Loading Data from Teradata Loading Data to Teradata
11.7.2 Integrating Data in Teradata
Oracle Data Integrator provides Knowledge Modules that implement optimized data integration strategies for Teradata. These optimized Teradata KMs are listed in Table 11–4 . In addition to these KMs, you can also use the Generic SQL KMs. The IKM choice in the Interface Flow tab determines the performances and possibilities for integrating. SQL LKM SQL to Teradata TTU Loads data from a SQL compliant source database to a Teradata staging area database using a native Teradata bulk utility. This LKM can unload the source data in a file or Named Pipe and then call the specified Teradata utility to populate the staging table from this filepipe. Using named pipes avoids landing the data in a file. This LKM is recommended for very large volumes. Consider using this IKM when: ■ The source data located on a SQL compliant database is large ■ You dont want to stage your data between the source and the target ■ Your staging area is a Teradata database. This KM support the following Teradata optimizations: ■ Support for Teradata Utilities ■ Support for Named Pipes ■ Optimized Temporary Tables Management Table 11–4 KMs for integrating data to Teradata KM Notes IKM Teradata Control Append Integrates data in a Teradata target table in replaceappend mode. When flow data needs to be checked using a CKM, this IKM creates a temporary staging table before invoking the CKM. Consider using this IKM if you plan to load your Teradata target table in replace mode, with or without data integrity check. To use this IKM, the staging area must be on the same data server as the target Teradata table. This KM support the following Teradata optimizations: ■ Primary Indexes and Statistics ■ Optimized Temporary Tables Management Table 11–3 Cont. KMs for loading data to Teradata Source or Staging Area Technology KM Notes Teradata 11-9 IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental update mode. This IKM creates a temporary staging table to stage the data flow. It then compares its content to the target table to guess which records should be inserted and which others should be updated. It also allows performing data integrity check by invoking the CKM. Inserts and updates are done in bulk set-based processing to maximize performance. Therefore, this IKM is optimized for large volumes of data. Consider using this IKM if you plan to load your Teradata target table to insert missing records and to update existing ones. To use this IKM, the staging area must be on the same data server as the target. This KM support the following Teradata optimizations: ■ Primary Indexes and Statistics ■ Optimized Temporary Tables Management IKM Teradata Multi Statement Integrates data in Teradata database target table using multi statement requests, managed in one SQL transaction IKM Teradata Slowly Changing Dimension Integrates data in a Teradata target table used as a Type II Slowly Changing Dimension in your Data Warehouse. This IKM relies on the Slowly Changing Dimension metadata set on the target datastore to figure out which records should be inserted as new versions or updated as existing versions. Because inserts and updates are done in bulk set-based processing, this IKM is optimized for large volumes of data. Consider using this IKM if you plan to load your Teradata target table as a Type II Slowly Changing Dimension. To use this IKM, the staging area must be on the same data server as the target and the appropriate Slowly Changing Dimension metadata needs to be set on the target datastore. This KM support the following Teradata optimizations: ■ Primary Indexes and Statistics ■ Optimized Temporary Tables Management This KM also includes a COMPATIBLE option. This option corresponds to the Teradata engine major version number. If this version is 12 or above, then a MERGE statement will be used instead of the standard INSERT then UPDATE statements to merge the incoming data flow into the target table. Table 11–4 Cont. KMs for integrating data to Teradata KM NotesParts
» Oracle Fusion Middleware Online Documentation Library
» Terminology Using This Guide
» Concepts Knowledge Modules Introduction
» System Requirements and Certifications
» Using External Tables Technology Specific Requirements
» Using Oracle Streams Technology Specific Requirements
» Connectivity Requirements Installation and Configuration
» Creating an Oracle Physical Schema
» Setting Up an Integration Project
» Reverse-engineer an Oracle Model
» Setting up Changed Data Capture
» Designing an ETL-Style Interface
» Troubleshooting Oracle Database Errors Common Problems and Solutions
» System Requirements and Certifications Technology Specific Requirements
» Creating a File Physical Schema
» In the Models accordion, right click your File Model and select New Datastore.
» In the editor toolbar, click Reverse-Engineer.The Columns Setup Wizard is
» Click OK when the columns definition is complete. From the File main menu, select Save.
» In the Definition Tab, enter the following fields:
» Go to the Files tab to describe the type of file. Set the fields as follows:
» In the toolbar menu, click Reverse Engineer COBOL CopyBook.
» Click OK. COBOL Copybook reverse-engineering
» Create an ODBC Datasource for the Excel Spreadsheet
» Define the Data Server, Physical and Logical Schema for the Microsoft Excel
» Run the customized reverse-engineering
» Select the Microsoft Excel Driver .xls driver.
» Name the data source: ODI_EXCEL_FILE_REPO and select the file
» In Topology Navigator, add a Microsoft Excel data server with the following
» From the File main menu, select Save.
» Add a physical schema to this data server. Leave the default values in the
» In the Context tab of the physical schema, click Add.
» In the new line, select the context that will be used for reverse engineering and
» In the Reverse-Engineer Tab, set the following parameters:
» In the toolbar menu, click Reverse-Engineer.
» Technology-Specific Requirements Installation and Configuration
» Reverse-engineer a Data Model
» Loading Data from an ANSI SQL-92 Compliant Technology
» Loading Data to an ANSI SQL-92 Compliant Technology
» Integrating Data in an ANSI SQL-92 Compliant Technology
» System Requirements Installation and Configuration
» Technologic Specific Requirements Installation and Configuration
» Creating a Physical Schema for XML
» Reverse-Engineering an XML Model
» Synchronizing XML File and Schema
» Loading Data from an XML Schema
» Loading Data to an XML Schema
» Detect the Errors Coming from XML Common Errors
» Creating a Complex File Physical Schema
» Designing an Interface Oracle Fusion Middleware Online Documentation Library
» Using the BULK INSERT Command
» Using Linked Servers Technology Specific Requirements
» Creating a Microsoft SQL Server Physical Schema
» Create a Microsoft SQL Server Model
» Reverse-engineer a Microsoft SQL Server Model
» Loading Data from Microsoft SQL Server
» Integrating Data in Microsoft SQL Server
» Creating a Microsoft Excel Data Server
» Creating a Microsoft Excel Physical Schema
» Setting up Data Quality Setting Up an Integration Project
» Create a Microsoft Excel Model
» Reverse-engineer a Microsoft Excel Model
» Loading Data from Microsoft Excel
» Loading Data to Microsoft Excel
» Decoding Error Messages Common Problems and Solutions
» Specific Requirements Oracle Fusion Middleware Online Documentation Library
» Creating a Netezza Physical Schema
» Reverse-engineer a Netezza Model
» Loading Data from Netezza Loading Data to Netezza
» Creating a Teradata Physical Schema
» Reverse-engineer a Teradata Model
» Loading Data from Teradata Loading Data to Teradata
» Integrating Data in Teradata
» Primary Indexes and Statistics
» Support for Teradata Utilities Support for Named Pipes Optimized Management of Temporary Tables
» Creating a Hypersonic SQL Data Server
» Creating a Hypersonic SQL Physical Schema
» Setting up Changed Data Capture Setting up Data Quality Designing an Interface
» Introduction Oracle Fusion Middleware Online Documentation Library
» Concepts Knowledge Modules Oracle Fusion Middleware Online Documentation Library
» Creating a DB2400 Physical Schema
» Reverse-engineer an IBM DB2400 Model
» Setting up Trigger-Based CDC
» CDCRTVJRN Program Details Setting up Log-Based CDC
» Using the CDC with the Native Journals
» Problems While Reading Journals
» Loading Data from IBM DB2 for iSeries
» Loading Data to IBM DB2 for iSeries
» Integrating Data in IBM DB2 for iSeries
» Installing the Run-Time Agent on iSeries
» Using Client Access Alternative Connectivity Methods for iSeries
» Change the driver and URL to your AS400 server with the following information:
» Set the following java properties for the java machine the run-time agent deployed
» Troubleshooting Error messages Troubleshooting
» Connection Errors Common Problems and Solutions
» Integrating Data in Oracle BI
» Extracts the OBIEE Metadata from a OBIEE Instance
» Using the Lineage Lineage Lifecycle
» Installation Overview Installing the Lineage in an OBIEE Server
» Requirements Installing the Lineage in an OBIEE Server
» Post-Installation Tasks Installing the Lineage in an OBIEE Server
» Exporting the OBIEE Repository Documentation to a Text File
» Exporting the OBIEE Web Catalog Report to a Text File
» Refreshing the OBIEE Lineage From Existing Exports
» Configuring the Scripts Automating the Lineage Tasks
» Automating Lineage Deployment Automating Lineage Refresh
» Viewing Execution Statistics Viewing and Filtering Lineage Data
» Using the Dashboard Using the Lineage in OBIEE Dashboards
» Using Lineage and Hierarchy Using Contextual Lineage
» Reverse-engineer an Essbase Model
» Loading Metadata Designing an Interface
» Loading Data Designing an Interface
» Data Extraction Methods for Essbase
» Extracting Essbase Data Extracting Data
» Extracting Members from Metadata
» Creating an Hyperion Financial Management Data Server
» Creating an Hyperion Financial Management Physical Schema
» Create an Financial Management Model
» Reverse-Engineer an Financial Management Model
» Extracting Financial Management Data
» Extracting Members from Member Lists
» Data Store Tables Oracle Fusion Middleware Online Documentation Library
» Creating an Hyperion Planning Data Server
» Creating an Hyperion Planning Physical Schema
» Reverse-engineer a Planning Model
» Log on to Planning Web. Select Administration Data Load Administration.
» Accounts Datastore Tables and Data Load Columns
» Employee Datastore Tables and Data Load Columns
» Entities Datastore Tables and Data Load Columns
» User-Defined Dimensions Datastore Tables and Data Load Columns
» Attribute Dimensions Datastore Tables and Data Load Columns
» JMS Message Structure Concepts
» Creating a JMS Physical Schema
» Create a JMS Model Defining the JMS Datastores
» Loading Data from a JMS Source Integrating Data in a JMS Target
» Declaring JMS Properties Using JMS Properties
» Using Property Values as Source Data
» Setting Properties when Sending a Message
» Creating a JMS XML Physical Schema
» Reverse-Engineering a JMS XML Model
» Loading Data from a JMS XML Source Integrating Data in a JMS XML Target
» Creating a Physical Schema for LDAP
» Reverse-Engineering an LDAP Model
» Loading Data from an LDAP Directory
» Loading Data to an LDAP Directory
» Integrating Data in an LDAP Directory
» Setting Up an Integration Project Troubleshooting
» Creating a TimesTen Physical Schema
» Reverse-engineer a TimesTen Model
» Setting Up an Integration Project Setting up Data Quality
» Integrating Data in TimesTen
» Create an Attunity Stream Model Reverse-engineer an Attunity Stream Model
» Setting Up an Integration Project Designing an Interface Using the LKM Attunity to SQL
» Overview of the GoldeGate CDC Process
» Create the Staging Physical Schema
» Define the Source Data Server
» Create the Source Physical Schema
» Create the Replicated Tables
» Set Up an Integration Project
» Configure CDC for the Replicated Tables
» Configure and Start Oracle GoldenGate Processes
» Design Interfaces Using Replicated Data
» Initial Load Method Advanced Configuration
» Tuning Replication Performances Advanced Configuration
» One Source Multiple Staging Configuration
» Cross Reference Table Structures
» Loading Phase LKM Overview of the SOA XREF KM Process
» Defining the Topology Working with XREF using the SOA Cross References KMs
Show more