
» Reverse-engineer a Netezza Model
» Loading Data from Netezza Loading Data to Netezza
» Creating a Teradata Physical Schema
» Reverse-engineer a Teradata Model
» Loading Data from Teradata Loading Data to Teradata
» Integrating Data in Teradata
» Primary Indexes and Statistics
» Support for Teradata Utilities Support for Named Pipes Optimized Management of Temporary Tables
» Creating a Hypersonic SQL Data Server
» Creating a Hypersonic SQL Physical Schema
» Setting up Changed Data Capture Setting up Data Quality Designing an Interface
» Introduction Oracle Fusion Middleware Online Documentation Library
» Concepts Knowledge Modules Oracle Fusion Middleware Online Documentation Library
» Creating a DB2400 Physical Schema
» Reverse-engineer an IBM DB2400 Model
» Setting up Trigger-Based CDC
» CDCRTVJRN Program Details Setting up Log-Based CDC
» Using the CDC with the Native Journals
» Problems While Reading Journals
» Loading Data from IBM DB2 for iSeries
» Loading Data to IBM DB2 for iSeries
» Integrating Data in IBM DB2 for iSeries
» Installing the Run-Time Agent on iSeries
» Using Client Access Alternative Connectivity Methods for iSeries
» Change the driver and URL to your AS400 server with the following information:
» Set the following java properties for the java machine the run-time agent deployed
» Troubleshooting Error messages Troubleshooting
» Connection Errors Common Problems and Solutions
» Integrating Data in Oracle BI
» Extracts the OBIEE Metadata from a OBIEE Instance
» Using the Lineage Lineage Lifecycle
» Installation Overview Installing the Lineage in an OBIEE Server
» Requirements Installing the Lineage in an OBIEE Server
» Post-Installation Tasks Installing the Lineage in an OBIEE Server
» Exporting the OBIEE Repository Documentation to a Text File
» Exporting the OBIEE Web Catalog Report to a Text File
» Refreshing the OBIEE Lineage From Existing Exports
» Configuring the Scripts Automating the Lineage Tasks
» Automating Lineage Deployment Automating Lineage Refresh
» Viewing Execution Statistics Viewing and Filtering Lineage Data
» Using the Dashboard Using the Lineage in OBIEE Dashboards
» Using Lineage and Hierarchy Using Contextual Lineage
» Reverse-engineer an Essbase Model
» Loading Metadata Designing an Interface
» Loading Data Designing an Interface
» Data Extraction Methods for Essbase
» Extracting Essbase Data Extracting Data
» Extracting Members from Metadata
» Creating an Hyperion Financial Management Data Server
» Creating an Hyperion Financial Management Physical Schema
» Create an Financial Management Model
» Reverse-Engineer an Financial Management Model
» Extracting Financial Management Data
» Extracting Members from Member Lists
» Data Store Tables Oracle Fusion Middleware Online Documentation Library
» Creating an Hyperion Planning Data Server
» Creating an Hyperion Planning Physical Schema
» Reverse-engineer a Planning Model
» Log on to Planning Web. Select Administration Data Load Administration.
» Accounts Datastore Tables and Data Load Columns
» Employee Datastore Tables and Data Load Columns
» Entities Datastore Tables and Data Load Columns
» User-Defined Dimensions Datastore Tables and Data Load Columns
» Attribute Dimensions Datastore Tables and Data Load Columns
» JMS Message Structure Concepts
» Creating a JMS Physical Schema
» Create a JMS Model Defining the JMS Datastores
» Loading Data from a JMS Source Integrating Data in a JMS Target
» Declaring JMS Properties Using JMS Properties
» Using Property Values as Source Data
» Setting Properties when Sending a Message
» Creating a JMS XML Physical Schema
» Reverse-Engineering a JMS XML Model
» Loading Data from a JMS XML Source Integrating Data in a JMS XML Target
» Creating a Physical Schema for LDAP
» Reverse-Engineering an LDAP Model
» Loading Data from an LDAP Directory
» Loading Data to an LDAP Directory
» Integrating Data in an LDAP Directory
» Setting Up an Integration Project Troubleshooting
» Creating a TimesTen Physical Schema
» Reverse-engineer a TimesTen Model
» Setting Up an Integration Project Setting up Data Quality
» Integrating Data in TimesTen
» Create an Attunity Stream Model Reverse-engineer an Attunity Stream Model
» Setting Up an Integration Project Designing an Interface Using the LKM Attunity to SQL
» Overview of the GoldeGate CDC Process
» Create the Staging Physical Schema
» Define the Source Data Server
» Create the Source Physical Schema
» Create the Replicated Tables
» Set Up an Integration Project
» Configure CDC for the Replicated Tables
» Configure and Start Oracle GoldenGate Processes
» Design Interfaces Using Replicated Data
» Initial Load Method Advanced Configuration
» Tuning Replication Performances Advanced Configuration
» One Source Multiple Staging Configuration
» Cross Reference Table Structures
» Loading Phase LKM Overview of the SOA XREF KM Process
» Defining the Topology Working with XREF using the SOA Cross References KMs
Show more